SSeg
gles

lhc
LIS
dg‘]n

lliOn
‘ular
:-rav\
'S of

ition
saw,
ysics
; this
dbert
raldt,
noto.

this
sreed

No. 4, pp. 647 2001
ience Ltd on behalf of COSPAR

Printed in Great Britain
01053 U273<1177/01 $20.00 + 0.00

r‘\'11)1*31\1('13 FOR COSMIC-RAY ACCELERATION IN
SUPERNOVA REMNANTS FROM X-RAY
OBSERVATIONS

R. Petre!, U, Hwang?, and G.E. Allen®

'Lubunlxltm'y for High Energy Astrophysics, NASA/GSFC, Greenbelt, MD 20771, USA
'Um;v('r.-uty of Maryland and NASA/GSFC, Greenbelt. MD 2(1771 USA' '
MIT Center for Space Research, Cambridge, MA 02139, USA

ABSTRACT

;;,‘,I;aUy-resolved X-ray spectroscopic observations over the past several years have led to the discovery of
sthermal X-ray emission arising in the shells of most young Galactic supernova remnants, most notably
1006 and Cas A. In addition, the X-ray emission from the shells of a few newly-discovered supernova
«pants is dominated by a non-thermal component. This emission is thought to be synchrotron emission
4 electrons shock acclerated to hundreds of TeV, and thus represents strong evidence that cosmic rays
o sceclerated in SNR shocks. The inferences made using the X-ray observations are corroborated by the
| iection of TeV y-rays from two of these remnants. We review the status of the X-ray observations and
istribe how they can be used to provide insight into the shock-acceleration process. :

Published by Elsevier Science Ltd on behalf of COSPAR.

| NTRODUCTION :
‘ It as been postulated for many years that cosmic rays with energy as high as the ~3,000 TeV spectral
| '‘muyer (or “knee”) are produced by diffusive shock acceleration in Galactic supernova remnants (SNR’s).
The acceleration sites cannot be observed directly because the intervening Galactic magnetic ﬁekls curve
U trajectories of these energetic particles. Detection of synchrotron emission from SNl.i shells in the radio
"d verify that electrons with energies up to the GeV range are accelerated there. Until recently, however,
1% not been possible to search for evidence of particles with energy closer to the knee. Throughout
"iufrared, visible, and ultraviolet bands, the surface brightness of the synchrotron spectrum extrapolated
‘:.um the radio is substantially lower than that of thermal emission from shocl.(-heated gas. If the synch:ot;;:
“tum continues unaltered through the X-ray band, it would be the dominant emission -com.p?e:ﬂ;m o
Vtal slope steepens in the X-ray band, however, 50 even there the synchrotron emls;“:(n sz “:;1 e
¢ therma) X-rays from gas shock-heated to temperatures of ~1Q’ K iny a?ove '; h(;r (i i
4l emisgion falls off, might it be possible to detect synchrotrgu emission in the orni] o 0':} o
Poment, byt only if electrons are accelerated to sufficiently high energy, on the order :
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‘being accelerated to these energies as well, and therefore SN 1006
{0y ‘al. 1995). Theoretical models support this mﬁMﬁh
interpretations fail (e.g., Laming 1998). Moreover, this cond"
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s with pulsars, and flatter than the o > 5 that characterizes thermal emission that might be expected
< these remnants in the 5-15 keV band. For three of these remnants, SN 1006, Cas A, and RCW 86,
s is morphological evidence that this hard component is produced by shock-accelerated electrons.
lnthree of these remnants, SN 1006, G266.3-1.2, and G347.5-0.5, the nonthermal X-rays dominate. For
41505 there is also a report of a TeV ~v-ray detection (Muraishi et al. 2000). These SNR as a group
iihthe addition of G156.24-5.7) share another important property: they have low radio surface brightness.
lelow radio surface brightness and lack of strong thermal X-rays could both be the consequence of SNR
musion into a very low density ISM. In such a medium, a remnant decelerate more slowly, enhancing shock
whration (which depends strongly on shock velocity). At the same time, there is insufficient material to
ulie a strong reverse shock, which in turn substantially reduces the thermal X-ray flux.

NDRA RESULTS
‘; mNMt launch of the Chandra and XMM/Newton observatories provide us with powerful new qu
| Mentifying possible sites of cosmic-ray acceleration in SNR's. XMM/Newton oﬂer§ broad band, b;;h
| “Nghput imaging that will allow us to observe low surface brightness features and isolate ponthermal-
S regions at high energy. Chandra’s superb angular resolution and modest spectroscopy allow us to
j'hle Uonthermal emission regions that are intermixed with predommanfly thermal emission (_e-su Hughes
‘ .u' M003). Chandra has already yielded two results that offer a glimpse of how it will improve our
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8 i Cas A at energies ah
L 1 of Cas A. (Right) Chandra image of ; gies above3;,
mh:d C":::m pr::mmaiﬁ:nt than in the broad band image. A substar'\tlal fraction of they,
- shock is contributed by a hard, featureless component. This component COntry

ent, in the bright X-ray ring.
by the morphological similarity to SN1006, has not been established.

ever-increasing number of detections of hard, nonthermal emission associateds:
remnants has allowed us to establish the following:

f nonthermal X-ray emission from the shocks of many supernova remnants. Inatk
these remnants the emission is synchrotron emission from electrons with energy uomﬂB
result is substantiated by the detection of TeV gamma rays from SN 1006 and G3#/#

a has already shown that the situation in these remnants is more complicated than P“’"'
. In particular, there is not necessarily a unique correspondance between the md”“t
ess and the nonthermal X-ray emission. We need to revise our notion about how cons”
io and the X-ray fluxes in these remnants as much of the radio-emission regions apparently o
rticipate in cosmic-ray acceleration.

& There may be more than one mechanism for accelerating particles. In the middle aged mﬂ:
- IC 443, for instance, hard emission is localized to regions along the eastern rim where #°

shock is most strongly interacting with a molecular cloud (Keohane et al. 1997). Hydrod 31’:‘,
‘modeling indicates that enhanced particle acceleration can occur downstream from shock il®*
~ with isolated cloudlets (Jones & Kang 1993), and this has been proposed as the mechanist © r’f'
 the hard emission in IC 443. The hard nonthermal X-ray emission in the lobes of the 014"

W50 are thought to be produced by particle acceleration at the terminal shocks of the jets &
~ from SS 433 (Safi-Harb & Petre 1999).
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Rk (Left) Broad banq Chandra image of the Large Magellanic Cloud SNR 0540-693. (Right) Chandra
o of 0540-693.at energies above 2 keV. The outer shock front is far more prominent than in the broad band
e A substantial fraction of the X-ray flux front from this outer shock is contributed by a hard, featureless
snponent. This component contributes much less, and could be absent, in the bright X-ray ring.

challenge as these remnants’ low radio surface brightness causes them to be overlooked or not detected
in surveys. 4t

auur discussions thus far we have only considered TeV electrons. Unfortunately, these observations bomt
dm s to test the relationship between these electrons and the protons and nuclei comprising the majority :
dosmic rays. To understand that, we are forced rely on the inferences from shock-acceleration mo@
, Ellision, Berezhko, & Baring 2000). b S
Yore importantly, these results do not resolve whether SNR’s are responsible for accelerating most mlqic
below the knee. The maximum energy of the electrons responsible for the X-ray emission is probably
%than a few hundred TeV; the steepness of the X-ray synchrotron spectrum requires a turnover of the
Mo spectrum between the radio and X-ray bands, and thus the electron spectrum around a Mm
Y. Depending on the mechanism responsible for the turnover, there could be serious lmplmltigmﬂ:
*more massive, positively-charged particles (e.g., Reynolds & Keohane 2000). If the turnover is dm to
 fite age of the remnant, then we will find no protons with higher energy. On the other lmnd‘,xf ﬂn
m energy is governed by synchrotron losses or electron escape, then higher energy protons might be

Om‘hjng that seems likely is that shocks impart sufficient energy into particle acceleration to produce
N 1ays. Nonlinear-acceleration models suggest that 10 percent or more of the energy from the ﬁorwmwn!lt.s =
.?\ “ be deposited in particles. Such models can successfully account for the emission %;;m remuants v
l (Ellision, Berezhko, & Baring 2000). A recent Chandra result has prov.lfdgli I:l:le thzt;v::bsenratmxmlry g oy
i " for these models. In the remnant E0102.2-7219 in the Small Magellanic Cloud, the
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