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Abstract: Cosmic electrons with energies in the TeV range lose their energy rapidly through synchrotron radiation and
inverse Compton processes, resulting in a relatively shortlifetime (∼105 years). They are only visible from compara-
tively nearby sources (<1 kpc). Unexpected features in their spectrum at a few hundreds GeV, as measured by several
experiments (ATIC, Fermi and H.E.S.S. among others), mightbe caused by local sources such as pulsars or by dark mat-
ter annihilation/decay. In order to investigate these possibilities, new measurements in the TeV energy region are needed.
Since the completion of the stereo system, the MAGIC Cherenkov experiment is sensitive enough to measure the cosmic
electron flux between a few hundred GeV and few TeV. The electron signal has to be extracted from the overwhelming
background of hadronic cosmic rays estimated through MonteCarlo simulations. Here we present the first results of the
cosmic electron spectrum measured with the MAGIC telescopes.
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1 Introduction

TeV cosmic electrons and positrons (hereafter electrons)
lose energy mainly due to inverse Compton processes and
due to synchrotron radiation caused by the weak cosmic
magnetic field. These losses limit the distance at which
they can be observed. Therefore, their energy spectrum
can give us clues about their origin, providing useful
information on the nearby Universe.
Recently, several measurements of cosmic electrons have
shown some features in their spectra, which have excited
astrophysicists in the field. Many interpretations in terms
of dark matter scenarios [1] or astrophysical sources such
as pulsars [2] or supernova remnants [3] are invoked.
Until recently, energy spectra measurements of electrons
were obtained by balloon and satellite experiments. At
TeV energies, however, the sensitivity of these instruments
is insufficient due to their small sizes and short exposure
time of flight. Nowadays, ground-based Cherenkov
telescopes, with their large collection areas and good
sensitivity, represent an excellent tool for measuring high
energy cosmic electrons, via the indirect observation of
the air showers that charged particles generate in the
atmosphere. In 2009 H.E.S.S. measured the electron
spectrum from 300 GeV up to∼4 TeV [4]. MAGIC, with
its two largest-dish Cherenkov telescopes world-wide, is
now one of the most suited experiments that can contribute

to this measurement. It has the potential to overlap with
the energy range of the other experiments (Fermi [5], ATIC
[6] and H.E.S.S. [7] [4] among the others), confirming
previous measurements of the electron spectrum to TeV
energies.
The determination of the cosmic electron spectrum is
pursued through a non-standard analysis, which is instead
optimized for the reconstruction of images fromγ-ray
showers. Nonetheless, as in the case ofγ-rays, electrons
events are largely sub-dominant, and overwhelmed by a
much larger background of hadronic events and alsoγ-ray
events. Whileγ-rays are not deflected by the magnetic
fields and thus their arrival direction points directly to their
source, electrons are isotropically diffused. Therefore,the
identification of charged particles cannot be done through
the arrival direction information, but only via the shape
of the image, which is produced by the air showers in
the atmosphere and recorded by the telescopes. Data are
modelled with simulations of electron showers and the
background is rejected by applying selection criteria. Since
this method does not separate electrons from gammas, a
small contamination from diffuse gammas is expected.
Moreover, Cherenkov telescopes do not discriminate
between the charge of the particles, thus the presented
measurement includes the contribution of both electrons
and positron.

http://arxiv.org/abs/1110.4008v1
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2 The MAGIC telescopes

MAGIC (Major Atmospheric Gamma Imaging Cherenkov)
is a stereoscopic system of two imaging atmospheric
Cherenkov telescopes (IACT). Among the operational
IACTs, it has the world-largest dishes with 17m diam-
eter each. They are located at the Observatory of the
Roque de los Muchachos on the Canary Island of La Palma
(28.75o N, 17.86o W, 2200 m a.s.l.).
Since fall 2009 MAGIC is fully operational in stereoscopic
mode. The two telescopes are designed to detect very high
energy (VHE)γ-rays in the energy range from 50 GeV to
tens of TeV and can also detect electrons in the same en-
ergy range [8].

3 Analysis

The data used in this analysis come from observations
of selected extragalactic sky areas (in which noγ-ray
emission from astrophysical objects has been found) in
order to minimize the contribution from the diffuseγ-ray
emission which comes mainly from the Galactic plane.
A priori, a search for a gamma-point source has been
carried out to demonstrate that no gammas contaminated
the sample. The data were extracted from observation
carried out in December 2009, June 2010, October 2010
and November 2010. Data passing quality selection
criteria, with zenith angles between 14o and 27o, have
been used in the analysis, providing a total amount of
∼ 14 hours. The images are cleaned using a threshold of 6
(9) photoelectrons (phes) for core pixels and 3 (4.5) phes
for boundary pixels has been applied for the MAGIC-I
(MAGIC-II) telescope data respectively. Higher cleaning
for the MAGIC-II telescope data is needed because of a
higher photon to photoelectron efficiency and a higher
noise level in the read-out chain compared to MAGIC-I
read-out. Beside, the arrival time in each pixel belonging
to shower image can deviate at most of 4.5 ns from the
shower core arrival time. Therefore we set a maximum
time difference between adjacent pixels to be less than
1.5 ns.

The most important issue in the electron analysis is
the electron/hadron separation and the rejection of the
hadronic background. A classification method (Random
Forest - RF) [9] is used to compute theHadronness
parameter, which spans from 0 to 1 and gives the degree of
hadron-like. A classification tree of the RF is trained with
a sample of Monte Carlo (MC) electrons and a sample of
MC protons. The input parameters of the RF are the Hillas
parameters [10] of the shower images (Size, Width, Length
for both the telescopes), theImpactparameter of the two
telescopes and the reconstructedHeight of the shower
maximum. A cut on the number ofIslandsparameter has
been applied for both the telescopes.

The reconstruction of the energy of each event is

done via a look-up-table obtained also from MC events,
based onSize, Impact, Height and Zenith angle. The
mean energy resolution is below 20% in the energy range
between 100 GeV and 2 TeV.

The signal of the diffuse cosmic electrons is deter-
mined from theHadronnessparameter distribution (the
result of the RF). In the distribution of theHadronness
the diffuse electron signal peaks aroundHadronness= 0
(electron-like), while the hadronic background around
Hadronness= 1 (hadron-like). In order to determine the
electron spectrum, the following procedure is applied:

1. Apply selection cuts.

2. Determine theHadronnessdistribution for data and
background, define a signal region and normalize the
two distributions by the number of events in an opti-
mized non signal region.

3. Count events in the signal region (Non).

4. Count background events in the signal region (Nbg).

5. Determine the number of excess in the signal region
(Nexcess =Non -Nbg).

6. Determine the effective observation time, effective
angular acceptance and finally the energy spectrum.

Selection cuts are applied in order to reject part of the back-
ground. TheImpactis selected to be within 10 and 300 m
referred to both telescopes. The signal region, by means
of a cut in theHadronnessparameter, is chosen by requir-
ing an acceptance for MC electrons of 60%. The back-
ground distribution is determined through MC proton sim-
ulations. We underline that by now we limited the pro-
duction with only proton events. This choice is motivated
by the fact that protons constitute by far the major com-
ponent of the total CR spectrum (followed by Helium).
On the other hand, we mention that a faulty description
of the background may alter our results considerably. This
is made even more complicated by the fact that hadronic
interactions are difficult to simulate with high precision:
many types of interactions compete, and not all details of
cross sections are known, particularly at high energies [11].
The hadronic showers have been simulated with CORSIKA
[12], using the FLUKA model [13] for the low energies,
in combination with the QGSJet-II [14] interaction model
for the high energies. MC proton events have been sim-
ulated in aZenithangle range between 5o and 30o with a
maximumImpactparameter of 1.2 km in a solid angle of
0.034 sr. Since the MC proton simulations have been per-
formed with a different energy spectrum1 of EΓsim (with
Γsim = -2.0 or -1.78) compared to the real cosmic-ray spec-
trum ofEΓreal , theHadronnessdistribution was corrected.
Thus, to each eventi of the Hadronnessdistribution a
weight factor ofwi =E

(Γreal−Γsim)
true is assigned;Etrue is

1. to increase the statistics at high energy.
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the simulated energy. In this case, while the uncertain-
ties on the ON data are computed according to the Poisson
statistic, the uncertainties on the MC protons are defined as
∆Npr =

√
∑

i w
2
i , the square root of the sum of the weights

in the considered bins of theHadronnessdistribution. The
normalization factorα= non

npr
is the ratio between the num-

bers of ON and MC proton events in the non-signal region
which impliesNbg =αNpr. The significance of the excess
is defined as:

S =
Nexcess

∆Nbg
=

Non − αNpr

α
[

∆N2
pr +N2

pr

(

1
non

+
∆n2

pr

n2
pr

)]1/2

The electrons are simulated in a circular area of 650 m
radius in aZenith angle range between 5o and 30o. The
effective acceptance of the telescope system, used for the
spectrum calculations, was considered as the solid angle
of acceptance of the simulated electrons, which in our case
corresponds toΩ= 0.019 sr.

4 Results

The totalHadronnessdistribution of the observed events
is plotted together with the normalized distribution of
background events in figure 1. The normalization is done
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Figure 1: Total Hadronnessdistributions of the ON events (in
black) and background simulation (in red) for energy between
150 GeV and 2 TeV.

in the Hadronnessrange between 0.4 and 0.8. In total,
4668 electron excess events are seen with a significance of
11.75σ in the energy range between 150 GeV and 2 TeV.
In figure 2 theHadronnessdistribution of the excess events
is instead compared with that of the MC electron simula-
tions, at lowHadronnessvalues, where the electron signal
is expected. The two distributions, well in agreement,
within the systematic uncertainties, validate the obtained
result. A statistical test of compatibility in shape between
the two distributions is done using the Kolmogorov test. A
probability that the excess events follow the distribution

of the MC events is found to be more than 70% in each
energy bin.
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Figure 2: The Hadronnessdistribution of the excess events (in
grey) is compared with the one of the MC electrons for energy
between 150 GeV and 2 TeV.

The spectrum is derived from the measured excess
events in the energy range from 100 GeV and 3 TeV. A pre-
liminary spectrum can be fitted by a simple power-law with
differential indexΓ = −3.16 ± 0.06(stat) ± 0.15(sys).
In figure 3 the MAGIC electron spectrum is compared with
the measurements from other experiments. It is shown in
the form ofE3 dF

dE . The MAGIC spectrum shows some
overlap with the direct measurements of ATIC, Fermi PPB-
BETS and emulsion chambers and it is in agreement within
errors with both the ATIC and Fermi measurements (the
bump observed by ATIC cannot be confirmed nor excluded
though). At higher energies the MAGIC spectrum overlaps
and is in agreement with the measurements of H.E.S.S. .
The spectrum can be improved with higher statistic both in
the data and especially in the background simulation. The
measured preliminary electron spectrum suffers from large
systematic uncertainties. Main sources of errors are due
to atmospheric variations and the atmospheric model used
in the simulations, reflectivity and aging of the mirrors,
uncertainty in the quantum efficiency, photoelectron
collection efficiency and gain of the PMTs. Moreover
trigger inefficiencies, camera inhomogeneity and read-out
uncertainty provide also systematic effects. Uncertainties
due to the hadronic interaction model adopted contribute
to most of the errors. Overall, the systematic errors on
the flux normalization are estimated to be at the level of
30%. The systematic errors on the spectral slope, still
under investigation, are more difficult to be estimated and
a minimal value expected is±0.15 [20].
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Figure 3: The electron spectrum measured in the energy range
between 100 GeV and 3 TeV by MAGIC is compared with pre-
vious measurements from [15], [16], [17], [18], [7], [4], [6], [5],
[19].
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