The BESS experimental astroparticle physics program

Makoto Sasaki, John W. Mitchell for the BESS Collaboration

<u>Outline:</u>

- Overview of the BESS Program
- BESS-Polar Program
- New Results from BESS-Polar II

Overview of the BESS Program

BESS Collaboration

Balloon-borne Experiment with a Superconducting Spectrometer

BESS Program

- Balloon-borne Experiment
 - Steady improvement
 - Continuously upgrade and modify detector components
 - Various new scientific subjects
 - Long period of successive observations
 - Cover more than full cycle (11 years) of solar activity
 - Education/Training
 - Young people can be responsible for essential parts of the experiment (20 students/engineers awarded with Ph.D)

with a

- Superconducting Spectrometer
 - Large acceptance
 - High statistics
 - Uniform magnetic field
 - High resolution MDR 200 1400 GV
 - Transparent
 - Thin Solenoid 4.4 g/cm² (2.2 g/cm²)
 - Definitive mass ID

BESS Program

- Balloon-borne Experiment
 - Steady improvement
 - Continuously upgrade and modify detector con
 - Various new scientific subjects
 - Long period of successive observations
 - Cover more than full cycle (11 years) of solar
 - Education/Training

• Young people can be responsible for essential TOF the experiment (20 students/engineers awarded Ph.D)

with a

- Superconducting Spectrometer
 - Large acceptance
 - High Statistics
 - Uniform magnetic field
 - High, uniform resolution (MDR ~ 200 GV)
 - Transparent
 - Thin Solenoid 4.4 g/cm² (2.2 g/cm²)
 - Definitive mass ID

 $m = \mathbb{Z}eR\sqrt{1/\beta^2 - 1}$

JET, IDC drift chambers: rigidity
Time-of-flight system (TOF): velocity and charge
Aerogel Cherenkov detector (ACC, n=1.02/1.03): background rejection

Science Objectives

- Measure cosmic-ray particles and antiparticles as a probe to study the early Universe
 - Antinuclei:
 - Antihelium/antiduteron; none observed in cosmic rays by any instrument
 - Fundamental question: symmetry of matter and antimatter
 - Antiprotons:
 - <u>p</u>/p ~ 10⁻⁵ @ 1 GeV
 - Mainly secondary origin; cosmic ray interactions with ISM
 - Possible small primary component;
 - Evaporation by Hawking radiation of primordial black holes (PBH) initially near ~5x10¹⁴g?
 - Annihilation of super-symmetric particles?
- Quantify charge-sign dependent Solar modulation
- Measure cosmic ray spectra and composition
 - p, He, Li, Be isotopic and elemental spectra
 - B, C, N, O elemental spectra
 - Atmospheric muons

- Nine northern latitude BESS flights (1+ days) 1993-2002
- Two Antarctic BESS-Polar flights (8.5 & 24.5 days) 2004, 2007

- Nine northern latitude BESS flights (1+ days) 1993-2002
- Two Antarctic BESS-Polar flights (8.5 & 24.5 days) 2004, 2007

- Nine northern latitude BESS flights (1+ days) 1993-2002
- Two Antarctic BESS-Polar flights (8.5 & 24.5 days) 2004, 2007

Evolution of the BESS Instrument

Evolution of the BESS Instrument

Antiproton Measurement

Most antiprotons are nuclear secondaries - characteristic spectral peak ~2 GeV

Some indication of additional component in low energy Solar minimum data!

- Nine northern latitude BESS flights (1+ days) 1993-2002
- Two multi-day (8.5 & 24.5 days) Antarctic flights in 2004, 2007

BESS-TeV Flight

$$p + p \rightarrow p + X$$

$$p + A \rightarrow \pi + \pi + \cdots$$

$$\pi \rightarrow \mu + v_{\mu}$$

$$\mu \rightarrow e + v_{e} + v_{\mu}$$

Fundamental Data for

- Cosmic-ray physics
- Atmospheric Neutrino Calculation

Measurements with BESS

Proton up to 100 GeV \rightarrow > 500 GeV Helium up to 50 GeV/n \rightarrow > 200 GeV/n

Upgrade of the BESS spectrometer

Improvement of rigidity resolution (Maximum Detectable Rigidity, MDR)

MDR

- Nine northern latitude BESS flights (1+ days) 1993-2002
- Two Antarctic BESS-Polar flights (8.5 & 24.5 days) 2004, 2007

Bartol Neutron Monitor

Proton Flux Modulation

Proton Flux

Proton spectra measured to ~500 GeV

- Proton spectra to 100 GeV measured for full solar cycle
- Upper solid line shows local interstellar (LIS) proton spectrum from best fit to BESS data (spectral index 2.76)
- Lower curves show the variation with time (Solar modulation) of the measured proton spectra extrapolated to the top of the atmosphere

180 _ਵ

160 특

140 ដ

120 🗄 100

80

60

40

20

2010

Year

Solar Modulation

Antiproton/Proton Ratio

22nd European Cosmic Ray Symposium

- Antiprotons and protons differ only in charge-sign
- Simultaneous measurements of proton and antiproton spectra provide a powerful test of models of charge-dependent Solar modulation of cosmic-rays (protons are most sensitive)
- More work is required in the interpretation

Antimatter Search (Expected from BESS-Polar)

(Search for PBH)

 Secondary D probability is negligible at low energies due to kinematics

• Any observed D almost certainly has a primary origin!

• D 95% C.L. upper limit (first reported) 1.92 x 10⁻⁴ (m² s sr GeV/n)⁻¹

BESS-Polar II flight in 2007 with a sensitivity 3×10^{-8}

(Search for antimatter domain)

BESS-Polar Program

BESS-Polar Program

Very precise measurement Antiprotons to lower energy

Around south pole, Antarctica Long duration flight High latitude

With a new spectrometer Maintain large acceptance Minimum material in particle path

Flown Twice BESS-Polar I (2004) BESS-Polar II (2007/2008)

BESS-Polar Program

Minimize material in spectrometer New detector (Middle TOF), No pressure vessel Energy range extended down to 0.1 GeV

Low power electronics Solar power system, Longer cryogen life, LHe

BESS-Polar Program

After assembly

BESS-Polar Program

Digital events directly transfer to Event Builder for DAQ
 >> compact, Fast and Power Saved

BESS-Polar Program

	BESS	BESS-Polar
Geom. Acceptance:	0.3	0.3 m ² • sr
Material for trigger:	18 g/cm ²	4.5 g/cm ²
Magnetic field	1.0 T	0.8 T
Weight	2.2	2.0 tons
Power	Battery	Solar-panel
Comsumption	1.2 kW	450 W
Cryogen life	5.5	20 days

BESS-Polar | Flight

<u>BESS-Polar I Flight</u>

Status of the BESS-Polar I Flight

Observation Time: 8.5 days

Float Time: 8.5 days (12/13/2004-12/21/2004)

Events recorded: $> 9 \times 10^8$

Data volume: ~ 2.1 terabytes

Data recovery:completed 2004Payload recovery:completed 2004

BESS-Polar I Results

Antiroton Flux

Antiroton/Proton Ratio

- Upper dashed curve is leaky box calculation with spherically symmetric modulation @ 550 MV to fit BESS (95+97) data.
- BESS-Polar I data at higher solar activity (851 MV lower dashed curve) are consistent with secondary production.
- Solid curve is diffusive reacceleration with break for 30° Solar tilt angle

BESS-Polar II

BESS-Polar II Spectrometer improvement

- Longer observing time (10 days \rightarrow 20 days)
 - New magnet with new cryostat
 - Larger tank, third radiation shield
 - Increase gas bottle for chamber gas
 - Increase storage size (3.6 Tbyte \rightarrow 16 Tbyte)
- Detector improvement
 - Pressurized TOF PMT units
 - ACC rejection power
 - MTOF resolution
 - JET noise reduction

BESS-Polar II

BESS-Polar II Spectrometer improvement

BESS-Polar II Flight

BESS-Polar II Flight

BESS-Polar II Flight

BESS-Polar II Flight

Status of the BESS-Polar II Flight

Observation Time: 24.5 days Float Time: 29.5 days (12/23/2007-01/21/2008) Events recorded: > 4.7 x 10^9 Data volume: ~ 13.5 terabytes Data recovery: **completed** Feb 3, 2008 Payload recovery: **completed** Jan 16, 2010

22nd European Cosmic Ray Symposium

BESS-Polar II Flight

BESS-Polar II Flight Termination

- Location 83 ° 51.23' S, 73° 5.47' W
- Instrument landed upright, with minimal damage
- Data successfully recovered February 3, 2008!

BESS-Polar II Flight

BESS-Polar II Recovery

- Staged from WAIS Divide/Byrd Surface Camp
- Camped on site 13 days for disassembly
- Basler (turboprop DC-3) used due to range and instrument size

22nd European Cosmic Ray Symposium

BESS-Polar II Flight

BESS-Polar II Spectrometer Status

- Detectors are in good condition
- No additional damage incurred during recovery process and shipping
- Currently the magnet is being refurbished and reassembled in Japan
- Basic functionality test of the TOF and Cherenkov Counter indicate almost all PMTs are still operational.
- Basic functionality test of the JET chamber and IDC conducted. Applied full HV and no wire broken.

BESS-Polar II Flight

BESS-Polar II Spectrometer Status

- Detectors are in good condition
- No additional damage incurred during recovery process and shipping
- Currently the magnet is being refurbished and reassembled in Japan
- Basic functionality test of the TOF and Cherenkov Counter indicate almost all PMTs are still operational.
- Basic functionality test of the JET chamber and IDC conducted. Applied full HV and no wire broken.

Future Science Objectives

- Be isotope measurement
- e⁺/e⁻ measurement
- Continuation of current science objectives

BESS-Polar Program

Flight Summary

	BESS-Polar I	BESS-Polar II
Total Floating Time	8.5 days	29.5 days
Observation Time	8.5 days	24.5 days
Recorded Event	900 M	4700 M
Recorded Data Size	2.1 TBytes	13.5 TBytes
Trigger Rate	1.4 kHz	2.4 kHz
Live Time Fraction	0.8	0.82
Altitude	37 ~ 39 km	34 ~ 38 km
Residual Air Pressure	4 ~ 5 g/cm ²	4.5 ~ 8 g/cm ²

New Results from BESS-Polar II

BESS-Polar II Spectrometer

<u>Performance</u>

Acceptance

	BESS- Polar I	BESS- Polar II
Both-side	8/22	20/22
Single-side	10/22	2/22
Dead	4/22	0/22
Acceptance	66%	100%

List of survival TOF PMTs during Flight

BESS-Polar II Spectrometer

Performance

	BESS- Polar I	BESS- Polar II
Efficency	92%	97%
Rejection power	1500	6800

Antiproton Measurement

There is no background contamination below 1 GeV!

β⁻¹ vs Rigidity plots in BESS-Polar II

22nd European Cosmic Ray Symposium Low Energy Antiproton with Middle TOF

The antiproton observation was extended to lower energy by using the Middle TOF. We are now finalizing this analysis.

Antiproton/Proton Ratio

- Agree with the PAMELA data.
 - We are now finalizing calibration and including MTOF information for full BESS-Polar II flight data.
- Antiproton flux will be coming soon.

Antihelium Search

Particle Identification using the TOF information

The figure below shows remaining events after all selections applied.

No antihelium candidate was found between -14 and -1 GV after all selection among 4 x 10⁷ Helium events.

Antihelium Limit

10⁻³ Antihelium/helium flux ratio He/He Limit (95% C.L.) Badhwar et al. (1978) BESS-TeV 10⁻⁴ Golden et al. (1997) Buffington et al. (1981) 10⁻⁵ [BESS '95] J. F. Ormes et al. (1997) [BESS '93 '94 '95] T. Saeki et al. (1998) [AMS] J. Alcaraz et al. (1999) **10⁻⁶** [BESS '93 - '00] M. Sasaki et al. (2002) **BESS-Polar I** 10⁻⁷ **BESS-Polar I results** (8.5 days) 10⁻⁸¹ 1 1 1 1 1 1 10² 10 Rigidity (GV)

22nd European Cosmic Ray Symposium

• BESS-Polar I antihelium upper limit 4.4 x 10⁻⁷.

Antihelium Limit

22nd European Cosmic Ray Symposium

• BESS-Polar I antihelium upper limit 4.4 x 10⁻⁷.

We set the upper limit of
9.4 x 10⁻⁸ by using the BESS-Polar II flight data.

Antihelium Limit

22nd European Cosmic Ray Symposium

• BESS-Polar I antihelium upper limit 4.4 x 10⁻⁷.

We set the upper limit of
9.4 x 10⁻⁸ by using the BESS-Polar II flight data.

• We set the upper limit of 6.9x 10⁻⁸ by using all BESS flight data, which is improved by two orders of magnitude since our first report.

<u>Summary</u>

- BESS-Polar II successfully gathered cosmic-ray data in the solar minimum period with 10 times statistics of the previous solar minimum ('95 + '97) at low energy.
- BESS-Polar II Spectrometer was recovered from Antarctica and magnet is now being refurbished. Detector components are still in good shape after two winters on ice in Antarctica.
- Antiproton/proton ratio was reported using ¼ of BESS-Polar II data. Analysis for full flight data is being finalized.
- We searched for antihelium in the BESS-Polar II data. No antihelium candidate was found and we set a stringent upper limit on antihelium/helium.

End of the presentation

Appendix

BESS swam the Canadian Lake

