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A B S T R A C T

We examine the properties of dark matter haloes within a rich galaxy cluster using a high-

resolution simulation that captures the cosmological context of a cold dark matter universe.

The mass and force resolution permit the resolution of 150 haloes with circular velocities

larger than 80 km s¹1 within the cluster virial radius of 2 Mpc (with Hubble constant

H0 ¼ 50 km s¹1 Mpc¹1). This enables an unprecedented study of the statistical properties of a

large sample of dark matter haloes evolving in a dense environment. The cumulative fraction

of mass attached to these haloes varies from close to zero per cent at 200 kpc to 13 per cent at

the virial radius. Even at this resolution the overmerging problem persists; haloes that pass

within 100–200 kpc of the cluster centre are tidally disrupted. Additional substructure is lost at

earlier epochs within the massive progenitor haloes. The median ratio of apocentric to

pericentric radii is 6:1, so that the orbital distribution is close to isotropic, circular orbits are rare

and radial orbits are common. The orbits of haloes are unbiased with respect to both position

within the cluster and the orbits of the smooth dark matter background, and no velocity bias is

detected. The tidal radii of surviving haloes are generally well-fitted using the simple analytic

prediction applied to their orbital pericentres. Haloes within clusters have higher concentrations

than those in the field. Within the cluster, halo density profiles can be modified by tidal forces and

individual encounters with other haloes that cause significant mass loss – ‘galaxy harassment’.

Mergers between haloes do not occur inside the cluster virial radius.

Key words: methods: numerical – galaxies: clusters: general – galaxies: haloes – cosmology:

theory – dark matter – large-scale structure of Universe.

1 I N T RO D U C T I O N

Rich clusters of galaxies are large cosmological laboratories that

may provide unbiased mixtures of the matter content of the

Universe (White et al. 1993; Evrard 1997). Clusters are prominent

structures in the Universe; their evolution can be followed with

samples out to z , 1 (Rosati et al. 1998). They are the most massive

virialized objects in the Universe and are the most recent objects to

form in hierarchical formation models. Their masses can be

determined by several independent methods (e.g. Carlberg et al.

1997b; Cen 1997; Wu & Fang 1997; Smail et al. 1997).

The evolution of the mass function of clusters is sensitive to key

cosmological parameters (e.g. Bahcall, Fan & Cen 1997; Bartel-

mann et al. 1998; Borgani et al. 1997a; Carlberg et al. 1996; Eke,

Cole & Frenk 1996; Wilson, Cole & Frenk 1996). This evolution

can be calculated by using either analytic methods (Press &

Schechter 1974) or cosmological N-body simulations (Eke,

Navarro & Frenk 1997). The weakness of analytic methods is

their inability to follow haloes that accrete into larger systems. In

the past, numerical simulations have shared this problem. To

sample a large volume, the poor resolution within virialized systems

leads to soft, diffuse haloes that are rapidly dissolved by tidal forces.

This is the classic overmerging problem (White et al. 1987) that

has led to problems when comparing the mass distribution within

dark matter simulations with the observed properties of galaxies

(Summers, Davis & Evrard 1995).

We were determined to perform simulations that resolved the

distribution and evolution of galaxy haloes within clusters. There

are many questions that we will address with these simulations.

What is the orbital distribution of the galaxies within clusters and

are they biased in any way? What is the extent of galactic dark

haloes within clusters and how much of the mass distribution of the

cluster is attached to galaxies? How do these properties evolve with

time and within different cosmological models? Are the density

profiles of isolated ‘field’ haloes similar to the haloes that form

within the environment of a rich cluster? How does the cluster

environment modify the internal structure of haloes? The frequency

of mergers between haloes within the cluster environment and the
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heating rate from halo–halo encounters are questions of importance

for studies of the morphological evolution of clusters. These are

amongst the many questions that have remained unanswered due to

the overmerging problem.

Some have suggested that the only way to avoid overmerging is

to follow the evolution of the baryons, even if they are only

,5 per cent of the mass (Evrard, Summers & Davis 1994). This

assertion seems counter-intuitive; it is now clear that mass and force

resolution can overcome the overmerging problem in dark matter

simulations (cf. Moore, Katz & Lake 1996; Klypin, Gottlöber &

Kravtsov 1997; Brainerd, Goldberg & Villumsen 1998; Moore et al.

1998). With fast parallel computers and highly tuned algorithms,

our simulations have hundreds of surviving haloes within the virial

radius of a rich cluster (Moore et al. 1998). Increased mass and force

resolution lead to higher central densities in galactic haloes,

enabling greater survival within a cluster. For the first time we

can compare the mass distribution with the galaxy distribution in a

rich cluster. Note that the loss of DM substructure can also be a

physical effect; similar-mass mergers during the assembling of the

cluster will lead to a single halo with no memory of its history.

The plan of this paper is as follows: In Section 2, we describe the

N-body simulation, techniques and parameters. In Section 3 we

describe two algorithms to identify ‘haloes within haloes’. After

creating a catalogue of haloes, Section 4 turns to results on their

global properties: sizes, masses, radial distribution, orbital proper-

ties and merger histories. Section 5 discusses the internal properties

of haloes: their density profiles, correlations between structure

parameters and global parameters and the evolution of these

quantities with time. We conclude in Section 6.

2 T H E N- B O DY S I M U L AT I O N

One of the goals of performing cosmological numerical simulations

is to compare the distribution and bulk properties of dark matter

with the distribution and properties of the observable galaxies. A

direct comparison has never been possible, since structure in high-

density regions has been quickly erased as a consequence of

numerical resolution – the overmerging problem. ‘Galaxies’ are

typically selected from the mass distribution in a cosmological

simulation using a biased sample of dark matter particles. Previous

studies of cluster substructure have been limited to using ‘galaxy

tracers’ (Carlberg 1994; Summers et al. 1995), such as following the

most bound particle of a halo before it becomes disrupted by the

tidal field of the system. These hueristics enable the use of low-

resolution simulations, but their validity is anyone’s guess at this

point (Summers et al. 1995).

There are now several codes that are able to simulate a gaseous

component. Although these codes are invaluable for many astro-

physical problems, the original motivation behind these techniques

was the hope of resolving galaxies in a cosmological context, thus

solving the overmerging problem. They hoped to form galaxies and

preserve them by increasing the central densities owing to gas

dynamics. In turn, the haloes would be more robust to disruption.

Indeed, SPH simulations of individual clusters do give rise to a set

of galaxy tracers that resemble a ‘real’ cluster. However, the mass

resolution in the dark matter component is not sufficient to resolve

the dark haloes of the galaxy tracers, so typically one is left with a

cold gas blob orbiting within the smooth cluster background (Frenk

et al. 1996). There are a variety of pathologies that arise if one uses

too few particles to simulate a large dynamic range in scales. Our

simulations are designed to resolve scales of 5 kpc using dark

matter. This would be a minimal resolution to simulate galaxy

formation with gas dynamics. One needs a fiducial dark matter

simulation at high resolution to see differences owing to gas

dynamics. One must ensure that these differences are sensible as

an external check. With the gas representing &10 per cent of the

mass, gross changes in numbers and orbits of galaxies would be

surprising.

Our aim is to achieve very high spatial and mass resolution within

a rich virialized cluster drawn from a ‘fair volume’ of 100 Mpc3 in a

standard CDM universe. In such a volume, there are several rich

clusters, and none dominates the environment in an undesirable

way. Any simulation method limits the number of particles that can

be used in a single simulation. Previous simulations of clusters

suffered limitations due to the small volume used, forcing the run to

stop at z , 1 (Evrard et al. 1994) or or the use of vacuum boundary

conditions outside the cluster (Carlberg 1994).

With current technology, we can perform a single large simula-

tion of ,10
8

particles or try to tackle a number of different

problems using simulations with ,107 particles. If we simulate

our ‘fair volume’ at uniform resolution, there will be ,104 particles

within the virial radius of a cluster, a resolution that is insufficient to

resolve substructure. Previous attempts to resolve the inner struc-

tures of cluster haloes using ,105 particles failed to resolve more

than a handful of satellite haloes (Carlberg 1994; Carlberg &

Dubinski 1991; Tormen 1997; Tormen, Diaferio & Syer 1998).

To achieve higher resolution within an individual cluster we

initially perform a simulation of a large volume of a CDM universe

as described above, normalized such that j8 ¼ 0:7 and the shape

parameter G ¼ 0:5 (H ¼ 50 km s¹1 Mpc¹1 is adopted throughout).

We used a nesting scheme that we call ‘volume renormalization’

to achieve higher resolution within a region of greater interest. This

technique has been used to probe quasar formation at high redshift

(Katz et al. 1994) and to follow the density profiles of haloes in a

cosmological context (Navarro, Frenk & White 1996). We generate

initial conditions (ICs) for the volume at two resolutions, one that

places ,107 particles within the entire volume and one such that

there would be &106 particles in the targetted cluster. We run

the lower resolution model and select a virialized cluster at z ¼ 0.

The particles within about twice the virial radius of the cluster in the

final state are traced back to their locations in the ICs. Within this

region, we use the higher resolution ICs. Beyond this high-

resolution region the mass resolution is decreased in a series of

shells by combining particles in the high-resolution ICs at their

centre of masses. In this way, the external tidal field is modelled

correctly. The starting redshift in the high-resolution run is

increased to z ¼ 69 such that the perturbations in the smoothed

density field of the high-resolution region obey the constraint

dr=r<0:1. We then re-run the simulation to the present epoch.

We use a new high performance parallel treecode PKDGRAV to

evolve the particle distribution. PKDGRAV has accurate periodic

boundaries and an open-ended variable time-step criterion based

upon the local acceleration (Quinn et al. 1997). The code uses a

spline softening length such that the force is completely Newtonian

at twice our quoted softening lengths. In terms of where the force is

50 per cent of the Newtonian force, the equivalent Plummer soft-

ening length would be 0.67 times the spline softening length. In the

high-resolution region, our particle mass is 8:6 × 108 M(. We

perform two runs with 10 kpc (RUN1) and 5 kpc (RUN2)

softening lengths. The final virial radius of the cluster is ,2 Mpc

and the mass is 4:6 × 1014 M( so that we have approximately

600,000 particles within a sphere of overdensity 200. (Note that the

cluster that is analysed here is the ‘Virgo’ cluster from Moore et al.

1998.)

Dark matter haloes within clusters 147

q 1998 RAS, MNRAS 300, 146–162



We have analysed both simulations and present results for each

run, except when this would lead to duplication of plots or text

without any gain in information. In these cases, we follow the policy

of showing results for RUN2 when haloes are used as tracers, and

RUN1 when we also require information on their internal structure.

This is because RUN2 has better spatial resolution but the same

mass resolution as RUN1, although the softening length used in

RUN1 will help suppress two-body relaxation effects and yield less

noisy profiles of small haloes. (With hindsight, this caution appears

to be superfluous.)

3 C L U S T E R S U B S T RU C T U R E A N D H A L O

I D E N T I F I C AT I O N

3.1 The density distribution in the cluster

In past work, haloes in dissipationless N-body simulations have

usually spontaneously dissolved when entering clusters. Two physi-

cal effects conspire with the finite numerical resolution to erase dark

matter haloes in clusters (Moore, Katz & Lake 1996). Halos are

heated by cluster tides and halo–halo encounters, thus losing mass

as they move into the potential well. (In the following, ‘tidal

disruption’ refers to the sum of these effects, unless we excplicitly

state otherwise.) When the halo radius approaches ,3 times the

‘core radius’ (owing to either a density plateau or gravitational

softening), the halo dissolves. Hence, it takes very high resolution to

retain dark matter substructures at a distance 100–200 kpc from the

centre of a cluster. Our numerical parameters were chosen so that

haloes would survive at these scales. The wealth of haloes retained

in our simulated cluster is visible in Fig. 1

The upper panel is a map of the density distribution in a box of

size R200 (see Section 3.2 for a precise definition), centred on the

cluster and projected on to a plane. Each particle is plotted using a

grey-scale according to the logarithm of the local density [defined

using an SPH smoothing kernel over 64 particles in a code called

SMOOTH (Stadel & Quinn 1997, http ref: http://www-hpcc.astro.wa-

shington.edu/tools)]. Only regions with density contrast d > 30 are

shown. The cluster boundaries, set at R200, correspond to the con

tours of the central bright region. Much of the mass inside R200 lies

in the dark matter haloes that we will analyse here. Their projected

distribution is shown as a ‘circle plot’ in the lower panel of Fig. 1.

The radius of each circle is the halo radius (Section 3.3) in units of

R200. Note that haloes of similar central densities (similar brightness

in the density map) may have largely different radii depending on

their distances from the centre of the cluster. It is remarkable that

substructure haloes cover such a large fraction of the projected

cluster area. Comparing the two panels of Fig. 1, we note that the

density map gives an excessive impression of overmerging within

the central parts of the cluster with respect to the actual projected

distribution of the haloes.

3.2 Cluster properties and evolution

We define the cluster centre as the position of its most bound

particle. This particle is within a softening length of the centre of the

most massive halo found by SKID (see Section 3.3). The density

profile of the RUN1 cluster calculated in spherical shells is shown in

the upper panel of Fig. 2 (the solid line is for z ¼ 0 and dotted line

for z ¼ 0:5). The cluster forms at z , 0:8 from the mergers of many

haloes along a filamentary structure and at z ¼ 0:5 it has not yet

virialized since it still has quite a lumpy structure, but the global

density profile is roughly similar to that measured 5 Gyr later at

z ¼ 0. (We shall compare properties of the substructure identified at

both epochs.)

The lower panel of this figure shows the circular velocity profile

VcðRÞ ; ½GMðRÞ=Rÿ
1=2, where MðRÞ is the mass within R. The virial

radius of the cluster is defined as the distance R200 for which the

average density enclosed, r̄CðR200Þ, is 200 times the cosmic density,

rcr; we obtain R200 ¼ 1:95 Mpc at z ¼ 0 and 1:2 Mpc at z ¼ 0:5.

The cluster is not spherical and has axial ratios that are roughly

2:1:1. (In the following we will always use units of kpc and km s
¹1

for lengths and velocities, unless we explicitly state otherwise.)

Fig. 3 shows the growth of the cluster mass with redshift.

Defining the formation redshift of the cluster as that where it has

accreted half of its final mass, zform , 0:8 for our cluster. This is

slightly earlier than expected for an average cluster of this mass

from the Press–Schechter theory (Press & Schechter 1974; Lacey &
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Figure 1. Density map (upper panel) and circle plot of the halo radii within

the virial radius of the cluster (taken here as the length unit) at z ¼ 0. (The

density map is the projection of the mass in a box and contains a few haloes

at the periphery of the clsuter that do not appear in the circle plot.)



Cole 1993), where zform , 0:5 (as calculated from a routine kindly

supplied by Paolo Tozzi). This is not an unwelcome feature, since

the cluster is in true virial equilibrium at z ¼ 0.

3.3 Halo identification

Identifying dark matter (DM) haloes in the high-density environ-

ment of the cluster is a critical step (cf. Klypin, Gottlöber &

Kravtsov 1997). The haloes jump out visually, so while it is

relatively straightforward to identify the halo centres, we must

select only the bound particles to characterize the halo. We want to

screen the cluster background that is streaming through, but the

substructure itself will be tidally distorted and may have tidal tails

of material that are loosely attached to the halo. Our group-finding

algorithm uses local density maxima to find group centres and and

then iteratively checks for self-boundedness to define group mem-

bership. Each group of particles found belongs to an individual

halo. The algorithm is an improved version of DENMAX, named SKID,

and is fully described by Stadel et al. (1996, see http ref: http://

www-hpcc.astro.washington.edu/tools). For each simulation we

adopt a linking length of 1:5lsoft and a minimum number of

member particles of 16, corresponding to a mass of

.1:35 × 1010 M(. In general, we shall use haloes with more than

16 particles when they are employed as tracers, but we shall adopt a

minimum number of 32 particles when their individual properties

are relevant.

The high-resolution region that we analyse is roughly the turn-

around radius of the cluster or about twice the virial radius,

Rta . 2R200 . 5 Mpc. Within this radius, there are 495 and 522

haloes for RUN1 and RUN2, and 208 and 227 haloes respectively

within R200. Changing lsoft by a factor of 2 does not make much

difference on a global scale, but if we restrict ourselves to the inner

parts of the cluster the difference between the numbers of haloes

changes significantly: inside R < R200=2, RUN2 has 91 haloes

compared with the 59 found in RUN1, and RUN2 has twice as

many within R < R200=4 (30 instead of 16). The innermost haloes in

RUN1, and RUN2 are at ,200 kpc and ,100 kpc respectively.

These differences reflect the effect of the softening length on the

central densities of the haloes that determine their survival against

tidal disruption (Moore et al. 1998; see also the discussion related to

Fig. 5 later). Quality control of our halo-finding algorithm was

ensured by visually inspecting the density distribution inside R200 to

verify that we neither missed nor created structures.

We use the output of SKID to determine the halo structural

parameters. In particular, it estimates the extent of a halo using
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Figure 2. The density (upper panel) and circular velocity (lower panel)

profiles for the cluster. The solid curves are at the final epoch and the dotted

curves show the cluster at a redshift z ¼ 0:5. The density is measured in units

of the present critical density r0;cr; R is the physical distance to the cluster

centre, and was set at the location of the most bound particle. The arrow

marks the value of the cluster virial radius R200 at z ¼ 0.

Figure 3. Growth of the mass of the cluster Mcl with redshift z. Mcl is the

mass encompassed by the ‘virial’ radius of the cluster at each z. The error

bars delimit the 1j confidence interval for the growth rate predicted using the

Press–Schechter theory.

Figure 4. Density profiles and circular velocity profiles are plotted for two

large dark matter haloes extracted from the simulation. The left panel is a

‘peripheral’ halo that lies beyond the main virial radius of the cluster at

R ¼ 4:2 Mpc. The halo in the right panel lies within the cluster at r ¼ 1:2

Mpc. The radius r measures the distance from the centre of each halo. In the

latter case, the radius at which the high-density background of cluster

particles dominates the halo particle distribution is apparent as a flattening of

rðrÞ and the linear rise of vcðrÞ in the outer regions. We denote the peak value

of the circular velocity as vpeak and the radius at which it occurs as rpeak.



the distance to the least bound particle. However, the full six-

dimensional phase space information is never available in the real

Universe, therefore we shall compare results from SKID using an

‘observable’ quantity for each halo. For example, the (projected)

mass distributions can be determined using either weak lensing, the

rotation curves of spirals or the velocity dispersion profiles of

ellipticals. Motivated by gravitational lensing, one possibility is

to define the radius of a halo using its density profile rðrÞ, where r is

the distance from the centre of the halo, and measuring the radius

(;rr) at which the local density of the cluster background dom-

inates and rðrÞ flattens (cf. Fig. 4). Rotation curves or velocity

dispersion profiles of isolated objects will eventually decline with

radius, but if a halo is embedded within a deeper potential, at some

radius its profile will turn around and increase as the velocity

dispersion of the cluster background starts dominating. (Fig. 4,

right panels, shows that the positions of these inflexion points are

essentially equal.) We therefore combine these two definitions and

use the inflexion point (;rvc) of the effective circular velocity

vc ¼ ½GMðrÞ=rÿ
1=2 as an alternative independent estimate of the

extent of a halo (cf. Fig. 4).

The circular velocity is less noisy than the density or velocity

dispersion and thereby more suitable for an automated procedure.

Moreover, the inflexion point of vcðrÞ can be easily detected by

searching for a minimum, without any knowledge of the back-

ground density (as would be necessary if we were to implement an

overdensity criterion). The radius rvc can either overestimate rr for

steeply declining velocity profiles, or underestimate it for profiles

close to isothermal. If the haloes are described by the NFW model

(Navarro et al. 1996; see also Section 5), the former condition

applies to haloes with vc , 50 km s
¹1

and the latter to haloes with

vc * 200 km s¹1 for background densities , 300 times the cosmic

average (as we will see, however, the profiles of tidally ‘stripped’

haloes decline with r more steeply than an NFW profile). In our

case, for small haloes, the difference can be at most ,10 per cent; as

for large haloes, rvc differs from rr by &20 per cent in about one-

third of the haloes in our sample with vc * 120 km s¹1. These

differences do not significantly affect our results. With this defini-

tion, there is a contribution to the mass encompassed by a halo from

the smooth background of order 20 per cent, which we subtract

from the quoted halo masses.

For each SKID halo, we calculate rðrÞ and vcðrÞ using equally

spaced bins of 2 kpc, such that the number of particles in each bin is

nearly equal. The departure of rðrÞ from isothermality is betrayed

by a peak of vcðrÞ, vpeak, occurring at rpeak. The catalogue values of

rpk and vpk are estimated by fitting a cubic spline to vcðrÞ. The left

panels of Fig. 4 show sample rðrÞ=r0;cr and vcðrÞ curves for a large

peripheral halo at a distance of R ¼ 4:2 Mpc from the centre

of RUN1 (hereafter cluster haloes are those within R200, and

peripheral haloes those between R200 and Rta).

Haloes beyond the cluster boundary can be easily characterized

by their ‘virial’ radii and masses M200 ; Mðr200Þ. For isothermal

spheres the circular velocity at r200 is v200 ¼ ðr200= kpcÞh km s¹1

to within a few per cent. For the halo mentioned above,

r200 . 400 kpc (M200 ¼ 3:4 × 1012 M(). The right panels of Fig. 4

show rðrÞ=r0;cr and vcðrÞ for a tidally limited massive cluster halo at

R ¼ 1:2 Mpc, where rbkg . 300r0;cr. The halo radius rhalo is either the

virial radius, r200, or the tidal radius, rtid, as appropriate. Similarly, the

halo mass is defined as Mhalo ; MðrhaloÞ ¼ vcðrhaloÞ
2
rhalo=G.

Force softening and the finite mass resolution introduce halo

cores that are visible in Fig. 4 as a flattening of rðrÞ at r & 10 kpc.

We define a core radius rcore for each halo as the radius where vc has

risen to 70 per cent of vpeak.

Once the halo positions and structural parameters are known, we

can start to address the questions raised in the Introduction. We

begin by examining the global properties of the halo distribution,

with a preliminary discussion of numerical resolution effects.

4 P RO P E RT I E S O F T H E H A L O

D I S T R I B U T I O N

4.1 Numerical resolution effects

Halo in clusters are ‘harassed’ by encounters with other haloes

combined with strong global tides. This adds internal energy and

leads to mass loss. Using a static cluster potential, Moore, Katz &

Lake (1996) found that haloes rapidly disrupt when rtid < 3–4rcore.

Our fully self-consistent simulations verify this. Fig. 5 shows the

ratios rcore=rhalo versus R for our halo set using RUN1. This ratio

increases towards the cluster centre and no haloes exist with

rcore=rhalo * 0:3. (Similar results hold for RUN2.) Clearly, the soft-

ening will set a floor to the core radius, but in general we find that

rcore , lsoft, and correspondingly that haloes smaller than ,3lsoft

have all dissolved. The lower boundary for rhalo in RUN1 and RUN2

is indeed ,30 and ,15 kpc respectively.
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Figure 5. For every halo within R ¼ 5 Mpc we plot the ratio of halo core

radii and outer radii versus clustercentric position. Halos contain at least 32

particles.

Figure 6. The peak circular velocity of haloes, vpeak, is plotted against their

clustercentric position R at z ¼ 0. The lines give the expected limiting R at

which haloes of given vpeak can be resolved because of the finite spatial

resolution (dashed curve) and mass resolution (dotted line).



Numerical limitations can also be seen in Fig. 6, a plot of vpeak

versus R for RUN1. There is no bias apparent in this plot; haloes of

all circular velocity exist over a wide range in R. We show two

curves that exclude regions of space owing to our numerical

resolution: (i) defining a minimum particle number to identify

haloes sets a lower mass limit, Mlim ¼ 1:35 × 1010 M(, and (ii)

rtid is correlated with R and haloes dissolve when rtid *

3rcore . 3lsoft. Approximating the haloes as isothermal spheres

that are tidally stripped like layers off an onion, the mass and

circular velocity are related as Mhalo ; M200 ¼ Gv
2
cr200 for

unstripped peripheral haloes and Mhalo . Gv
2
crtid for ‘stripped’

cluster haloes. The tidal radius of a halo can also be obtained

from vc through rtid . Rvc=Vc (Vc . 1000 km s¹1 is the circular

velocity for the cluster) in the approximation that a halo at R is

tidally truncated ‘locally’, i.e. according to the value of r̄C at R (this

is a limiting case as their pericentric radius can only be smaller).

Applying condition (i) leads to the dotted line in Fig. 6; criterion

(ii) leads to the dashed line (we set vc ¼ constant ¼ vpeak). If tides

due to the cluster potential are the only cause of halo disruption, our

sample should be complete for haloes with vpeak * 80 km s¹1 and

pericentres that have always been greater than Rlim , 250 kpc.

(Isolated dark matter haloes in N-body simulations are better

described by NFW profiles – see Section 5 – than by isothermal

profiles; however, the differences between the two are not signifi-

cant for the bulk of the cluster haloes, the profiles of which do not

extend to their virial radii and are ‘resolved’ to the level of ,300–

400 particles. For this reason, using the isothermal model is a

sufficient and simple way of interpreting our results.)

4.2 Spatial distribution of haloes

The number density of haloes, nhaloes, is plotted against R in Fig. 7,

for the two runs. The dashed line refers to the particle density, npart,

normalized to the halo density in the interval ½R200; Rtaÿ. (In this plot

we use all haloes with vpeak > 80 km s¹1; here, as well as in the other

analyses, we have examined the effect of changing this threshold

and found that, within our statistical uncertainties, there are no

significant variations.)

Beyond the virial radius of the clsuter the curves for haloes and

particles have similar slopes. Within the virial radius of the cluster

we see that the halo distribution is ‘antibiased’, i.e. less concen-

trated with respect to the mass distribution. The halo number

density profile is consistent, for R > 1 Mpc, with the average

galaxy number density profile derived by Carlberg et al. (1997b)

for the clusters of the CNOC survey. However, the average cluster

mass profile that they derive from the same data is much shallower

than that of the relatively small cluster analysed here.

If the scaled particle distribution is regarded as the ‘asymptotic’

halo distribution, in the case of no bias and infinite resolution (and

sufficiently small physical cores), then integrating the difference

between the curves over R would give an estimate of the number of

missing haloes. With this assumption, we find for RUN2 that ,240

haloes are ‘missing’, about 50 per cent of the haloes with

vpeak > 80 km s¹1. The systematic difference between RUN1 and

RUN2 makes tidal disruption of ‘softened’ haloes the most likely

cause of this halo antibias. This may be overcome with higher

resolution simulations that accurately resolve the structure of the

smallest haloes. However, the destruction of haloes may not be

caused by numerical resolution alone. For example, binary mergers

between haloes of similar mass will lead to a single halo with no

memory of its history. These mergers may be important in the early

phases of the formation of a cluster.

4.3 Distribution of halo radii

The extent of dark matter haloes attached to galaxies in clusters has

become directly observable via observations of gravitational len-

sing (Geiger & Schneider 1998; Natarajan et al. 1998). Here we can

make some predictions for future surveys that will constrain the

extent of haloes as a function of position from the cluster centre.

The projected distribution of the haloes within the boundaries of

the cluster was shown in the lower panel of Fig. 1. There is a clear

decrease of halo sizes near the cluster centre even in this projected

plot (there is little difference if we include haloes up to twice R200).

Fig. 8 shows the average value of rhalo=R200 as a function of

clustercentric position, R=R200, at redshifts z ¼ 0 and z ¼ 0:5. We

use R200 at each z as the length unit to highlight the self-similarity in

the evolution of the cluster substructure. Halo radii clearly decrease

as we move towards the cluster centre, but the trend is hard to detect

at z ¼ 0:5 because the cluster has accreted only relatively few

haloes (of vpeak > 80 km s
¹1

), has a quite anisotropic mass distribu-

tion and tides have been efficient only in its very centre. The mean

size of haloes beyond R200 is * 8 per cent of R200 and drops

approximately linearly to zero as we move from the virial radius

to the cluster centre. (In Fig. 8, halo radii are those measured from

the circular velocity profiles; the results using SKID radii are very

similar.) As shown in the lower panel of this figure, projection

effects weaken but do not erase the trend of halo radii with R (here

we have included haloes up to 1:5R200, but it makes little difference

changing the limiting R between 1 and 2 times R200). Natarajan et al.

(1998) do not detect a dependence on R, but presently the observa-

tional uncertainties are large and the radial range of the data is

limited.

Halos of different vpeak obviously have intrinsically different

sizes. We can interpret Fig. 8 and account for this intrinsic scatter

using our ‘locally stripped isothermal onion approximation’ (with

vc ; vpeak; see Section 4.1) and considering the ratios h ;

rhalo=ðh
¹1

vpeakÞ. When haloes form in isolation, rhalo ; r200 <

h
¹1

vc and h . const . 1 kpc= km s¹1. Within the cluster, rhalo ;

rtid . Rvc=Vc . ðh
¹1

vcÞR=R200 and hðRÞ . R=R200. If haloes have

gone past pericentre rperi and their radii rtid are determined by

r̄CðrperiÞ, then h will be smaller by a factor of rperi=R.
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Figure 7. The number density of haloes with vpeak $ 80 km s¹1 as a function

of R, for RUN1 (dotted line) and RUN2 (solid line); the former has a spline

softening length of 10 kpc, twice that of the latter. The dashed line is the

particle density scaled in such a way that, in the distance interval ½R200; Rtaÿ,

the scaled number of particles equals the number of haloes. The error bars

are 1j Poissonian errors from the counts in each bin; the arrow marks the

value of R200.



In a fully virialized system there is no difference between the

motions away and towards the centre of the system. However, in a

Q ¼ 1 cosmology clusters never stop accreting material and we

might expect some different morphologies between ingoing and

outgoing haloes. Moreover, haloes reaching apocentres beyond the

boundaries of the cluster might be heated by low-speed encounters

with other haloes and re-expand, partly covering the effects of tides

at the previous passage at pericentre.

The distribution of h at z ¼ 0 is shown in Fig. 9. It has a trend

similar to that expected for locally truncated isothermal spheres

(dashed line). The separation between the latter and the points in the

‘periphery’ (R > 2 Mpc) is a measure of the departure of the actual

density profiles of peripheral haloes from isothermal. All outgoing

haloes must have necessarily passed their pericentres; therefore h

should depart from the dashed line more than for infalling haloes,

and we do observe evidence of this effect in the figure. The

corresponding results using SKID halo radii are shown in Fig. 10

which also shows results for z ¼ 0:5 [only for haloes with R < R200;

note the different scale on the horizontal axis from z ¼ 0 to z ¼ 0:5;

h ¼ h0ð1 þ zÞ
1:5 is Hz in units of 100 Mpc= km s¹1]. The results for

z ¼ 0 confirm the general picture illustrated by the previous Fig. 9,

but here the points have a larger scatter and the trend with R is

weaker, especially for outgoing haloes: this is expected because, in

the ‘dynamical’ definition used by SKID, the tidal radii are less

sensitive to rbkgðRÞ. At z ¼ 0:5, there is evidence that tidal effects

are already operating at this relatively high redshift, in agreement

with the trend shown by Fig. 8.

4.4 Fraction of mass in haloes

Fig. 11 shows the fraction of the mass attached to haloes. As

expected, it decreases sharply approaching the cluster centre: it is

&5 per cent at R & 500 kpc and increases to ,20 per cent at R200.

The total fraction of mass attached to haloes within R200 is about 13

per cent. (These values do not depend sensitively on the adopted

value of the softening parameter.) Outside the cluster, the haloes

account for about 20 per cent of the total mass. The peak at R, 1.5

Mpc is not significant: it is caused by the largest halo within the

cluster of mass 2:3 × 10
13

M( that contributes alone 5 per cent of

the total mass of the cluster and half of the mass in that bin.

We can compare the mass fraction of peripheral haloes with the

Press–Schechter approximation (Press & Schechter 1974), using
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Figure 8. In the upper panel, the average value of halo radii is plotted

against clustercentric position at redshift z ¼ 0 (solid symbols) and z ¼ 0:5

(dotted symbols), for haloes with vpeak $ 80 km s¹1. The lower panel shows

the distribution against projected distance at z ¼ 0. At each z, the unit is the

virial radius of the cluster at that epoch. The error bars give the dispersion

about the average. Note that the most massive cluster halo at z ¼ 0 has been

excluded from the average; it has a radius of 470 kpc and is located at

R ¼ 0:9R200.

Figure 9. The figure highlights the effects of tidal stripping on halo sizes at

varying distance from the cluster centre (haloes with vpeak > 80 km s
¹1

). For

peripheral haloes the ratio rhaloh=vpeak, with h ¼ h0ð1 þ zÞ
1:5 and units of kpc

and km s¹1, is approximately 70 per cent of the value expected for a purely

isothermal mass distribution (in agreement with their profiles being of NFW

type; see Section 5.1). The dashed line gives the expected behaviour for

isothermal haloes being instantaneously stripped whilst falling into the

deeper potential of the cluster. The upper and lower panels are for inward

and outward-moving haloes respectively. See the text for further details.



again a routine supplied by P. Tozzi. Adopting a minimum halo

mass of 1:35 × 1010 M( (16 particles) and the mass of the most

massive peripheral halo (3:4 × 10
12

M(), we find ,0:25 from the

analytical theory, in good agreement with the average of the last five

outer bins, ,0:23.

4.5 Merging and ‘surviving’ haloes

Comparing the distribution of the haloes at z ¼ 0:5 and z ¼ 0, we

can determine the merger rate and the fraction of haloes that can be

traced to the present epoch. We selected all the haloes with more

than 32 particles at z ¼ 0:5 and examined their association with

haloes with more than 16 particles at z ¼ 0. We determine that a

high-z halo is the progenitor of a low-z halo if the latter contains at

least a significant fraction of the mass of the former, say 25 per cent.

However, to account for mass loss via tidal stripping we need

be less restrictive; therefore we considered also an extreme mass

fraction cut-off of 1 per cent, but our results are not very sensitive to

this limit. (The results for RUN2 and RUN1 are similar, in agree-

ment with the fact that the loss of substructure because of poor

resolution occurs largely during the assembling of the mass of the

cluster).

We find, for haloes with apocentres rapo $ R200 and at least one

progenitor among those identified at z ¼ 0:5, that 5–9 per cent of

them, depending on the mass fraction cut-off, are the product of a

merger. There are a large number of mergers among haloes with

apocentres close to R200 (3–5 out of 17). However, of the 38 haloes

with rapo & 80 per cent R200, none has merged. We find no evidence

for merging once the haloes have entered the cluster. This seems to

argue against the possibility of Butcher–Oemler (1978, 1984)

galaxies being cluster members with star formation switched on

by mergers in the cluster environment (Couch et al. 1994).

Fig. 12 shows the fraction of haloes identified at z ¼ 0:5 in

different distance intervals that are also associated with z ¼ 0

haloes (for RUN1). Although we adopt the extreme 1 per cent

mass fraction cut-off to establish this association, the results shown

in the figure essentially give the probability that haloes will survive

with ,50 per cent of their original masses attached. In fact, z ¼ 0:5

haloes with masses close to the limit of 32 particles will be resolved

at the 16-particle limit of the z ¼ 0 sample only if they have not lost

more than ,50 per cent of their masses, and small haloes dominate

the statistics (note that, for our choices of the mass and force

resolutions, even haloes with a few tens of particles should be stable

over the interval considered here, according to the analysis of

Moore et al. 1996). At R & 0:5 Mpc, such probability is ,0:5,
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Figure 10. Same as in Fig. 9 but the halo radii are measured using the SKID

algorithm, which discards unbound particles, and data are shown for z ¼ 0:5

too (lower panels). Only data for cluster haloes are plotted; at z ¼ 0:5, the

formal virial radius of the cluster is R200 ¼ 1200 kpc.

Figure 11. Fraction of mass within resolved haloes in spherical shells of

thickness 600 kpc versus cluster-centric position at z ¼ 0. The solid line is

for RUN1 and the dotted line is for RUN2 (slightly shifted for clarity).

Figure 12. Fractions of z ¼ 0:5 haloes above resolution that have a

descendent halo identifiable at z ¼ 0; the error bars are 1j Poissonian

uncertainties estimated from the numbers of haloes in each distance interval

(the plot also gives roughly the probability that a z ¼ 0:5 halo survives to

z ¼ 0 keeping more than ,50 per cent of its original mass; see text for

details).



against a value of order unity in the cluster periphery. This result is

confirmed if we repeat the analysis for larger haloes; however, the

statistical uncertainties are quite large and we plan to study this

issue in more detail using new high-resolution simulations.

4.6 Orbital parameters

We now shift our attention to the motions of the haloes within the

cluster. Halos that follow radial orbits are more likely to be

disrupted than haloes that have circular motions, since the former

penetrate further into the cluster potential well. Do we detect a bias

in favour of circular orbits? We calculate orbits by approximating

the cluster potential as a spherical static potential, computed using

the density profile at z ¼ 0 and then using the position and velocity

information for the haloes. For comparison, we also compute the

orbits of a random subset of 20 000 particles.

In the upper panel of Fig. 13 we plot the ratios rperi=rapo versus R

for the haloes of RUN2 (RUN1 gives identical results). The lower

panel shows the average values of this ratio for the haloes (solid

line) and the particle sample (dotted line). We find that radial orbits

are quite common and circular orbits are rare. The median ratio of

apocentre:pericentre is approximately 6:1 and nearly 25 per cent of

the haloes are on orbits more radial than 10:1. A rough calculation by

the authors reveals that this is very close to an isotropic orbital

distribution within an infinite isothermal potential. (In this calculation

we assumed random velocities of particles that orbit within an

equilibrium 1=R
2 density distribution.)

We do not detect a large difference between halo orbits as a

function of R, nor do we find a difference between the orbits of the

particle background and the haloes. This is surprising since we

expected to find fewer haloes on radial orbits near the cluster centre.

The expected bias could be disguised if the central overmerging

problem originated within the dense clumps that formed before the

final cluster. Finally, we note that the radial velocity dispersion of

the haloes within the cluster is 720 km s¹1, a value that is within a

few per cent of the dispersion of the background particles – even

when only the most massive haloes are considered.

Information on the distribution of the orbital parameters of haloes

can be used to model the effects of tidal stripping and dynamical

friction for haloes within haloes in semi-analytic models of

structure formation based on the Press–Schechter approximation.

Figs 14 and 15 plot the probability density distributions of ‘circula-

rities’ and pericentres for cluster (solid line) and peripheral (dashed

line) haloes. For each halo, the ‘circularity’ e ; J=JCðEÞ is defined

as the ratio of its angular momentum to that of a circular orbit with

the same energy (Lacey & Cole 1993). There are no marked

differences between the two groups of haloes, although the orbits

of cluster haloes are more close to circular and penetrate further into

the cluster than those of peripheral haloes. Among the latters, 15 per

154 S. Ghigna et al.

q 1998 RAS, MNRAS 300, 146–162

Figure 13. The upper panel shows the ratio of pericentric and apocentric

distances for each halo plotted against its current position. The lower panel

shows the average value of these ratios for the haloes (dashed curve) and a

random subsample of cluster dark matter particles (solid curve).

Figure 15. Probability density distribution of halo pericentres rperi (line

styles as in Fig. 14).

Figure 14. Probability density distribution of halo ‘circularities’ e ; J=JCðEÞ

(see text) for cluster (R < R200; solid line) and peripheral haloes (dashed

line).



cent have pericentres outside the boundaries of the cluster and 9 per

cent come as close as 200 kpc (0:1R200) to the centre of the cluster.

This condition is twice as frequent among cluster haloes; in the

whole sample the fraction of rperi < 200 kpc is 14 per cent. These

results are in good agreement with results presented by Tormen

(1997).

For such radial orbits, we expect that the tidal radii of the haloes

are determined primarily by the global tidal field of the cluster. We

can check if this is correct by estimating the truncation radius at the

pericentre of each halo using rtid . rperi × vpeak=Vc [the use of VcðRÞ

at R ¼ rperi, instead of the constant value Vc ¼ V200 ¼ 1000 km s¹1

does not make any detectable difference, because the variation of

VcðRÞ is &10 per cent in the range 0:05 < R=R200 < 1]. We can test

this prediction for our outgoing haloes that must have passed

pericentre recently, enhancing the likely validity of our approxima-

tion. In Fig. 16 we plot the expected tidal radius, according to the

above formula, against the value measured, for both methods [from

SKID and from the circular velocity profile vcðrÞ]. The agreement is

excellent for the SKID values, with the exception of the points

marked as stars. These latter points represent haloes that are on

very eccentric orbits such that rperi is less than 300 kpc. These haloes

are more likely to suffer impulsive collisions with other haloes as

they pass close to the cluster centre. We note that many of these

haloes have tidal tails that may cause the measured tidal radii to be

overestimated. The scatter in the correlation increases when we

measure halo sizes using the halo circular velocity profiles, but the

trend is still apparent. The radii estimated with this method are more

sensitive to tidal tails than SKID radii, since the latter can discard the

unbound streams of particles. This is the reason why some points in

the lower panel of the figure correspond to larger rtid than those in

the upper one.

Recalling Figs 9 and 10, we can now check if tidal stripping is

indeed responsible for the low values of h ; rhalo=ðh
¹1

vpeakÞ. Using

the information on rperi, we can ‘correct’ the values of h for outgoing

haloes as h → h × R=rperi. The effect of this correction is shown in

Fig. 17, in which the open circles are the original points of the upper

right panel of Fig. 10 and the filled circles are ‘corrected’ As

expected, the ‘corrected’ h scale as R=R200. In conclusion, the

isothermal model predictions for the tidal radii work well when

the pericentric positions of the haloes are used. In turn, this good

agreement confirms that the estimates of the orbital parameters for

cluster haloes in the spherical static potential approximation are a

good description of their actual motions.

5 H A L O I N T E R NA L P RO P E RT I E S

We shall now examine the internal structure of haloes in more detail

with the main objective of studying how the cluster environment

affects them. In particular, we shall focus on the distribution of rpeak

and vpeak, which provide information on their internal concen-

trations. Then we shall study in detail a small subsample of well-

resolved haloes and examine their density profiles and the com-

patibility with the analytic fits generally adopted in the literature to

describe dark matter haloes (Hernquist 1990; Navarro et al. 1996).

5.1 Statistical distribution of halo properties

A detailed analysis of isolated cold dark matter haloes in N-body

simulations has been carried out by Navarro et al. (1996) and

Navarro, Frenk & White (1997); NFW in the following. Their

simulations had a mass resolution such that individual haloes
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Figure 16. We plot the measured values of halo tidal radii against their

expected values, assuming that the haloes have isothermal mass distribu-

tions that are tidally stripped at their pericentric positions. The upper panel

uses halo tidal radii measured using SKID, therefore only self-bound particles

are included to determine halo sizes; the ‘vc’ method uses halo circular

velocity profiles and includes the cluster background. The points represent

outgoing haloes (at z ¼ 0) with R # 0:8R200; the stars denote those with

rperi < 300 kpc.

Figure 17. The dashed line gives the expected dependence on R of the ratios

h ; rhalo=vpeak for isothermal haloes that are tidally limited by the cluster at a

distance R as they fall into the cluster for the first time. Such ratios attain a

minimum when haloes reach pericentre and are maximally stripped; there-

fore, moving away from the centre of the cluster, outgoing haloes have

values of h systematically below the line (the open circles; same as in the

upper-left panel of Fig. 10). If we ‘correct’ their hs using the information on

their pericentres, the points are brought back to the line (the filled circles).



contained of the order of 10 000 particles and force softening that

was 1 per cent of the final virial radii. Over a wide range of masses,

NFW found relations between the properties of their profiles, rpeak

and vpeak, and their virial masses Mv. Furthermore, the density

profiles of haloes could be fitted by a universal formula with varying

concentrations, c, that can be predicted from their masses within a

given cosmological model.

Here we want to address two questions.

(i) Do the same relations found by NFW for isolated haloes hold

for the peripheral haloes that surround the virialized cluster? These

are relatively isolated, but they evolved in an environment that is

special owing to the nearby cluster. For instance, the streaming

motions it induces could have determined peculiar merging his-

tories of the peripheral haloes, and merging may play a crucial role

in shaping their internal structures (cf. Syer & White 1997; Moore

et al. 1998).

(ii) Do the same relations apply for cluster haloes, which are

affected by tidal stripping and halo–halo encounters? Cluster

haloes could also have peculiar properties reflecting the high-

density environment in which they formed.

These two factors could then affect the properties of our halo

sample in such a way that, for instance, the ratios vpk=rpk, which

reflect the concentrations of the haloes, are systematically higher

than for the field population (e.g. cluster haloes form earlier or are

biased towards high concentrations such that they have survived

tidal disruption) Alternatively, impulsive mass loss may cause

haloes to subsequently ‘relax’ and re-expand towards an ‘equi-

librium’ configuration. This could be detected as a change in

concentration versus orbital position.

We shall focus on the following two relations, for cluster and

peripheral haloes, Mhalo versus vpeak and rpeak versus vpeak. The

former is interesting because it relates masses to velocities, which

are in principle more easily observable, whilst the latter gives

information on halo concentrations and the related issues discussed

above. (Mhalo is the halo mass defined by the inflexion point of the

circular velocity profile, after subtracting the contribution from the

smooth particle background, as explained in Section 3.3).

The distribution of halo masses versus vpeak is illustrated in

Fig. 18, for peripheral (upper panel) and cluster (lower panel)

haloes and compared with the relation found by NFW within the

cosmological model we have adopted (NFW 1996; dashed line).

(For clarity, only points with vpeak > 100 km s¹1 are shown, since

the noise is large for small haloes.) In each panel, the stars mark

inner haloes of each group (see the caption of the figure for details;

note that some inner haloes within the present ‘periphery’ sample
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Figure 18. Distribution of halo masses versus vpeak for ‘peripheral’ (upper

panel) and cluster haloes (lower panel) at z ¼ 0. The stars mark inner points,

with R < 1:5R200 and R < 0:6R200, respectively for the two groups. The filled

circle gives the values for the entire cluster. The dashed line is the power-law

fit obtained by Navarro et al. (1996) for isolated haloes. The dotted lines are

similar power-law fits to the data of the form M ¼ 10b
v

a, and d is the rms

scatter in mass about the fit.

Figure 19. Distribution of vpeak and rpeak for peripheral (upper panel) and

cluster haloes (lower panel) at z ¼ 0. The points have the same meanings as

in Fig. 18. As before, the dashed line gives the expected relation for isolated

haloes (Navarro et al. 1996) and the dotted line is a fit to the points with

vpeak $ 150 km s¹1.



have highly radial orbits and were inside the cluster at an earlier

epoch). For peripheral haloes, the agreement between our data and

the NFW curve is excellent (note that most of the scatter results

from points with vpeak < 150 km s
¹1

that may be affected by the

numerical noise). Cluster haloes have a much larger scatter and the

fit is shallower. Their masses are smaller for a given vpeak, as

naturally expected for stripped haloes, and this is most noticeable

for the inner cluster haloes.

The distribution of vpeak and rpeak is shown in Fig. 19, again for

peripheral haloes in the upper panel and cluster haloes in the lower

panel. The dashed line gives the relation for the haloes studied by

NFW and the dotted line in the upper panel is a power-law fit to the

haloes with vpeak > 150 km s¹1 (which appear to be less affected by

noise). The behaviour of the peripheral haloes clearly agrees well,

within the scatter, with that expected from the analysis of NFW. On

the contrary, cluster haloes lie significantly below the dashed line:

they are skewed towards smaller values of rpeak for a given vpeak,

with a more prominent effect for the innermost haloes.

At z ¼ 0:5, we observe a behaviour similar to that at z ¼ 0, as is

shown in Figs 20 and 21 (in these figures, the dotted line is again a fit

to the points with vpeak > 150 km s¹1 and the dashed line, the

relation of the NFW at z ¼ 0, is drawn for comparison).

In conclusion, the high-density regions of the cluster and the

‘accelerated collapse’ of the cluster haloes can affect not only the

sizes of the haloes but also their internal structures. We examine this

issue further in the next section by looking in detail at the properties

of a sample of large well-resolved haloes.

5.2 The large halo sample

We now restrict our analysis to several well-resolved, massive

haloes that are not as affected by force softening or mass resolution,

by following the evolution of those haloes that have rpeak > 25 kpc

and vpeak > 150 km s¹1 [from Fig. 19 we can see that these values

delimit a region in the plane ðvpeak; rpeakÞ where the properties of

haloes behave quite regularly].

To highlight differences between ‘cluster haloes’ and ‘peripheral

haloes’, we selected two groups in the distance ranges R=R200 # 2=3

and 4=3 < R=R200 < 7=3. Again, these values of R correspond to

those roughly separating different halo behaviours in Fig. 19. These

selection criteria yield seven haloes in the first distance range

(although names like ‘Yogi’, etc. . . would be preferable, for

brevity’s sake we shall simply call them A, B, C, D, E, F) and

seven in the second one (G, H, I, L, M, N, O). The first 3 of each

group lie in the inner part of their distance ranges (R & 0:8 Mpc and

2:8 Mpc & R & 3:5 Mpc, respectively). All of these haloes contain

at least 1000 particles within rhalo. We excluded halo ‘O’ because it

is the product of a recent merger (z , 0:5). All of the other haloes

have only one progenitor at z ¼ 0:5 and the inner haloes are well

defined up to z , 2.
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Figure 20. Symbols and lines are the same as in Fig. 18 but for z ¼ 0:5. Here,

R200 is the formal virial radius of the cluster at that epoch.

Figure 21. Symbols and lines are the same as in Fig. 19 but for z ¼ 0:5. Here

R200 ¼ 1:2 Mpc is the formal virial radius of the cluster at that epoch.



5.2.1 Evolution of the profiles

We now examine the evolution of the density profiles for this

sample of haloes. We consider four values of the redshift: z ¼ 0, 0:5,

1, and 1:8. In our sample, all peripheral and outer cluster haloes

show evidence of major mergers at z , 1, but the inner cluster

haloes (A to D) have a well-defined major progenitor up to z ¼ 1:8

(although they have captured many small satellites and experienced

minor mergers since z , 1). For peripheral and outer cluster haloes

we limit our analysis to z ¼ 0:5, while for the innermost ones we

will examine the profile data up to z ¼ 1:8.

Fig. 22 shows the evolution of rðrÞ for the cluster haloes. All the

curves for the present epoch flatten at large r where the smooth

particle background density of the cluster, rbkg, starts dominating

(haloes from left to right in each row of figures have increasing

distances from the cluster centre). Such flattening also appears in

the profiles of the z ¼ 0:5 progenitors of A, B and C because they

are within the high-density environment of the forming cluster at

that epoch.

The features of rðrÞ are highlighted in the corresponding circular

velocity profiles vcðrÞ shown in Fig. 23. Note that the location

and height of the peak of vcðrÞ have both changed for the inner

haloes (upper panels), whilst the profiles of the outer haloes E and F,

in the lower panels, are remarkably stable, apart from the change in

rbkg.

Halos A and D show the most significant evolution and have quite

steep outer slopes. Halo A formed at the intersection of the two

filaments the collapse of which originated the cluster, and its

structure has been heavily disrupted by the tidal field there, causing

it to lose a huge amount of mass. Halo D formed in the outer part of

one of the filaments, and its fate has been similar. Halos B and C

have also evolved, but the changes have not been so dramatic. The

values of vpeak have decreased however by ,15 per cent between

z ¼ 0:5 and z ¼ 0. The remaining haloes E and F, which do not

show signs of significant evolution, formed in the periphery, but at

z ¼ 0 they are moving outwards. However the pericentre of F is

close to its present distance (,1:3 Mpc). That for E is ,600 kpc,

yielding an expected tidal radius of ,150 kpc; this agrees very well

with the SKID value, but is 25 per cent smaller than the tidal radius

measured from the density profile [directly from rðrÞ, or from

vcðrÞ]. This is due to the anisotropic distribution of mass around E,

which appears stretched along the orbit with a ‘trail’ of particles on

both sides. This tidal debris was contained within its virial radius at

z ¼ 0:5 and, though stripped during the passage at pericentre and

presently unbound to it, is still moving closely, apparently on the

same orbit. The lack of evolution in the density profile of E is then

due to the assumption of spherical symmetry and the contribution

from unbound particles nearby.

158 S. Ghigna et al.

q 1998 RAS, MNRAS 300, 146–162

Figure 22. Evolution of the density profiles of a sample of massive cluster

haloes after their last major mergers. The solid, dotted, short-dashed and

long-dashed lines are the profiles measured at z ¼ 0; 0:5; 1 and 1:8 respec-

tively (some haloes have their last major mergers at z $ 1 and correspond-

ingly not all lines are shown; the z ¼ 0:5 profile of D could not be measured

because this halo was too close to the cluster centre at that epoch). The radius

r is the distance from the halo centres in physical kpc and r is measured in

units of today’s critical density r0;cr.

Figure 23. Evolution of the circular velocity profiles for the same haloes as

in Fig. 22, plotted using the same line types at the different redshifts. The

velocities are measured in physical km s¹1.

Figure 24. Evolution of the circular velocity profiles of a sample of

peripheral haloes after their last major mergers. The dotted and short-

dashed lines correspond to the redshifts z ¼ 0; 0:5; 1. (At z ¼ 0, halo G has a

distance from the cluster centre ,4=3R200 but was inside the cluster at earlier

epochs.



Finally, Fig. 24 shows the corresponding vc profiles for the six

peripheral haloes considered. Except for case G, these haloes have

never entered the cluster and their profiles show no significant

differences between z ¼ 0 and 0:5. Halo G formed in the periphery

but has been orbiting through the cluster since z , 0:5 and has

clearly lost mass.

In summary, of the large cluster haloes identified at z ¼ 0, only

those with R & R200=2 have density profiles significantly different

from those they had before the formation of the cluster. However,

one of the large haloes in the outskirts of the cluster has survived a

passage (or more) at pericentre and has evolved considerably too. In

particular, the values of vpeak can change: ,10 per cent in three

cases, but 20–25 per cent in two other cases.

It is interesting to examine how the haloes ‘move’ in the plane

(rpeak, vpeak) of Fig. 19, in order to determine if their evolution

(under tidal stripping or halo–halo encounters) is the reason for the

systematically lower rpk for the cluster haloes with respect to field

haloes of the same vpk. Fig. 25 shows the evolution of rpk versus vpk

for the six cluster haloes considered previously from z ¼ 1 (when

available) through 0:5 to z ¼ 0 (from triangles to stars to circles in

the figure). From these data, it seems that the points did not move

significantly away from the curve of the NFW. They move parallel

to the line rather than downwards and those farthest from the line

are also those that formed the nearest to primordial high-density

regions (A and C, which formed near the centre of the cluster, but

also D, which formed in one of the giant filaments that merged into

it). This could be evidence that haloes form earlier in high-density

regions and are thus more concentrated than those forming in the

field. This impression is strengthened by Fig. 26, which shows the

evolution of the ‘concentration’ vpeak=rpeak (the symbols are as in

Fig. 25). The points on the left are for the haloes forming near the

centre (A and C), those on the right for haloes forming in the

periphery (B, E, F); the intermediate case D is duely in the middle.

Although the ratios change, the two groups are clearly separated at

both epochs with higher values of concentration for the former and

lower values for the latter group. Recently, Lemson & Kauffmann

(1997) have studied correlations between halo properties and local

environment using large N-body simulations. Except for the mass

distribution of haloes, they do not find any such correlation. It

should be noted however that their definition of locality is based on

a scale of 5–10 h
¹1 Mpc, which is still mildly non-linear today. The

correlation we find seems to involve scales of a few Mpc that

become non-linear at early epochs. It will be interesting to examine

the significance of our result with larger samples of cluster haloes

within simulations of even higher resolution.

5.2.2 Analytic fits

The evolved density profiles of isolated haloes in N-body simula-

tions are well described for a large range of masses by the analytic

model of NFW [although increasing the numerical resolution

causes steeper inner profiles, Moore et al. (1998); this is not an

issue here since our sample of haloes have similar resolution to

those in the NFW simulations]:

rðrÞ

rcr

¼
dc

ðcr=r200Þð1 þ cr=r200Þ2
; ð1Þ

with dc ¼
200

3

c
3

½lnð1 þ cÞ ¹ c=ð1 þ cÞÿ
: ð2Þ

Navarro, Frenk & White (1997) developed an analytic procedure

that gives c as a function of the halo mass M200 in any hierarchical

cosmological model, based on the expected redshift of collapse of a

density perturbation of mass M in the Press–Schechter (Press &

Schechter 1974) formalism. Here we address the following two

questions.

(i) Do the NFW profile and predicted c provide a good descrip-

tion of the profiles of our peripheral haloes? As mentioned

previously, this question is not trivial since the environment

within which these haloes evolved is perturbed by the intense

gravitational field of the cluster.

(ii) How much do the tidally stripped cluster haloes depart from

the NFW predictions ? For example, a steeper outer slope may be

typical of these haloes. For this reason, we also consider the

Hernquist profile (Hernquist 1990; HER in the following):

rðrÞ

rcr

¼
dc

ðcr=r200Þð1 þ cr=r200Þ3
; ð3Þ

with dc ¼
400

3
cð1 þ cÞ

2
: ð4Þ

Dark matter haloes within clusters 159

q 1998 RAS, MNRAS 300, 146–162

Figure 25. Evolution of the cluster haloes of Fig. 22 in the plane

ðvpeak; rpeak). The positions at z ¼ 0 are plotted as filled circles, those at

z ¼ 0:5 as stars (not for D) and at z ¼ 1 as triangles (only for A–D). The

dashed line is the relation expected for isolated haloes at z ¼ 0 from Navarro

et al. (1996) as in Fig. 19.

Figure 26. Evolution of ‘concentrations’ vpeak=rpeak for the haloes of Fig. 25;

the points represent the same redshifts as before. The haloes are ordered

from left to right according to the overdensity of the region where they

formed: A and B formed at the intersection of the filaments the collapse of

which originated the cluster, D along one of the filaments and the others in

the ‘field’.



This profile has the same inner form as NFW, but asymptotes to r
¹4

on large scales instead of r
¹3.

First we consider the sample of large peripheral haloes described

above. Fig. 27 shows their density profiles rðrÞ=r0;cr. In each panel,

the dotted and dashed lines are NFW profiles predicted using the

measured M200 according to the NFW procedure mentioned above,

and fitted to the data using a standard x2 minimization technique

with c as free parameter (using r200 measured from the data); for the

fits, we used the points in the radial range delimited by lsoft and r200.

(Two-parameter fits, with both c and r200 as free parameters, yield

very similar results; we use two-parameter fits for the cluster haloes

below, since r200 cannot be defined for them.) We plot the residuals

between the data and the NFW profiles and Hernquist profiles

in Fig. 28. Each panel shows the fractional difference

½rmodelðrÞ ¹ rðrÞÿ=rðrÞ as a function of r, where rðrÞ are the data

and rmodelðrÞ is the density corresponding to one of the analytic

profiles considered. With the exception of halo G, the residuals for

the NFW profiles are within ,20–30 per cent at distances from the

halo centres r * 15 kpc. At smaller distances, the profiles of our

haloes are steeper than the NFW curves with residuals typically in

excess of 30 per cent for the fits and 40 per cent for the predicted

curves. Note that, for the same halo, the different NFW curves have

concentrations that can differ by various amounts, typically from

c , 13–14 (expected) to 16–18 (fits). The data do not discriminate

significantly between NFW and Hernquist’s profiles. Only for halo

G, as expected from its steep profile, does the HER fit fare better,

although it still has positive residuals of ,40–50 per cent.

Let us now examine the cluster haloes. Their density profiles

(again solid lines) are shown in Fig. 29, together with NFW (dotted)

and HER (dashed) fits [for the latter, we use the data in the radial

range delimited by lsoft and the value where rðrÞ flattens approach-

ing rbkg]. Over the scales of interest, the two fits do not differ

significantly and both underestimate the central concentrations of

the haloes. As before, this can be seen better by examining the

residuals in Fig. 30. At intermediate distances from the halo centres

(r & 40 kpc), both fits have negative residuals in excess of ,20 per

cent, and in excess of ,30 per cent on smaller scales. At larger

distances, up to about 75 per cent of the halo tidal radii, they

generally fare well, with residuals well below 20 per cent. The

exception is halo A, which has, like halo G, a particularly steep

profile: for this halo, HER is still an acceptable fit, while NFW has

large residuals, ,40–50 per cent. When r approaches rtid, the fits

depart rapidly from the flattening rðrÞ, with average residuals at rtid

of the order of 30 per cent or more, for NFW, and about 10 per cent

higher for HER.

As a general remark to conclude this section, if we limit the halo

sample to lie within r < 3=4rtid, Hernquist’s fits are better than NFW

for the profiles of cluster haloes (or stripped haloes in general),

while the latter model fares well for peripheral haloes. Although our

resolution is not good enough to address reliably the issue of halo
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Figure 27. Comparison between the density profiles (at z ¼ 0) of a sample of

peripheral haloes (solid lines) and the NFW model: the dotted lines are the

expected NFW profiles (from halo virial masses) and the dashed lines are fits

of the NFW profile to the data.

Figure 28. Residuals ½rNFWðrÞ ¹ rðrÞÿ=rðrÞ between the NFW profiles and

density profiles of Fig. 27 (dotted and dashed lines are again for the expected

and fitted NFW profiles). The residuals of fits of the Hernquist profile to the

data are shown as thin solid lines. The arrows mark the halo virial radii. (For

clarity, we show 1 data point every 5.)

Figure 29. Comparison between the density profiles (at z ¼ 0) of a sample of

cluster haloes (solid lines) and fits of NFW (dotted lines) and Hernquist’s

(dashed lines) profiles. An arbitrary isothermal profile is drawn for compari-

son (thin solid line).



concentrations, it is remarkable that our haloes are systematically

more concentrated than the NFW model predicts, when from the

poorer resolution we would expect just the opposite. In our analysis,

the NFW profiles fitted to the data have concentrations about 25 per

cent higher than expected and still they generally underestimate the

profiles measured at small scales.

6 S U M M A RY A N D D I S C U S S I O N

We have explored the consequences of increasing the force and

mass resolution within a dark matter only simulation of a rich

galaxy cluster that forms hierarchically within a cold dark matter

simulation of a closed Universe. By resimulating regions of interest

using increased resolution, we have attained an unprecedented view

of the internal structure of a massive dark halo. With approximately

one million particles within the virial radius and force softening

that is 0.25 per cent of R200, we resolve 150 haloes with circular

velocity larger than 80 km s¹1 within R200 at z ¼ 0. Most of these

haloes have made several orbits within the cluster and are easily

identified as potential minima or density enhancements above the

background.

This work demonstrates that the loss of dark matter substructure

within virialized structures in N-body simulations can be greatly

reduced given high enough numerical resolution. The statement

that ‘at bottom the problem [of overmerging] appears to be not

numerical but physical: gravitational dynamics alone cannot

explain the existence of galaxy groups and clusters’ (Weinberg,

Katz and Hernquist 1997) is, in the light of these new results,

completely wrong.

Overmerging within the cluster environment is due to the

disruption of haloes by the global tidal field and halo–halo encounters

(cf. Moore et al. 1996), probably primarily within the large dense

haloes prior to the formation of the main cluster. Although our

softening length (5 kpc) is a small fraction of the virial radius of

the cluster, the rotation curves of the haloes peak at radii of ,30 kpc.

Hence the cores of these haloes can be softened to a degree that

effects their evolution. This is the primary reason the haloes are still

being disrupted; given high enough force and mass resolution, it

should be possible to overcome most of the overmerging problems

within CDM simulations. An additional loss of substructure can be

the result of similar-mass mergers, which is a physical effect,

although it is enhanced by poor numerical resolution.

The aim of this paper has been to analyse the properties and

dynamics of the dark matter substructure and we find the following

key results.

(i) The orbital distribution of substructure haloes is close to that

of an isotropic population of tracers in an isothermal potential; the

median value of apocentric to pericentric distances is 6:1, a value

that does not vary with position within the cluster and is unbiased

with respect to the orbits of the smooth particle background.

Circular orbits are rare and about 20 per cent of all our surviving

haloes within the cluster will pass within 200 kpc ;0:1R200.

(ii) Most dark haloes are tidally truncated to a value determined

by the (average) density of the cluster at their pericentric positions.

The approximation of isothermal halo mass distributions orbiting

within a deeper isothermal potential works very well; i.e.

rtidal , rperijhaloes=jclus (to the level of the accuracy with which we

resolve our cluster haloes, that is ,300–400 particles for most of

them).

(iii) The mass attached to dark matter haloes is approximately 13

per cent of the entire cluster mass and varies from nearly 0 per cent

within ,200 kpc from the cluster centre to 20 per cent at its virial

radius. This latter value is roughly the expected value for the mass

attached to haloes above a circular velocity of 80 km s¹1. Corre-

spondingly, the sizes of haloes vary with clustercentric radius, an

effect that may be observable using gravitational lensing of back-

ground galaxies.

(iv) Overmerging within the central regions of dense haloes

leads to a final distribution of substructure that is antibiased (less

centrally concentrated) with respect to the global mass distribution.

(v) The density profiles of a sample of well resolved haloes

indicate that those forming in the high-density regions of the

collapsing cluster have higher concentrations than those found in

isolated environments. We show that this is most probably due to

their earlier collapse redshifts rather than the internal response of

the haloes to mass loss and heating from tides.

(vi) Most of the haloes within the cluster and in the cluster

proximity have density profiles that are well fitted by NFW profiles

(Navarro et al. 1996). Halos that lose a great deal of mass through

tidal stripping have outer density profiles as steep as rðrÞ ~ r
¹4 (at

<30 percent of their virial radius), thus Hernquist profiles (Hern-

quist 1990) provide slightly better fits.

(vii) Mergers between haloes in the cluster proximity occur with

a frequency of about 5–10 per cent since z ¼ 0:5. In the cluster

environment mergers are rare; not a single merger occurs for haloes

the orbits of which are contained within 1:6 Mpc ; 80 per cent R200

from the cluster centre.
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Figure 30. Residuals ½rFITðrÞ ¹ rðrÞÿ=rðrÞ for the fits of Fig. 29 (NFW,

dotted line, and Hernquist, dashed). The arrows mark the halo tidal radii.
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