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Jesús Zavala,1, 2,∗ Mark Vogelsberger,3 Tracy R. Slatyer,4 Abraham Loeb,3 and Volker Springel5,6

1Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85740 Garching bei München, Germany
2Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada†

3Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
4School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA

5Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
6Zentrum für Astronomie der Universität Heidelberg, Astronomisches Recheninstitut, Mönchhofstr. 12-14, 69120 Heidelberg, Germany

The extragalactic background light (EBL) observed at multiple wavelengths is a promising tool to probe
the nature of dark matter. This radiation might contain a significant contribution from gamma-rays produced
promptly by dark matter particle annihilation in the many halos and subhalos within our past-light cone. Addi-
tionally, the electrons and positrons produced in the annihilation give energy to the cosmic microwave photons to
populate the EBL with X-rays and gamma-rays. To study these signals, we create full-sky maps of the expected
radiation from both of these contributions using the high-resolution Millennium-II simulation of cosmic struc-
ture formation. Our method also accounts for a possible enhancement of the annihilation rate by a Sommerfeld
mechanism due to a Yukawa interaction between the dark matter particles prior to annihilation. We use upper
limits on the contributions of unknown sources to the EBL to constrain the intrinsic properties of dark matter
using a model-independent approach that can be employed as atemplate to test different particle physics mod-
els. These upper limits are based on observational measurements spanning eight orders of magnitude in energy
(from soft X-rays measured by the CHANDRA satellite to gamma-rays measured by theFermi satellite), and
on expectations for the contributions from non-blazar active galactic nuclei, blazars and star forming galaxies.
To exemplify this approach, we analyze a set of benchmark Sommerfeld-enhanced models that give the correct
abundance of dark matter, satisfy constraints from the cosmic microwave background, and fit the cosmic ray
spectra measured by PAMELA andFermi without any contribution from local substructure. We find that these
models are in conflict with the EBL constraints unless the contribution of unresolved substructure is small and
the dark matter annihilation signal dominates the EBL. We conclude that provided the collisionless cold dark
matter paradigm is accurate, even for conservative estimates of the contribution from unresolved substructure
and astrophysical backgrounds, the EBL isat leastas sensitive a probe of these types of scenarios as the cosmic
microwave background. More generally, our results disfavor an explanation of the positron excess measured by
the PAMELA satellite based only on dark matter annihilationin the smooth Galactic dark matter halo.

PACS numbers: 95.35.+d,95.85.Nv,95.85.Pw

I. INTRODUCTION

A broad class of particles known as Weakly Interacting
Massive Particles (WIMPs), are the best studied and arguably
the most favored candidates to be the primary component of
cosmic dark matter. The most prominent example of such par-
ticles is the neutralino that arises naturally in supersymme-
try (SUSY); for recent reviews on neutralino dark matter see
[1, 2]. WIMPs can explain the observed abundance of dark
matter in a natural way and because they behave as cold dark
matter (CDM) they are also favored by the prevailingΛCDM
cosmology, which is the most successful model of structure
formation to date. Furthermore, most WIMPs are particularly
appealing because they offer a relatively high chance of detec-
tion in the near future, through: i) direct detection experiments
on Earth looking for the recoil of ordinary matter by scatter-
ing of WIMPs, and ii) indirect searches that look for standard
model particles produced in the annihilation of WIMPs.

A number of observations in recent years have highlighted
anomalies that might be caused by dark matter annihilation.
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The excess of positrons in cosmic rays above 10 GeV reported
by the PAMELA experiment [3] is one of these observations,
and although other astrophysical sources, such as pulsars [4]
and supernova remnants [5], could explain the signal, the pos-
sibility of dark matter annihilation remains attractive and has
motivated a significant number of papers on the topic. It is
however necessary to invoke large annihilation rates and spe-
cific annihilation channels to explain the anomalies with dark
matter annihilation alone [6]. These rates are orders of magni-
tude larger than the ones obtained assuming the standard val-
ues for the annihilation cross section that give the correctrelic
density of dark matter. Due to their higher densities, substruc-
tures in the local dark matter distribution can boost the anni-
hilation rates, but not to the required level [7]. The non-linear
collapse of collisionless dark matter halos leads to the forma-
tion of caustics, which due to their high density could signifi-
cantly increase the annihilation rate. However, this increase is
actually much less significant than previously thought [8, 9].
In the inner parts of halos, it is essentially negligible andcan
not be invoked to explain the high annihilation rates required
to explain the PAMELA measurements.

Alternatively, an elegant solution may lie in an enhance-
ment of the annihilation cross section by a Sommerfeld mech-
anism produced by the mutual interaction between WIMPs
prior to their annihilation [10–12]. This enhancement could

http://arxiv.org/abs/1103.0776v2
mailto:jzavalaf@uwaterloo.ca


2

easily be large enough to explain the anomalous excess of cos-
mic ray positrons.

The annihilation rate can however not be arbitrarily large
either as it is constrained by different observables. For exam-
ple, dark matter annihilation can ionize and heat the photon-
baryon plasma at recombination, creating perturbations inthe
Cosmic Microwave Background (CMB) angular power spec-
trum [13–15]. It can also alter the relic abundance of dark
matter significantly [16, 17], and produce importantµ− and
y−type distortions of the CMB [17, 18]. All these observables
hence constrain the degree to which the Sommerfeld mecha-
nism can enhance the cross section. Nevertheless, it is possi-
ble to satisfy all these constraints and at the same time explain
the positron excess measured by PAMELA [19].

An additional set of observations with the potential to con-
strain the annihilation cross section can come from the analy-
sis of the extragalactic background radiation at multiple wave-
lengths. The annihilation of WIMPs can manifest itself as a
cosmic background radiation with gamma-ray photons being
produced promptly in all extragalactic sources with high dark
matter density [20–28]. This gamma-ray radiation is com-
plemented towards lower energies by a diffuse extragalactic
background in photons that were not produced directly in the
annihilation but gained energy via inverse Compton scattering
off the energetic electrons and positrons produced during the
annihilation [29–31].

The data collected by several telescopes over the last
decades have given us a measurement of the extragalactic ra-
diation background from soft X-rays to hard gamma-rays (e.g.
[32]). In this broad energy range, most of the radiation is ex-
pected to be produced by astrophysical mechanisms different
from dark matter annihilation. This has been partially con-
firmed by accounting for the radiation of known sources and
by estimating the contribution of an expected population of
sources yet to be observed. This combined set of observations
and expectations puts strong constraints on the contribution of
dark matter annihilation, being specially stringent in thesoft-
X-ray regime where∼ 90% of the emission comes from X-
ray point sources, mostly Active Galactic Nuclei (AGN) [33],
and on the gamma-ray regime where blazars and star-forming
galaxies are expected to contribute significantly to the back-
ground radiation, at the level of∼ 70% [34, 35].

The hypothetical background radiation coming from (or be-
ing up-scattered in) all dark matter halos and their subhalos
within our past light cone has been studied by different authors
in the past using analytic approaches to model cosmic struc-
ture formation. An approach based directly on high-resolution
numerical simulations is however desirable since it more ac-
curately captures the non-linear phase of the evolution, even
though the simulation imposes a resolution limit for small-
est structure. It is then possible to construct simulated sky-
maps of the background radiation that give a more complete
description of the signal. Such an approach was developed
in [36] to analyze the extragalactic gamma-ray radiation pro-
duced in situ by annihilation using the state-of-the-art Millen-
nium II simulation [37]. In this paper, we extend this approach
to include the contribution from CMB photons scattered by
the electrons and positrons produced during annihilation.

By using this approach we are also able to easily include a
velocity-dependent annihilation cross section via a Sommer-
feld mechanism. Typically, the enhancement is inversely pro-
portional to the local velocity dispersion of dark matter parti-
cles. Since our method is based on average values of the anni-
hilation rate inside halos and their subhalos, the Sommerfeld
enhancement is simply given by the mean velocity dispersion
in each halo (subhalo), which is available in the simulation
and can be measured accurately.

The paper is organized as follows. In Section II, we out-
line the formalism to calculate the extragalactic background
radiation coming from in situ and up-scattered photons. A
description of the Sommerfeld enhancement model we used
and its implementation is given in Section III. The observa-
tional upper limits and main results of our work on the cosmic
background radiation are presented in Section IV. Finally we
present a summary and conclusions in Section V.

II. ANNIHILATION RADIATION FORMALISM

Our goal is to analyze the cosmic dark matter annihila-
tion background (CDMAB), or more specifically, the radia-
tion produced by dark matter annihilation in all extragalactic
sources integrated over all redshifts along the line-of-sight of
a fiducial observer, located atz = 0, for all directions on its
two-dimensional full sky. To this end, we first define the local
photon emissivity:

E =
fWIMP

2
Eρχ(~x)

2S(σvel(~x)), fWIMP =
dN

dE

〈σv〉0
m2

χ

(1)
wheremχ andρχ are the mass and density of WIMPs,〈σv〉0
is the thermally averaged product of the constant s-wave anni-
hilation cross section and the velocity in the absence of Som-
merfeld enhancement, anddN/dE is the differential photon
yield per annihilation. The velocity dispersion dependentfac-
tor S(σvel) boosts the value of〈σv〉0 through a Sommerfeld
mechanism (see section III). We note that for consistency, the
value of〈σv〉0 should also give the correct dark matter relic
density.

The CDMAB is given by the specific intensity, the energy
of photons received per unit area, time, solid angle and energy
range:

I =
1

4π

∫

E(E0(1 + z), z)
dr

(1 + z)4
e−τ(E0,z), (2)

where the integral is over the whole line of sight,r is the co-
moving distance andE0 is the photon energy measured by the
observer atz = 0. Note thatE is evaluated at the blue-shifted
energy(1+z)E0 along the line-of-sight to compensate for the
cosmological redshifting. The exponential term with an effec-
tive optical depthτ(E0, z) takes into account the absorption
of photons by the matter and radiation field along the line-of-
sight. The relevant processes of photon absorption and their
treatment are described in Appendix B.

In this work, we focus on two different contributions to the
differential photon yield per annihilation eventdN/dE. In
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the following, we describe these contributions that we refer to
asin situ andup-scatteredphotons.

A. In situ photons

The in-situ photons are directly created due to the anni-
hilation process. They are in the gamma-ray energy range
and are produced by three mechanisms: (i) continuum emis-
sion following the decay of neutral pions produced during the
hadronization of the primary annihilation products; (ii) mo-
noenergetic lines for WIMP annihilation in two-body final
states containing photons; (iii) internal bremsstrahlungwhen
the final products of annihilation are charged, leading to the
emission of an additional photon in the final state. Process
(i) is dominant at most gamma-ray energies, but processes
(ii) and (iii) produce distinctive spectral features intrinsic to
the annihilation phenomenon. This in situ contribution to the
CDMAB has been studied in detail before by different au-
thors. In this work we follow the analysis of [36], extending
their results to lower energies as described below.

B. Up-scattered photons

The up-scattered photons originate in differently produced
background photons that gain energy due to their interactions
with particles produced in the annihilation of dark matter.We
concentrate exclusively on Inverse Compton (IC) scattering as
the mechanism contributing to the up-scattering of these pho-
tons, and on the CMB as the main photon background. There
are additional backgrounds, like stellar and infrared light, that
are dominant close to galactic discs in the center of relatively
massive halos. However, most of the CDMAB comes from
the integrated effect of low mass halos and subhalos (see Ap-
pendix C). In these places, the stellar component is rather
small and the mean number density of starlight and infrared
photons is much lower than that of the CMB.

Electrons and positrons are the annihilation byproducts par-
ticipating in the scattering. These particles are quite energetic
and have therefore usually a largeγ = 1/

√

1− (v/c)2 factor.
This implies that they can up-scatter low energy photons to
significantly higher energies, because of theγ2-dependence
of the peak energy of up-scattered photons. In this process,
CMB photons increase their energy into the X-ray and low
gamma-ray regimes [29].

The differential electron (and positron) yield that is relevant
for the IC up-scattering of the CMB photons is found by solv-
ing a diffusion equation that takes into account the diffusion
and energy losses of these particles:

∂

∂t

dne

dEe
= ∇

[

De∇
dne

dEe

]

+
∂

∂Ee

[

be
dne

dEe

]

+Qe, (3)

wheredne/dEe is the equilibrium electron spectrum,De =
De(Ee, ~x) is the diffusion coefficient,be = be(Ee, ~x) is the
energy loss term andQe = Qe(Ee, ~x) = Ee/Ee[77] is the
source function. Spatial diffusion due to scattering on thein-
homogeneities of the ambient magnetic field can be neglected.

This is because spatial diffusion is only relevant at relatively
small scales, within a few kpc of the center of dark matter ha-
los [38]. However, we are interested in a cosmological back-
ground radiation where most of the signal in a given area in
the sky comes from unresolved sources far away, where spa-
tial diffusion is clearly irrelevant. In this case, the steady-state
solution to Eq. (3) can be approximated by:

dne

dE
(Ee, z) ≈ 1

be(Ee, z)

∫ mχ

Ee

dE′

e Qe(Ee, ~x)

=
〈σv〉0
2

(

ρχ(~x)

mχ

)2

S(σvel(~x))
dñe

dE
(Ee, z). (4)

The energy loss rate,be(Ee, z), for electrons and positrons
receives contributions from different interaction processes: IC
scattering with ambient photons, synchrotron radiation inthe
ambient magnetic field, Coulomb scattering with free elec-
trons, ionization of atoms and bremsstrahlung radiation inin-
teractions with the ambient matter field. As we explain in
Appendix A, among all these cooling processes we only con-
sider the first one since it dominates the photon energy range
we are ultimately interested in. The energy loss term in Eq. (4)
is hence given by Eq. (A1).

We further assume that the electrons and positrons pro-
duced in the annihilation process lose energy and reach equi-
librium instantaneously (in a cosmological time frame), scat-
tering the CMB photons at the same redshift at which the an-
nihilation takes place (e.g. [39]). These up-scattered photons
have a differential photon spectrum given by:

dNIC

dE
(E, z) =

∫

dEe
dñe

dE
(Ee, z) P̃IC (E,Ee, z) , (5)

where the IC power per scattered photon energy is:

P̃IC (E,Ee, z) = c

∫

dẼ nCMB(Ẽ, z)σKN(E,Ee, Ẽ). (6)

Here,nCMB(Ẽ, z)dẼ is the number density of CMB photons
in the energy range(Ẽ, Ẽ + dẼ) at redshiftz:

nCMB(Ẽ, z)dẼ =
8π

(hc)3
Ẽ2dẼ

exp[Ẽ/(kB T0(1 + z))]− 1
, (7)

whereT0 = 2.725 K is the CMB temperature today, which
increases with redshift like(1 + z)T0. Finally, σKN is the
differential Klein-Nishina cross-section for IC scattering

σKN(E,Ee, Ẽ) =
3σT

4Ẽ

(

mec
2

Ee

)2

G (q,Γe) , (8)

whereσT is the Thomson cross-section,me the electron mass,
and

G (q,Γe) =

[

2q ln q + (1 + 2q)(1− q) +
(Γeq)

2
(1− q)

2 (1 + Γeq)

]

,

(9)
with

Γe =
4ẼEe

(mec2)2
, q =

E

Γe (Ee − E)
. (10)
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Note that the Klein-Nishina cross-section depends on the in-
creased energy of the up-scattered photonE, the energy of the
original CMB photonẼ, and on the energyEe of the electron
that does the IC scatter. The limits for the various integrals
above are given by the kinematic constraint of the IC scatter-
ing requiring1/[4(Ee/(mec

2))2] < q < 1.

III. SOMMERFELD ENHANCEMENT

We include in our analysis a scenario where the annihilation
is enhanced by the Sommerfeld mechanism (e.g. [10–12, 40]),
restricting it to the case where the interaction between WIMPs
prior to annihilation is mediated by a scalar boson of mass
mφ through a Yukawa potential with coupling constantαc

(e.g. [41]). This case encompasses the large majority of the
models that are typically used in the literature to account for
the Sommerfeld enhancement, including the most common of
these whereS ∝ 1/σvel (the so-called “1/v” boost). Even in
models with nearly-degenerate interacting states and/or multi-
ple force carriers, while the details of the enhancement differ,
the general features remain similar. The enhancement satu-
rates at sufficiently low velocities due to the finite range of
the Yukawa interaction. For certain combinations ofαc and
mφ, resonances associated with zero-energy bound states ap-
pear [78]. Close to these resonances, the enhancement gets
significantly larger for low velocities and scales as1/σ2

vel. In
this case, the enhancement also saturates eventually due tothe
finite lifetime of the states. Regardless of the values of the
parameters, the boost to the cross-section disappears for ve-
locities comparable to the speed of light. This argument has
often been invoked to infer that the dark matter relic density
is unaffected by the Sommerfeld enhancement, but it has been
shown recently that this assumption is not correct [17].

A detailed description of the Sommerfeld model studied
here has been presented elsewhere (e.g. [12, 41]). For the
purposes of this work, we follow the description of [17] and
mention that the enhancementS(σvel) to thes-wave contribu-
tion to the annihilation rate is given by:

〈σv〉 = 〈σv〉0S(σvel),

S(σvel) =

(

1

2σ3
vel

√
π

∫ 1

0

S(β)β2e−β2/4σ2

vel dβ

)

, (11)

whereβ = vrel/c is the relative velocity between the annihi-
lating pair[79].

For definiteness, we choose two sets of parameters that fall
within currently favored regions of the parameter space (e.g.
[41]): case i) off-resonance:mφ/mχ = 5 × 10−4, αc =
3×10−2 and case ii) near-resonance:mφ/mχ = 2.98×10−4,
αc = 3 × 10−2. The former is representative of the standard
“1/v” boost with a maximum enhancementSmax ∼ 2000 for
σvel,max ∼ 10−5. The latter is a typical resonance case with
S ∝ 1/σvel at intermediate velocities andS ∝ 1/σ2

vel at low
velocities up to a saturationSmax ∼ 106 for σvel,max ∼ 6 ×
10−7.

By solving the Schrödinger equation for s-wave annihila-
tion in the non-relativistic limit, we obtainS(β) for the two

cases chosen above, and use Eq. (11) to get the average anni-
hilation boostS(σvel) for each halo. Since we can estimate
the change on the values ofSmax andσvel,max for a differ-
ent set of parameters, the results we obtain later using these
representative cases serve us to analyze the whole range of
possibilities that are expected for a Sommerfeld mechanism
produced by a Yukawa potential.

The Sommerfeld enhancement alters the relic density of
dark matter [16, 17]. During freeze-out, while the Sommer-
feld enhancement is generallyO(1), it is not negligible and
can consequently have anO(1) effect on the relic density (re-
quiring a reduction of the underlying annihilation cross sec-
tion to compensate). After kinetic decoupling of the dark
matter from the radiation bath, the typical velocities of the
dark matter particles decrease rapidly: even for non-resonant
(but unsaturated) enhancement, the enhanced annihilationrate
keeps pace with the universe’s expansion, and for resonant en-
hancement the dark matter annihilations can actuallyrecouple
(depending on the relative temperatures of freeze-out, kinetic
decoupling and saturation of the enhancement), greatly reduc-
ing the relic density. Once the enhancement saturates, the an-
nihilation rate no longer keeps pace with the expansion rate,
and the comoving density of dark matter remains fixed. In all
cases there is a significant effect on the relic density, and in
order to produce the correct abundance today, the value of the
annihilation cross-section before the onset of the enhancement
needs to be smaller than for the case without Sommerfeld en-
hancement.

This result is relevant because it implies that any particle
physics model without enhancement chosen to satisfy the ob-
servational bounds on the abundance of dark matter needs to
be revised once the enhancement is included to test whether or
not it still gives the correct relic density. The fully consistent
way to do so is to incorporate the Sommerfeld enhancement
into a Boltzmann code and re-sample the parameter space of
that particular model to find allowed regions. Here, we fol-
low a simpler approach. According to [17], the value of〈σv〉0
should be lower by a factor between 1 and 10 compared to the
case without enhancement in order to get the correct relic den-
sity. The precise reduction factor,fΩ, depends on the intensity
of the enhancement:fΩ ∼ 0.1 near resonances andfΩ ∼ 0.5
off-resonance. Therefore, by multiplying〈σv〉0 by the corre-
spondingfΩ factor, we roughly take into account the effect
on the relic density. In this way, a model without enhance-
ment that gives the correct relic density with〈σv〉0 will also
give the right relic abundance with Sommerfeld enhancement,
provided its annihilation cross section in the early Universe is
chosen to befΩ〈σv〉0.

IV. EXTRAGALACTIC CDMAB

The procedure we follow to construct the simulated sky
maps of the contribution of dark matter annihilation to the
X-ray and gamma-ray extragalactic background radiation is
essentially an extension of the one discussed in [36]. For a
detailed description of the map-making technique we used,
we hence refer the reader to section 5.1 of that paper.
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According to Eq. (1), the local annihilation rate depends on
the square of the local density of dark matter. For the compu-
tation of the cosmological background from an N-body simu-
lation, it is more reliable to use analytically integrated quanti-
ties over whole dark matter halos (based on scaling laws tested
with extremely high-resolution simulations of MW-like halos
[42]) instead of trying to use individual simulation particles
directly, which are subject to stronger resolution effectsand
numerical noise [36]. Using this method, each pixel in our sky
maps receives contributions of all intervening resolved halos
and subhalos along its corresponding past light cone. Addi-
tionally, we add the expected contribution of unresolved struc-
tures down to the damping scale limit of WIMPs (10−6M⊙,
see sections 5.2-5.4 of [36]). Since we are exploring the case
with Sommerfeld enhancement in this paper, the formulae
given in [36] need to be altered accordingly. In Appendix C
we describe how we accomplish this.

The signal depends of course on the value of the photon
yield dN/dE as well, which contains contributions from in
situ and up-scattered photons. These are determined by the
intrinsic properties of WIMPs. As an example, we take a neu-
tralino with a main annihilation channel intobb̄. In particular,
we use a benchmark point within the minimal supergravity
(mSUGRA) framework (model L in Table I of [36]). This
benchmark point hasmχ ∼ 185GeV with annihilation intobb̄
with a99% branching ratio, and〈σv〉 ∼ 6.2× 10−27cm3s−1.
It belongs to the so-called “bulk region” within the mSUGRA
5-dimensional parameter space that is consistent with current
constraints on the relic density of neutralinos (if neutralinos
make up for all the observationally inferred dark matter den-
sity). We obtain the photon, electron and positron yields for
this model using the numerical codeDarkSUSY[43, 44] with
the interfaceISAJET[45].

In Fig. 1, we show the final photon yield spectrum for dark
matter annihilation in the X-ray and gamma-ray energy range
for the example just described. The contributions from in situ
and up-scattered CMB photons are shown with solid red and
blue lines, respectively. For reference, the in situ and equi-
librium electron (positron) yields from annihilation are shown
with dashed red and green lines, respectively [80]. The main
bump and secondary peak that are clearly shown for the in situ
photons correspond to the two main mechanisms mentioned in
section II A, neutral pion decay and internal bremsstrahlung,
respectively. The figure shows clearly that although in this
case the largest photon yield is in the gamma-ray regime,
there is a significant amount of X-ray radiation produced by
IC scatter of the CMB photons. The contribution from up-
scattered CMB photons is the dominant feature for other par-
ticle physics models. As an example of this we show in Fig.1
the total photon yield for one of a set of benchmark models
that we use later in section IV C. The shape and normalization
for this benchmark model 1 (see Table 1) are representative of
all the benchmark models we will use.

Fig. 2 shows the contribution from dark matter annihilation
to the X-ray and gamma-ray extragalactic background radia-
tion for the particular SUSY model described above. The case
without Sommerfeld enhancement is shown within the light-
gray shaded region. This region is bracketed by the maxi-

FIG. 1: Photon yield for dark matter annihilation in the X-ray and
gamma-ray energy range for a∼ 185 GeV neutralino annihilating
into bb̄. The contributions from in-situ and up-scattered CMB pho-
tons are shown with solid red and blue lines, respectively. For ref-
erence, the in-situ and equilibrium electron yields from annihilation
are shown with dashed red and green lines respectively (the equilib-
rium spectrum as defined in Eq. (4) was scaled by a factor of10

−16

to show it in the same figure). Also shown in the figure with a black
dotted line is the total photon yield from benchmark model 1 of Table
1, see section IV C.

mum and minimum values of the extrapolation for unresolved
subhalos, which encompasses the astrophysical uncertainties
in the contribution by low-mass subhalos that can not be re-
solved by the Millennium II simulation (see Appendix C). The
medium-gray and dark-gray shaded regions are for the cases
with Sommerfeld enhancement, off- and near-resonance, re-
spectively.

According to Fig. 2, any model with a photon yield similar
to the one we used as an example (see Fig. 1), and with a
mass∼ 200 GeV and〈σv0〉 ∼ 6 × 10−27cm3s−1, could be
ruled out, depending on how relevant the contribution from
unresolved halos and subhalos is. Any significant Sommerfeld
enhancement is clearly ruled out by absolute measurements of
the background in this case.

It is important to note that the Sommerfeld mechanism is of
relevance for neutralinos only for masses&TeV in the case of
a minimal SUSY model like mSUGRA (e.g. [12, 40]). In this
case, the force carriers responsible for the enhancement are
the W and Z gauge bosons [81]. Therefore, boosts of order
∼ 1000 or even larger are only possible for neutralinos with
much higher masses than the model we have chosen as an ex-
ample in Figs. 1 and 2. The net effect of a higher neutralino
mass in the input photon and positron (electron) spectra is a
shift of the X-ray and gamma-ray peaks shown in these figures
towards higher energies. Nevertheless, thedN/dE spectrum
shown in Fig. 1 is generic for any model with a WIMP an-
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FIG. 2: CDMAB spectrum including in-situ and up-scattered CMB
photons (gamma-rays from annihilation and CMB photons up-
scattered to X-ray energies by electrons and positrons of the an-
nihilation) for the cases of no-enhancement (light-gray),enhance-
ment away from a resonance (medium-gray) and near a resonance
(dark-gray). The upper and lower limits of each stripe bracket the
uncertainty in the extrapolation of unresolved subhalos inthe sim-
ulation. All cases are for a model with annihilation mainly into
bb̄, mχ ∼ 185 GeV and〈σv〉0 ∼ 6.2 × 10

−27
cm

3
s
−1. They

all give approximately the correct relic density. Observations from
soft X-rays to gamma-rays are marked with red to violet, follow-
ing approximately a rainbow color pattern: red symbols [46], red
arrows (Chandra, [33]), orange symbols (INTEGRAL, [47]), yel-
low symbols (SWIFT BAT, [32]), yellow arrows [48], green area
(SMM, [49]), light blue (COMPTEL, [50]), blue (EGRET, [51]), vi-
olet (Fermi-LAT, [52]), violet arrows [34, 35]. The points with error
bars are absolute measurements with2σ or 1σ errors. The arrows
pointing downwards are best estimate upper limits of the unresolved
component of the signal, that is, the signal that can not be accounted
for by already known or expected sources.

nihilating mainly intobb̄. If such a generic model allows the
inclusion of a new scalar boson responsible of the Sommer-
feld enhancement, then the formalism described in Section III
is applicable and Fig. 2 shows the expected level of enhance-
ment of the CDMAB due to this mechanism.

The symbols shown in Fig. 2 represent inferences for
the extragalactic X-ray and gamma-ray background radiation
based on observational data as described in the following.

A. Observations

We are interested in measurements of the cosmic back-
ground radiation in an energy range going from soft X-rays
to gamma-rays:0.1 keV ≤ E0 . 100 GeV. Because for
E0 < 1 keV the signal is completely dominated by galactic
and local emission that varies with time and position, esti-

mates of the extragalactic emission at these energies have not
been possible [33, 53]. In the range1 keV ≤ E0 ≤ 200 keV,
the extragalactic X-ray background has been studied in detail
by satellites such as CHANDRA, SWIFT and INTEGRAL.
We take the absolute measurements obtained using the latter
two satellites according to the analysis of [46] (red symbols in
Fig. 2), [47] (orange symbols) and [32] (yellow symbols). At
intermediate energies,300 keV ≤ E0 ≤ 30 MeV, the mea-
surements come from the Solar Maximum Mission (SMM)
[49] and COMPTEL [50]. These measurements are shown
with green and light blue points, respectively. Finally, ob-
servations based on EGRET [51] and recently onFermi [52]
have estimated the cosmic background in gamma-rays from
40 MeV to 100 GeV. These estimates are shown with dark
blue and purple symbols, respectively.

The observational data we have described above give a
measurement of the total extragalactic X-ray and gamma-ray
background radiation. Over the full energy range, most of
the signal is expected to come from photons produced by dif-
ferent astrophysical sources in mechanisms that are unrelated
to dark matter annihilation. The contribution from the latter
is likely to be a subdominant component of the total signal,
which is especially true at lower energies. Upper limits to the
emission that have not been accounted for by known sources
for E0 < 8 keV, have been found using CHANDRA data (red
arrows) [33]. Approximately less than10% of the integrated
specific intensity is unresolved between1 keV< E0 < 8 keV.
For hard X-rays (10 keV ≤ E0 ≤ 200 keV), most of the emis-
sion is expected to come from Compton-thin Active Galactic
Nuclei (AGN). We use the model presented in [48] to put a
conservative upper limit on the unresolved component of the
emission at these energies (yellow arrows)[82]. The modeling
in the MeV range is more uncertain. According to some anal-
yses, blazars are thought to contribute significantly to theradi-
ation [54], but others argue for non-blazar AGNs as the main
contributors to the MeV radiation [55]. We will not attempt
to model the contribution of these sources due to this contro-
versy, but we note that the constraints on the contribution of
dark matter annihilation to the MeV background are expected
to be significantly lower than those seen in Fig. 2. Recently,
the Fermi-LATcollaboration has estimated the blazar contri-
bution to the gamma-ray background in the0.1 − 100 GeV
energy range. Its total specific intensity in this energy range
(i.e. its integrated flux between these energies) down to the
minimum detected source flux is∼ 16% of the derived value
for the cosmic gamma-ray background [34]. We use the en-
ergy spectrum given by these authors (see their Table 6 and
Fig. 20) to account for the blazar contribution noting that this
is a conservative estimate since undetected sources certainly
contribute to the signal, see below. Star forming galaxies
are also expected to be a significant source of gamma-rays
in this energy range. We use the model by [35] to include
this contribution (see their Fig. 1), which accounts for∼ 53%
of the total specific intensity. We note that the energy spec-
trum of the contribution of star forming galaxies to the cos-
mic gamma-ray background (as plotted in Fig. 2, i.e.E0I)
peaks atE0 ∼ 0.3 GeV, dominating over the blazar spec-
trum, and drops more steeply towards higher energies than
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the total background. AtE0 & 10 GeV blazars dominate over
star forming galaxies with a spectrum shallower than the ob-
served background. In this way, both populations combined
account for∼ 86% (∼ 46%) of the measured specific in-
tensity atE0 ∼ 0.3 GeV (E0 ∼ 70 GeV). Over the whole
0.1 − 100 GeV energy range, they account for∼ 69% of the
total integrated flux. Based on this, the corresponding upper
limits on the contribution from additional sources are shown
with violet arrows in Fig. 2.

We should comment on the uncertainties associated to the
contribution of blazars and star forming galaxies. For the lat-
ter, these are connected to the gamma-ray luminosity function
of galaxies which is ultimately related to the time-dependent
global star formation rate density. The possible behaviors
of the gamma-ray luminosity function and the most relevant
sources of uncertainty in the model (more importantly the
cosmic star formation rate and the normalization given by
the inferred gamma-ray luminosity of the Milky-Way) have
been considered by [56] using a similar modeling to that of
[35]. The authors find that star forming galaxies account for
between10% to 90% of the EBL measured by FERMI at
E0 ∼ 0.3 GeV (see Fig. 1 of [56]) with a spectral shape very
similar to the model we have chosen here. Since the contri-
bution from star forming galaxies is quite uncertain and since
the fiducial model we use lies closer to the upper value of
this contribution, we explore below the effects that a lower
contribution has in our results (see section IV C). If the ob-
served count distribution of blazars is extrapolated to zero flux
then their contribution to the total observed signal between
0.1 GeV and100 GeV is ∼ 23(±9)% (including statistical
and systematic uncertainties) [34]. As we mentioned before,
this percentage drops to∼ 16(±9)% when only sources down
to the minimum flux are considered. AtE0 ∼ 0.3 GeV the
minimum contribution from blazars to the measured specific
intensity is∼ 7% (including uncertainties). Taking the lower
limits of all these uncertainties into account, star forming
galaxies and blazars would contribute minimally by∼ 17%
atE0 ∼ 0.3 GeV, a factor of 5 lower than the estimate we use
here.

B. Constraints on particle physics models

With the procedure we have previously outlined, we can
compare the prediction of any given particle physics model
with the observational upper limits shown in Fig. 2. The
model gives a photon and a positron (electron) input spectra
from the annihilation, and our map-making code produces a
simulated map for a prescribed energy. A full spectrum can be
then produced once maps at different energies are constructed.

It is possible however to present robust limits on the part
of the signal that only depends on the intrinsic properties of
WIMPs, namelyfWIMP in Eq. (1). This can be done by noting
that there exists a redshiftz∗ along the line-of-sight for which

Eq. (2) can be written as:

I(E0) =
c

8π
E0fWIMP(E0(1 + z∗))

∫

ρ2χ(~x, z)S(σvel(~x, z))

(1 + z)3
e−τ(E0,z)

H(z)
dz, (12)

whereH(z) is the Hubble parameter [83]. In general, we do
not know the value ofz∗, it is model dependent. Neverthe-
less, we can safely approximate the upper limit of the integral
in Eq. (12) byz = 4 in the case of the lowest X-ray energies
and byz = 1 for the higher gamma-ray energies (and values
in between for intermediate energies). This is because∼ 90%
of the signal is produced forz < 4 (z < 1) in the former (lat-
ter) case. The relevant redshift range is significantly smaller
at higher energies where photon absorption plays an impor-
tant role. This approximation is good enough for any model
with a photon yield spectrumdN/dE similar to the one de-
picted in Fig. 1. More generally, for any model with a photon
yield that is monotonically decreasing with energy, the large
majority of the signal at any given energy would come from
relatively low redshifts, since the contribution from higher
redshifts would correspond to higher-energy (and hence less
abundant) initial photons. This is true because the astrophyis-
cal part of the specific intensity that goes in the integrand of
Eq. (12), excluding the absorption factor, is essentially flat
with redshift (see for example Fig. 1 of [52]). Thus, we can
use the observed upper limits on the unaccounted contribution
to I(E0), and the values of this same quantity predicted by a
reference particle physics model to estimate upper limits on
fWIMP(E0(1 + z∗)):

fWIMP(E0(1 + z∗)) ≤ fREF
WIMP(E0(1 + zREF))

IOBS(E0)

IREF(E0)
,

(13)
where the values associated with the reference model are
given with a superscriptREF. The values ofz∗ andzREF

are in the interval(0, 4) for E0 ∼ 10−5 GeV and in the in-
terval (0, 1) for E0 ∼ 10 GeV. By choosingzREF = 0, so
fREF
WIMP is evaluated at the measured energy rather than the

(higher) effective energy of injection, we obtain a conserva-
tive constraint, since this function is monotonically decreas-
ing with respect to energy. Taking a higher value forzREF

will strengthen the bound. By choosingz∗ = 0, we evalu-
atefWIMP at the lowest possible energy for the purpose of
comparing to the limit: this is not conservative for models
wherefWIMP is a monotonically falling function of energy,
in the sense that taking a largerz∗ leads to a weaker limit,
but since the signal is dominated by the lowest redshifts, the
resulting uncertainty is quite small. We denote the upper
bound onfWIMP(E) obtained by settingz∗ = zREF = 0
by fMAX

WIMP(E).
We take as a reference model the example we have used

throughout the text, and computefMAX
WIMP for the cases without

enhancement, and with Sommerfeld boost, off-resonance and
near-resonance. The exclusion regions we obtain are shown
in Fig. 3 with the light-gray, medium-gray and dark-gray re-
gions, respectively, for these three cases, assuming a min-
imum extrapolation for the contribution of unresolved sub-
structures to the simulated maps. The dashed lines show how
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FIG. 3: Limits on the value offWIMP for dark matter annihila-
tion according to observations of the cosmic X-ray and gamma-ray
background radiation. The light-gray, medium-gray and dark-gray
areas mark exclusion regions for the case with no Sommerfelden-
hancement, off- and near-resonance enhancement, respectively, in
the case where the contribution of unresolved substructures to the
signal is minimal. The dashed lines show how these regions are ex-
tended if this contribution is maximal. The area between thelimit
of each shaded region and its corresponding dashed line encom-
passes the uncertainty on the contribution of unresolved subhalos.
The symbols with error bars in the bottom show the theoretical un-
certainty on the construction of this figure from Fig. 2; see text for
details. The thick magenta line is for the SUSY model we have used
as an example: a∼ 185 GeV neutralino annihilating intobb̄ with
〈σv〉0 = 6× 10

−27cm3s−1.

these exclusion limits are extended if a maximum extrapola-
tion is taken. The right- and down-wards error bars in the fig-
ure mark the uncertainty in the values ofz∗ andzREF, respec-
tively. As mentioned before, the amplitude of the uncertainty
depends on the value of the observed energy, being lower for
higher energies. The thick magenta line shows the value of
fWIMP for our reference case.

The validity of a given model can be tested directly using
Fig. 3 without the need of computing the CDMAB for this
model. Keep in mind that for the cases with Sommerfeld en-
hancement, the value of〈σv〉0 in fWIMP is the value of the s-
wave annihilation cross section without Sommerfeld enhance-
ment.

Once a specific model is chosen,dN/dE is calculated and
Fig. 3 can be used to produce constraints on〈σv〉0 as a func-
tion of WIMP mass. As an example, we take a model with
annihilation into leptons, specificallyµ+µ− with a branching
ratio of 100%. Models such as this are typically used in the
literature to explain the anomalous abundance of positronsin
cosmic rays above 10 GeV reported by the PAMELA satel-
lite [6]. We useDarkSUSY[43] to compute the in situ positron
(electron) and photon spectra. The resulting total photon yield

FIG. 4: Constraints on the local value of the thermally averaged an-
nihilation cross section (assuming a MB velocity distribution with
σvel = 150 km s

−1) as a function of WIMP mass for annihilation
intoµ+µ− final states. These constraints come from observations of
the cosmic X-ray and gamma-ray background radiation. The violet
contour shows the2σ best fit region of this model to the PAMELA
positron data as presented in [52]. The other line styles andcolors
are as in Fig. 3.

has a very similar shape to the black dotted line shown in
Fig. 1, which is by the way shared by all the benchmark mod-
els we describe in section IV C. For this case, and formχ >
100 GeV, the up-scattered photons contribute dominantly to
the background radiation. Instead of showing constraints
on 〈σv〉0 we show in Fig. 4 the constraints on〈σv〉H =
S(σvel = 150kms−1)〈σv〉0, which is a thermal average over a
Maxwell-Boltzmann (MB) velocity distribution with a veloc-
ity dispersion of150 km s−1(5 × 10−4 c). This roughly cor-
responds to the estimated local dark matter one-dimensional
velocity dispersion. For both cases of Sommerfeld enhance-
ment we are considering:S(σvel = 150 km s−1) ∼ 230. With
this choice, we can compare the constraints coming from the
extragalactic background radiation with the local values of
〈σv〉 that better fit the PAMELA data for an explanation of
the positron excess based solely on dark matter annihilation.
The violet contour in Fig. 4 shows the2σ best fit region ac-
cording to [52]. For this particular model with annihilation
intoµ+µ− with a branching ratio of100%, the constraints we
find do not favor an explanation of the PAMELA data based
only on dark matter annihilation formχ > 260GeV (a similar
conclusion was found in [29, 52]). A large saturated Sommer-
feld enhancement (Smax > 2000) essentially rules out this
possibility.

We note that any model tested using Fig. 3 also needs to be
checked for consistency with the correct relic density. Con-
trary to Fig. 2 that was used to exemplify a case where a
specific model gives the correct dark matter abundance with
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and without enhancement (recall that for the former we mul-
tiplied the value of〈σv〉 without enhancement by a factorfΩ
to accomplish this, see end of section III), the upper limit on
fWIMP in Eq. (13) deliberately does not take this into account.
In this way, the upper limits on the cases with and without
Sommerfeld enhancement in Figs. 3-4 are not related to each
other through their values of〈σv〉0.

C. Benchmark models fitting the cosmic ray excesses

In addition to the referenceµ+µ− model, we investigate
benchmark models recently presented in [19], which produce
the correct thermal relic density, fit the cosmic ray (CR) ex-
cesses measured by PAMELA andFermi, and are currently
allowed by bounds onSmax from the cosmic microwave back-
ground. Whereas our previous reference models demonstrate
the effect of Sommerfeld enhancement on the EBL constraints
in a broad class of scenarios, these benchmarks allow us to
test specific proposed models, and compare our bounds to
those from the cosmic microwave background. The param-
eters characterizing these models are summarized in Table I;
see [19] for further details [84].

The benchmarks feature dark matter masses in the 1-1.7
TeV range, with nearly-degenerate excited statesδ ∼ 0.1− 1
MeV above the ground state. Both Sommerfeld enhancement
and annihilation to Standard Model final states occur via vec-
tor mediators with massesmφ ranging from200− 900 MeV.
These models were chosen to fit the CR data withno contri-
bution from local substructure, so they are not perfectly con-
sistent with the assumptions of this work. However, the Som-
merfeld enhancement in these models saturates at relatively
high velocities in order to evade constraints from the CMB,
and thus we expect the substructure boost to the locally mea-
sured CR signals to be only a factor of∼ 1.5 − 5, based on
the results of [57]. We neglect this effect in the following
discussion; if the local substructure boost is substantialthen
these benchmarks would also significantly overpredicte+e−

cosmic rays, and are less interesting for direct comparisons to
data.

Since these benchmark models have lower values ofSmax

than the off-resonance case we considered in Fig. 3, we sim-
ply scale-down the upper limits of the latter to the appropri-
ate value of each benchmark model. We note that although
S(σvel) does not have the same shape for the benchmark mod-
els than for the Yukawa case, the previous approximation is
good enough because most of the signal comes from struc-
tures that are already in the saturated regime. In any case,
this approximation actually underestimates the signal from the
benchmark models becauseS(σvel) is larger in the intermedi-
ate velocity dispersions than in the Yukawa case for the same
value ofSmax.

We find that these benchmarks are in conflict withFermi
measurements in the energy range∼ 0.3 − 20 GeV, even in
the case ofminimal contribution from unresolved substruc-
ture, if the current best estimates of contributions from blazars
and star-forming galaxies to the EBL are subtracted from the
data. The conflict is maximal atE ∼ 300 MeV, where it is a

FIG. 5: Ratio of the observed bound onfWIMP to the value predicted
by the model, for each of the six benchmarks in Table I: 1=red,
2=green, 3=blue, 4=yellow, 5=violet, 6=cyan. Energies where the
ratio is less than 1 are ruled out. For the purposes of this figure, we
assume minimal contribution from unresolved substructure.

factor of∼ 7 − 10. Fig. 5 displays the ratiofOBS
WIMP/f

MOD
WIMP

for these models. With a larger contribution from unresolved
substructure, all the benchmarks can be ruled out independent
of astrophysical contributions to the EBL.

There are several effects that could ameliorate this conflict,
in addition to the small substructure correction mentionedal-
ready. The uncertainty on the estimation offWIMP, as shown
in Fig. 3, can alleviate the tension slightly (by less than a
factor of 2); a potentially larger effect is the uncertaintyin
the subtraction of astrophysical contributions to the EBL.If
our best estimate for the contribution of astrophysical sources
is too high (by a factor of up to∼ 5, as discussed previ-
ously), then in the case of minimal contribution from unre-
solved (sub)halos the tension diminishes significantly. Inthis
case however, dark matter annihilation would need to be dom-
inantly responsible for the EBL in the energy range observed
by Fermi, unless other effects reduce the dark matter signal.

Star forming galaxies dominate the astrophysical gamma-
ray background model we have used for0.3 GeV . E0 .
10 GeV, whereas blazars dominate at higher energies. The
contribution of the former to the total observed signal is par-
ticularly important to constrain the role of dark matter annihi-
lation. To illustrate this, we translate the constraints onfWIMP

given in Fig. 3 to constraints on the value of the annihilation
cross section at saturation by taking the value of〈σv〉sat =
Smax〈σv〉0 as a free parameter limited by theFermimeasure-
ments and the astrophysical background. Fig. 6 shows these
constraints as a function offFermi

SF (E > 0.1GeV), the contri-
bution of star forming galaxies to the observed integrated flux
between0.1 GeV and100 GeV. We show the constraints only
for the case of minimal contribution of unresolved subhalos.
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Benchmark no.Annihilation Channelmφ (MeV) mχ (TeV) αc δ (MeV) Smax〈σv〉0
3×10−26cm3 s−1

1 1:1:2e± : µ±
: π± 900 1.68 0.04067 0.15 530

2 1:1:2e± : µ±
: π± 900 1.52 0.03725 1.34 360

3 1:1:1e± : µ±
: π± 580 1.55 0.03523 1.49 437

4 1:1:1e± : µ±
: π± 580 1.20 0.03054 1.00 374

5 1:1e± : µ± 350 1.33 0.02643 1.10 339

6 e± only 200 1.00 0.01622 0.70 171

TABLE I: Particle physics parameters and saturated annihilation cross sections for benchmark points.

The six benchmark models appear with the same colors as in
Fig. 5. As a reference, the values of〈σv〉sat that fit the cosmic
ray excesses for these models are marked with arrows next to
the vertical axis on the right side. The other two models we
have used throughout the paper are also included in the fig-
ure: mχ = 185 GeV annihilating intobb̄ (magenta line) and
mχ = 1.5 TeV annihilating intoµ+µ− (black line). For the
benchmark models and for theµ+µ− model, the constraint
on 〈σv〉sat decreases rapidly withfFermi

SF (E > 0.1GeV), be-
cause these models are constrained atE0 ∼ 0.3 GeV where
the contribution from star forming galaxies peaks. Even as-
suming only a5% contribution of star forming galaxies (recall
that we have used53% as a fiducial value), the constraints on
〈σv〉sat still exclude the values needed by these models to fit
the cosmic ray excesses. Thebb̄ model is more independent of
the star forming contribution since this model is constrained
atE0 ∼ 10 GeV, where blazars dominate.

We would like to mention that the model we have used to in-
clude the contribution from star forming galaxies assumes that
the Milky-Way gamma-ray specific intensity has a power law
energy spectrum with an exponent of−2.7 for E ≥ 0.6 GeV
[35], which seems to be too steep at high energies accord-
ing to the recent analysis of theFermi-LATcollaboration that
points to an exponent close to−2.5 for E ≥ 10 GeV (see
Table I and Fig. 3 of [58]). Assuming a shallower spectrum
for the Milky-Way gamma-ray specific intensity would result
in a contribution of star forming galaxies to the EBL with a
shallower spectrum as well, making it more relevant at higher
energies that it is in the model we have used in this work, and
slightly strengthening the derived constraints in Figs. 2,3 and
5 at high energies. Nevertheless, the most relevant uncertainty
is the overall contribution of star forming galaxies discussed in
the previous paragraph and whose effects are shown in Fig. 6.

We have assumed a low-mass cutoff of10−6 M⊙: kinetic
decoupling can occur quite late in models of this type [59],
leading to a higher cutoff of up to0.1− 1M⊙ [60]. However,
we estimate that a change of five orders of magnitude in the
low-mass cutoff will affect the final result by a factor of only
2 − 6, and the high end of this range will only be attained for
non-minimal contributions from unresolved (sub)halos (i.e.,
scenarios that are presently in conflict with even the unsub-
stracted data, for these benchmark models). If the slope we
have assumed for the central density profile of the halos is
steeper than reality, this could also affect our limits by a fac-
tor of a few: the NFW profile we have chosen lies between the
Moore and Burkert profiles considered by [29], and the differ-

FIG. 6: Constraints to the annihilation cross section at saturation
as a function of the contribution from star forming galaxiesto the
observed integrated flux between0.1 GeV and100 GeV as measured
by Fermi. The values above the lines are excluded. We have taken the
model given in [35] to get the spectral shape of this contribution. We
show the six benchmark models of Table 1, setting〈σv〉sat as a free
parameter, with the same colors as in Fig. 5. The small arrowsnext
to the vertical axis on the right side mark the correspondingvalues
of 〈σv〉sat for these benchmarks as given in Table 1. We also show
the results for a model with annihilation intoµ+µ− and a mass of
1.5 TeV (black line), and the model we used as reference in Figs. 1-
3: a 185 GeV neutralino annihilating intobb̄ (magenta line). As
in Fig. 5 we have assumed a minimal contribution from unresolved
substructures. Blazars are assumed to contribute by a fixed amount
(16%) in the energy range measured byFermi [34].

ence between those profiles modifies the gamma-ray signal
by roughly an order of magnitude. The presence of signif-
icant dark matter self-interactions and nearly-degenerate ex-
cited states in models of this type can lead to disruption of
low-mass halos and the depletion of central density cusps (see
e.g. [61, 62] and references therein); while these effects could
potentially reduce the tension with the EBL data, their inclu-
sion is beyond the scope of our current analysis.

We therefore see that in a CDM scenario, in the context of
current structure formation models, the EBL can robustly act
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as a more sensitive probe of Sommerfeld-enhanced dark mat-
ter annihilation scenarios than the cosmic microwave back-
ground. Removing tension with the EBL for the benchmark
models we have tested seems to demand minimal contribu-
tions to the signal from unresolved substructure, andin addi-
tion either dark matter structure formation must be modified
from a pure collisionless CDM scenario, or the contribution
to the EBL from blazars and galaxies must be at the low end
of current estimates.

V. SUMMARY AND CONCLUSIONS

A positive detection of a non-gravitational signature of dark
matter would be a breakthrough in our understanding of this
still mysterious form of matter. Current experiments on Earth
looking for signals of interactions between dark and ordinary
matter intensify the efforts to reach the necessary sensitivi-
ties to either largely constrain the parameter space of minimal
SUSY theories that predict the favorite dark matter candidate,
the neutralino, or to find a definite signal [63].

The existence of dark matter could also be confirmed
through the detection of ordinary matter produced during the
annihilation of WIMPs in regions of high dark matter den-
sity. This annihilation is expected to produce a populationof
gamma-ray photons that would make dark matter halos visible
in the gamma-ray sky. The cumulative effect of these gamma-
rays produced outside our galactic halo creates a cosmic back-
ground that adds up to the one produced by other sources such
as blazars and star forming galaxies.

This hypothetical background radiation is also populated
at lower energies by a fraction of the original CMB photons
that on their journey towards us are scattered by energetic
electrons and positrons produced during the annihilation of
WIMPs. They gain energy in the process and reach us as X-
ray and gamma-ray photons.

In this work, we have used the state-of-the-art Millennium
II simulation [37] that follows the formation and evolutionof
structure formation in aΛCDM cosmology, to produce sim-
ulated sky maps of this conjectured cosmic background. Our
method includes the signal coming from all halos and subha-
los resolved in the simulation as well as a careful extrapolation
to account for the contribution of unresolved structures that
are expected to exist all the way down to masses of about∼ 1
Earth mass, that correspond to the damping mass limit of one
of the most studied type of WIMPs:∼ 100 GeV neutralino.

This paper extends the analysis of [36] by including: i)
the X-ray and soft gamma-ray contribution to the background
radiation by CMB photons that gain energy through Inverse
Compton scattering of the electrons and positrons produced
during annihilation [85]; ii) a detailed treatment of a Sommer-
feld mechanism that enhances the annihilation cross section,
leading to a significantly larger annihilation rate from dark
matter structures with low velocity dispersions. The Sommer-
feld enhancement has been invoked to explain the anomalous
excess of cosmic ray positrons above 10 GeV reported by
the PAMELA satellite (e.g. [11]). We present results using
this enhancement for two sets of parameters chosen to repre-

sent typical cases: i) an off-resonance case where the boostto
the annihilation cross section scales as1/σvel, and ii) a near-
resonance case where the boost goes as1/σ2

vel.
We have found that observational upper limits on the un-

known contributions to the X-ray and gamma-ray background
radiation put significant constraints on the contribution from
dark matter annihilation (see Fig. 2 for a comparison with a
particular model). These upper limits are especially stringent
in the gamma-ray regime due to recent measurements reported
by theFermi-LATexperiment, together with well-founded ex-
pectations for the contributions of blazars and star-forming
galaxies [34, 35, 52].

We introduced a model-independent way to give constraints
on the intrinsic properties of WIMPs by “factoring-out” the
astrophysical part of the signal, namely, the one that depends
on the density field of dark matter, which is accurately given
by the N-body simulation we have used. The constraints we
obtain for the remaining “particle physics” factor (fWIMP, see
Eq. 1), appear on Fig. 3. This figure can be used as a tem-
plate to test whether or not a given particle physics model vio-
lates the observational constraints. Although for the casewith
Sommerfeld enhancement we only presented two particular
cases, Fig. 3 can still be easily used to scale the constraints up
or down for other realizations of these types of models.

By selecting a particle physics model and computing the
photon yielddN/dE (composed by in situ and up-scattered
CMB photons, see sections II A, II B and Fig. 1), it is possible
to give direct constraints for the annihilation cross section as
a function of WIMP mass. We show an example of this in
Fig. 4, where a model annihilating intoµ+µ− final states was
chosen. For this particular model, the constraints we obtain
disfavor the scenario where the positron excess measured by
the PAMELA satellite is explained by dark matter annihilation
alone (of course, there could still be some subdominant DM
contribution to the signal). Furthermore, we have presented
constraints on specific “benchmark” Sommerfeld-enhanced
models selected to fit the cosmic ray spectra measured by
PAMELA andFermiwithout any contribution from local sub-
structure, while obtaining the correct relic density and respect-
ing bounds from the cosmic microwave background. We find
that these models are in conflict with our constraints, even in
the case of minimal contributions from unresolved substruc-
ture. This tension could diminish significantly if the contribu-
tion to the cosmic gamma-ray background from blazars and
star forming galaxies is quite low (current uncertainties are
still large, particularly in the latter, and put a minimum value
of 17% of the observed signal atE ∼ 0.3 GeV which is a fac-
tor of 5 lower than the estimate we have used here, see the last
paragraph of section IV A). Another interesting possibility to
reconcile these models lies in taking into account the role of
self-interactions between dark matter particles, inherent in the
models, in the formation and evolution of dark matter struc-
tures (this can lead for example to the formation of central
density cores in low-mass halos [61]).

The main sources of uncertainty in our modelling from the
astrophysical part of the signal are, in order of importance: i)
the contribution of unresolved substructures, which is uncer-
tain by roughly two orders of magnitude; ii) the concentration
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of dark matter in the inner part of halos. In this work we
have used a NFW density profile. If an Einasto profile is used
instead, which is currently favored by high resolution simu-
lations of single halos, the annihilation rate for each halois
increased by50% [36]; iii) the value of the minimum mass
of bound halos made of WIMPs; iv) the approximations used
for electron and positron losses, and photon absorption (see
Appendices A and B).

It is worth mentioning that the fine-grained structure of dark
matter halos is predicted to be a superposition of streams with
very small internal velocity dispersions. If the annihilation
cross section is independent of the velocity dispersion, then
the contribution of these fundamental streams and their asso-
ciated caustics to the annihilation rate is essentially negligible
[9]. However, this could change dramatically in Sommerfeld-
enhanced models due to the large boosts expected in the
streams. We explore this in appendix D and find that despite
the more prominent role of streams in these type of models,
their contribution is still significantly smaller than thatof sub-
halos, due to the saturation of the enhancement at low veloci-
ties, and can be safely neglected.

In spite of these uncertainties, and thanks to increasingly
better measurements of the cosmic X-ray and gamma-ray
background radiation, and to our better understanding of the
contribution to it by AGNs, blazars and star-forming galaxies,
an analysis like ours produces competitive constraints com-
pared to those obtained in other indirect searches, such as
those based on dwarf galaxies [64]. Our work can also be
viewed as complementing that of other works [29–31], that
have presented a similar analysis using analytical approaches
to model the astrophysical part of the signal instead of high
resolution N-body simulation, as we have done here.
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Appendix A: Energy losses for electrons and positrons

The processes briefly summarized here are described in de-
tail in [65]. Since the CMB energy density scales with redshift
as(1 + z)4, the energy loss term due to IC scattering with the

CMB photons is given by:

be(Ee, z)ic ≈ 2.5× 10−17(1 + z)4
(

Ee

GeV

)2

GeV/s (A1)

The energy loss due to synchrotron radiation in the ambient
magnetic fieldB, which has a spatial and temporal functional
dependence, is given by:

be(Ee, z)syn ≈ 0.254× 10−17

(

B

1µG

)2 (
Ee

GeV

)2

GeV/s

(A2)
The magnitude of the magnetic field has large spatial varia-
tions, going from∼ 10µG in the cores of galaxy clusters [66]
to∼ 0.1µG in the intergalactic medium in clusters [67]. Thus,
synchrotron losses are expected to be comparable to IC losses
only in the regions with the strongest magnetic fields, such
as the centers of galaxy clusters. Although dark matter anni-
hilation is copious in high density regions such as these, the
contribution from subhalos and low-mass halos is in average
more significant than the one from the center of massive halos
associated to galaxy clusters. Furthermore, the strength of the
magnetic field is not expected to increase as rapidly with red-
shift as the CMB energy density. This makes the synchrotron
losses less significant than the IC losses at high redshifts.

The electrons and positrons produced in the annihilation
process also lose energy due to ionisation of neutral atoms and
Coulomb scattering with free electrons present in the ambient
field. The energy loss rate of both processes is essentially in-
dependent of energy and is given by:

be(Ee, z)ion ≈ 18.4× 10−17
( nH

cm−3

)

GeV/s (A3)

be(Ee, z)coul ≈ 55.4× 10−17
( ne

cm−3

)

GeV/s (A4)

wherenH andne are the local number densities of neutral
hydrogen and free electrons, respectively. Bremsstrahlung ra-
diation is another source of energy loss that also depends on
the local density of the ambient ionized and neutral mate-
rial. In the weak-shielding limit the energy loss rate due to
Bremsstrahlung is given by:

be(Ee, z)brem ≈ 15.1× 10−17

(

Ee

GeV

)

( ne

cm−3

)

GeV/s

(A5)
At high electron energies, the latter three processes are sub-

dominant relative to the IC losses due to the energy squared
dependence in Eq. (A1). At low energies they become more
significant but are nevertheless suppressed by the average low
density of the ambient medium. This can be seen by noting
that the minimum energies we are interested in are those cor-
responding to the soft X-rays (EIC & 10−7GeV) coming from
the IC scatter of CMB photons. An up-scattered CMB pho-
ton will have an average energy of:EIC ≈ 4/3(Ee/me)

2E
[68], whereEe andme are the energy and mass of the scat-
tering electron, andE is the energy of the photon before the
event, thus forEIC ∼ 10−7 GeV the electron energies of rel-
evance are of the order of0.25 GeV atz = 0. For these en-
ergies, ionisation, coulomb and bremsstrahlung losses dom-
inate over IC losses only if the ambient density of electrons
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and neutral hydrogen is& 10−2 cm−3. In the local ISM
ne ∼ 0.1 cm−3 [69]. In galaxy clusters the average gas den-
sity is∼ 10−3 cm−3 [38] and in dwarf spheroidals like Draco
it is ∼ 10−6 cm−3 [70]. Since the largest contribution to the
production of electrons and positrons comes from the accu-
mulated effect of annihilation in low-mass halos and subhalos,
which have clearly low ambient densities of ordinary matter,
we can safely neglect the impact of these three processes of
energy loss. They could be of relevance in the center of mas-
sive halos at low redshift, but they are negligible for the overall
full-sky signal.

Appendix B: Photon absorption

For energies& 10 GeV measured atz = 0, the dominant
mechanism of photon absorption is that due to the interaction
between the gamma-ray photons produced in the annihilation
process and the lower energy starlight photons produced in
galaxies (i.e., pair production with the ambient photon field).
As mentioned in Section II, this absorption is parameterised as
an exponential term with an effective optical depthτ(E0, z).
We adopt the most recent treatment of [71] to calculate the
values of the optical depth as a function of energy and redshift.
For this purpose, we take their fiducial 1.2 model and make a
bilinear interpolation following their Fig. 11.

For lower observed energies down to∼ 10−6 GeV, the Uni-
verse is basically transparent to photons produced at any given
redshift betweenz = 0 andz = 10 (e.g. Fig. 3 of [31]). In
this paper we are considering a range of energies that extends
slightly towards lower energies (10−7 GeV). In this regime,
photoionization and Compton scattering are important mech-
anisms of energy loss. As can be seen from Fig. 3 of [31],
τ ∼ 1 at these energies for photon sources located atz ∼ 7.
This means that these processes would suppress an impor-
tant fraction of photons coming from dark matter structures
at z & 7. However, most of the emission from annihilation
comes from sources atz . 3 (∼ 60% of the total emission
at these energies), which is a region essentially transparent.
Thus, we are ignoring these mechanisms noting that we could
be overestimating the predicted signal at the percent level,
which is clearly a minor effect for the purposes of this work.

Appendix C: The astrophysical factor, luminosity from halos
and subhalos

1. Resolved structures

The total annihilation luminosity (including in situ and up-
scattered photons) coming from a halo (or subhalo) of volume
V is given by:

Lh =

∫

V

E(~x) dV =
E

2
fWIMP

∫

V

ρχ(~x)
2S(σvel(~x)) dV

=
E

2
fWIMPL

′

h. (C1)

We assume that halos (or subhalos) have a NFW density
profile[86] [72], and an average boost factorS(σ̄vel) given by
the mean velocity dispersion of its particles. Thus:

L′

h = S(σ̄vel)

∫

ρ2NFW(r) dV = S(σ̄vel)
1.23V 4

max

G2rmax
, (C2)

where the last scaling relation was found by [42] withrmax

being the radius where the rotation curve reaches its maxi-
mumVmax. It is important to consider the impact of numer-
ical resolution on the values ofrmax andVmax. The values
of rmax are increasingly overestimated for smaller structures
whereas the opposite is true forVmax [36, 73]. We have hence
corrected these quantities following the prescription of [36].

2. Unresolved structures

The previous description is used for all structures that are
resolved by the MS-II simulation. However, we want to ob-
tain predictions down to the minimum mass for bound WIMP
halos. For neutralinos this is. 1M⊕, which clearly lies
many orders of magnitude below current simulations. For
∼ 100 GeV neutralinos, the damping mass lies in the range
10−8−10−4 M⊙, whereas for∼ 1 TeV neutralinos, the range
is 10−11 − 10−7 M⊙. For simplicity, we assume that these
reference values for neutralinos are generically valid forother
WIMPs and choose a fiducial value of10−6h−1M⊙ for all the
cases we analyze in this paper, noting that the precise valueof
this mass is a source of uncertainty in our results.

To incorporate these unresolved structures into our maps,
we follow an analogous procedure to the one developed in
[36], that we briefly describe in the following, dividing it into
unresolved main halos and unresolved subhalos.

a. Unresolved halos

The total annihilation luminosity coming from main halos
in a given mass range can be computed using the function:

Fh(Mh) =

∑

L′

h

M̄h∆ logMh
, (C3)

where the sum is over all the luminositiesL′

h of halos (given
by Eq. C2) with masses in the range:logMh ±∆ logMh/2,
andM̄h is the mean halo mass in each bin. In the absence
of Sommerfeld enhancement the functionFh(Mh), hence-
forth called:FNSE

h (Mh), is a power law in the intermediate
to low mass regime (see Fig. 4 of [36]). Once the Sommerfeld
boost is applied to each main halo, the power law behavior of
Fh(Mh) is modified by the functionS(σ̄vel).

The minimum halo mass we can rely on to compute
Fh(Mh) isMlim = 6.89×108 h−1M⊙ (100 simulation parti-
cles). Below this mass we need to extrapolateFh(Mh) using
the information we have onS(σ̄vel), and on the extrapolation
made forFNSE

h (Mh). The value ofMlim translates into a lim-
iting value ofσvel that we obtain directly from the simulation
data:σvel,lim(z = 0) ∼ 3.4×10−5 [87]. Therefore, we obtain
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a fit to the power law behavior ofFh(Mh) in the last resolved
mass range of the MS-II and extrapolate this function down to
the damping mass limit taking into account the saturation of
S(σ̄vel).

The ratio of annihilation emission coming from all halos
contained in a cosmic volumeVB with masses larger than
Mmin to the emission produced by a smooth homogeneous
distribution of dark matter, with average densityρ̄B, filling
this volume is approximately given by:

f(Mh > Mmin) ∼
1

ρ̄2BVB

∫ ∞

Mmin

Fh(Mh)

ln 10
dMh. (C4)

For a given redshift, the ratio of the values off(Mh >
Mmin) with and without enhancement below the saturation
mass is roughly given bySmax.

Using Eq. (C4), we estimate the contribution from the un-
resolved main halos down to the damping mass limit by as-
suming that the radiation from the missing halos in the mass
range10−6 h−1M⊙ to∼ 6.89×108 h−1M⊙ is distributed on
the sky in the same way as the one from the smallest masses
we can resolve in the simulation, which we adopt as the mass
range between1.4 × 108 h−1M⊙ and∼ 6.89 × 108 h−1M⊙

(halos with 20 to 100 particles). This assumption is justified
because the clustering bias seems to asymptotically approach
a constant value for low halo masses [37].

Using the extrapolated behavior ofFh(Mh) in Eq. (C4) we
compute the boost factorbh by which each halo in the mass
range1.4 − 6.89 × 108 h−1M⊙ needs to be multiplied such
that the luminosity of the unresolved main halos is accounted
for as well:

b
(NSE,i,ii)
h =

f(10−6 h−1M⊙, 6.89× 108 h−1M⊙)a
f(1.4× 108 h−1M⊙, 6.89× 108 h−1M⊙)sim

∼ (60, 90, 2.4× 103) (C5)

Note thatbh is effectively the ratio off(Mh > Mmin) com-
puted analytically between the cutoff mass limit and the 100
particle limit, and computed in the simulation for the lowest
resolved mass range. The superscripts(NSE, i, ii) are for
the cases without Sommerfeld enhancement, off-resonance
(Smax = 2000) and near-resonance (Smax = 106), respec-
tively. The value ofbh is nearly independent of redshift up to
z = 2.1. For higher redshifts, the power law fit to Eq. (C3)
is unreliable for the extrapolation because the populationof
halos over the resolved mass range becomes too small.

b. Unresolved subhalos

Cold dark matter halos contain numerous substructures that
contribute significantly to their total annihilation luminosity.
For massive halos, this contribution largely exceeds that of the
smooth main halo. For a MW-like halo the total luminosity
from all its subhalos down to the damping mass is between2
and2000 times larger than its own smooth component [36].

The Sommerfeld mechanism increases the contribution of
substructures even further due to their low velocity dispersion
relative to that of their host. We now calculate the contribution

from unresolved subhalos following an analogous procedure
to the one described in [36]. It follows a methodology similar
to that of the previous subsection and rests on the analysis of
the following quantity:

Fsub

(

Msub

Mh

)

=

(

Mh

L′

h

) ∑

L′
sub

M̄sub∆ logMsub
, (C6)

whereMsub andL′
sub (given by Eq. (C2) are the mass and

luminosity of a given subhalo. The total luminosity of all sub-
halos relative to that of their host is given by:

fsub(M
max
sub ,Mh) ∼

1

L′

h

∫ Mmax

sub

10−6

(

L′
h

Mh

) Fsub

(

Msub

Mh

)

ln 10
dMsub,

(C7)
whereMmax

sub is the mass of the most massive subhalo within
the host.

To simplify the analysis ofFsub in the case of Sommerfeld
enhancement, we approximateFsub by:

Fsub∼
(

Mh

S̄(Mh)L′NSE
h

)

S̄(Msub)
∑

L′NSE
sub

M̄sub∆ logMsub
=

S̄(Msub)

S̄(Mh)
FNSE
sub

(C8)
whereS̄(Mh) andS̄(Msub) are average enhancements forMh

and for the subhalo mass range:logMsub ± ∆ logMsub/2,
respectively. These averages are given by the combination of
σvel(M) andS(σvel), and we obtain them directly by fitting
the simulation data.

The average boost as a function of halo mass and redshift is
well described by:

(S̄(Mh, z))(i,ii) = (Sh,0Gh(z)M
αSE

h

h )(i,ii), (C9)

whereSh,0 is a normalization factor and all redshift depen-
dence has been put intoGh(z) (recall that this dependence
comes from theσvel(Mh) relation).

For case i), there are two characteristic masses that mark the
transitions below whichS → Smax and above whichS → 1.
The characteristic masses are redshift dependent and can be
obtained by matching the three regimes. For case ii), there
are three such characteristic masses marking the transition be-
tween saturation,S ∼ 1/σ2

vel, S ∼ 1/σvel andS → 1. For
both cases we find that the fitting functions are a very good
approximation up toz = 2.1.

For subhalos we apply a similar procedure using:

(S̄(Msub, z;Mh))(i,ii) = (Ssub,0Gsub(z)M
αSE

sub

sub )(i,ii),
(C10)

which has the same functional form as Eq. (C9) but with an
implicit dependence on the mass of the host which takes care
of the fact that subhalos can only have Sommerfeld boosts that
are larger than those of their hosts. Thus, if for example a host
is saturated, all its subhalos are saturated as well and we have
S̄sub = S̄h. For this particular case it is easy to see that the
contribution of substructures to the luminosity of the halois
the same as in the case without enhancement:fsub = fNSE

sub .
To obtain the parameters in Eq. (C10) we only analyze main
halos with more than 500 subhalos.
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In both cases the different regimes are divided by transition
subhalo masses analogous to the ones for hosts. The fitting
procedure is less reliable than in the case of halos. In par-
ticular, the scatter on the slope of the power law for a given
redshift, measured with quartiles, is of the order of10%, and
the median can change up to the same amount betweenz = 0
andz = 2.1. The scatter of the normalization at a given red-
shift is of the order of a factor of 2, and for different redshifts,
its median can change up to a factor of 4.

As for halos, we consider the subhalo population to be com-
plete down toMlim = 6.89× 108 h−1M⊙. Below this mass,
we use Eqs. (C7-C10) to add the contribution of unresolved
subhalos to each of the resolved halos. The value ofMmax

sub in
Eq. (C7) is given byMmax

sub = Mlim if the halo has subhalos
andMmax

sub = fmaxMh, with fmax = 0.05 otherwise. In the
former case we distribute the missing luminosity among all
resolved subhalos, in the latter we simply add it to the host.
The precise value offmax has little impact on the results.

Considering resolved an unresolved subhalos we find that
a halo of1012 h−1M⊙ hasfsub ∈ (11, 1.04 × 104) for case
i), andfsub ∈ (4.13 × 103, 6.86 × 106) for case ii), that is
∼ 6,∼ 3000 times more than in the case without Sommerfeld
enhancement, respectively.

Finally, we need to add the subhalo contribution to all main
halos with masses belowMlim. To do so, we compute an
overall boost factorbsub to the luminosity of all main halos
between the damping scale limit andMlim:

bsub =
fboost(10

−6 h−1M⊙, 6.89× 108 h−1M⊙)

fno−boost(10−6 h−1M⊙, 6.89× 108 h−1M⊙)
(C11)

wherefno−boost is given by:

fno−boost(10
−6 h−1M⊙, 6.89× 108 h−1M⊙) ≈

∫ 6.89×108

10−6

Fh(Mh)

ln 10
dMh (C12)

andfboost can be written as:

fboost(10
−6 h−1M⊙, 6.89× 108 h−1M⊙) ≈

∫ 6.89×108

10−6

[1 + fsub(fmaxMh,Mh)]
Fh(Mh)

ln 10
dMh. (C13)

For the cases with Sommerfeld enhancement, Eq. (C11)
can be simplified by noting the following. The integral in
Eq. (C12) is dominated by the mass range where the Som-
merfeld enhancement is already saturated, this is becauseFh

is always a power law, monotonically increasing with mass,
and the saturation mass (Mh,sat) is relatively close toMlim

and much larger than the damping mass. For instance in case
i), Mh,sat ∼ 7× 108 h−1M⊙(1+ z)−1, thus even at high red-
shifts, the contribution of the unsaturated part is always neg-
ligible. In case ii),Mh,sat ∼ 1.5 × 105 h−1M⊙(1 + z)−0.8,
which means that the aforementioned contribution is larger
than in case i) but we still find it to contribute minimally to
the integral, less than10%. Therefore, we can approximate
Eq. (C12) by: fno−boost ≈ Smaxf

NSE
no−boost, wherefNSE

no−boost
is the value of Eq. (C12) in the case of no Sommerfeld en-
hancement. For case i), a similar approximation can be used

to simplify Eq. (C13). It can be shown thatfsub ≈ fNSE
sub and

sinceFh ≈ SmaxF
NSE
h , thenfboost ≈ Smaxf

NSE
boost. Thus, for

case i) we have that:

bsub
(i) ≈ bNSE

sub ∈ (2, 60) (C14)

where the numerical values were obtained for the case of no
enhancement in [36].

The case of resonant enhancement is more complex, since
the saturation mass is lower than in the non-resonant case and
thus the non-saturated regime has a more relevant influence
on fboost. However, we can show that in general:

fboost ≤ Smaxf
NSE
boost. (C15)

To prove this we note that sincefno−boost ≈ Smaxf
NSE
no−boost,

thusfboost = fno−boost+[...] = Smaxf
NSE
no−boost+[...]. There-

fore to prove Eq. (C15) we just need to show that:

∫ 6.89×108

10−6

fsubFh dMh ≤ Smax

∫ 6.89×108

10−6

fNSE
sub FNSE

h dMh.

(C16)
This is true because each subhalo in a host can be en-
hanced bySmax at the most, that means that the to-
tal luminosity of all these subhalos is bounded bySmax:
fsubL

′

h ≤ Smax(fsubL
′

h)
NSE. Since by definitionFh ∼

ln(10)L′
hdNh/dMh, wheredNh/dMh is the number of ha-

los in the mass rangeMh ± dMh, we have that:fsubFh ≤
Smax(fsubFh)

NSE, which proves Eq. (C16). After doing the
calculation we find that:

bsub
(ii) ∈ (2, 42) (C17)

We take the range of values in Eqs. (C14-C17) as extrema re-
flecting the uncertainties on the extrapolation procedure.They
should then bracket the true result.

Appendix D: Annihilation in fundamental streams

To compute the luminosity coming from annihilation in
streams, we use the methodology described in [8, 9] that in-
tegrates the geodesic deviation equation together with theN-
body equations of motion to follow the evolution of the fine-
grained structure of dark matter halos. This method was ap-
plied to the Milky-Way size objects simulated by the Aquarius
project in [9], we took their results from one of these objects.

In Fig. 7, we show the spherically averaged radial profiles
of the annihilation luminosity for the smooth halo component
(red), computed using the local mean density, and for the fine-
grained intra-stream component (blue). The solid and dashed
lines are for the differential and cumulative profiles respec-
tively. The upper panel shows the case without Sommerfeld
enhancement and the lower one the near-resonance case with
a σvel-dependent boost factor (Smax ∼ 106) as described in
section III.

Looking at the cumulative distribution in Fig. 7, we see that
at the virial radius,r200, the ratio of the total intra-stream
luminosity to the total smooth luminosity is∼ 10−3 in the
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FIG. 7: Differential (solid) and cumulative (dashed) radial profiles
of the annihilation luminosity for the smooth halo component (red)
and for the streams component (blue) for the cases with and without
Sommerfeld enhancement in the lower and upper panels respectively.
The former, is for the near-resonance case described in section III
that has a saturation value ofSmax ∼ 10

6.

case with no enhancement. This ratio increases to∼ 20 once
the extreme case of near-resonance enhancement is included.
Thus, due to the low velocity dispersion of dark matter par-
ticles in streams, the annihilation rate in streams dominates
over the rate given by the smooth mean density contribution.
This contribution from streams remains nevertheless signif-
icantly smaller than the subhalo contribution. Considering
subhalos with masses down to10−6M⊙, the ratio of the to-
tal subhalo to smooth luminosity for MW-like halos lies in the
range:2− 2× 103 for the case without Sommerfeld enhance-
ment and4× 103 − 7 × 106 for the near-resonance case (see
section C 2 b). The subhalo contribution is at least1000 times
larger than the stream contribution when the annihilation cross
section is not enhanced by a Sommerfeld mechanism. Once
the latter is included, it boosts all components (smooth, sub-
halos and streams) accordingly by a factor which is bounded
by Smax. Because the subhalo contribution is dominated by
the smallest unresolved subhalos and these are essentiallyin
the saturated regime, they are boosted by the same amount as
the streams, and thus prevail as the dominant component of
the annihilation luminosity in a halo.
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