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ABSTRACT

_peasurements of the electron flux from 10 to 100 GeV were carried out with the BETS (balloon-borne
ou telescope with scintillating fibers) instrument. The detector is an imaging calorimeter conaistiniof

siluting-fiber belts of 36 layers (each 280 mm wide) and the 8 plates of lead (each 5mm thick). Rejection

e background protons was performed at an efficiency of ~2000 using the shower imaging capability
i ligh granulation. The observed electron flux around a few 10 GeV is consistent with the recent results
wted by the HEAT group. Comparing the flux with theoretical expectations from a diffusion model, the
“itis obtained for the model of a diffusion coefficient of 2 X 1028(E/GeV)** cm? [sec for the SN rl;e of
wper 30 years in the Galaxy. © 2001 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
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jerator Beam Test
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» detector }»f‘llnlnn.n@ was calibrated at accelerator beams. The energies cover from 5 GeV to 100
¢ or electrons; from 60 (-l“\ to 250 GeV for protons. The energy resolution, the angular response and the

 efficiency were calibrated for electrons. The proton-rejection capability was examined al various
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ions of beam energies, incident positions on the detector, and the incident angles. The detector was
Jisted in the beams under the exactly same condition as the balloon experiment to estimate the real
ymance.

i energy of electromagnetic showers was measured by the pulse height at the bottom scintillators,
s presented in TFigure 1, the relation between the ayerage pulse heights and the electron energies is
Jy linear. The energy resolution was obtained by using a Gaussian fit to the pulse height distribution
ach energy. The energy resolution is nearly constant, ranging from 14 % to 17 % in 10 -100 GeV. The
ar resolution was obtained by measuring the angle between the incident beam and the shower axis
.stnucted from the observed shower image. In Figure 2, we present the angular distributions at an
° for the electron beams. The distribution at each energy could be fitted by a Gaussian

ilent angle of 15
asing energies from 1.3 degrees at 10 GeV to 0.8

stion. The angular resolution becomes better with incre
arees at 100 GeV.
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;. Flectron differential energy spectra (scaled by Fig. 6. Observed absolute differential energy spectrum
'\t the top of the atmosphere observed in BETS97 for electrons and the comparison with the HEAT resuits.

B D arvoe s baly skliatiokl The solid line shows a power-law fit to the BETS results;
48E 0.195(E /10 GeV)™91 m~2 =1 g=1 Gev-!,

>0.7 (Nyy.) were estimated from the RE distribution obtained by the MC simulation. The number of
wons was given by No — N, + N,/,. This correction decreased the number of electrons by 11.5 %.
e lectron flux at the top of the detector was calculated by the effective geometrical factor (detection
fiency % solid angle X area; eQA) and the observed live times. The geometrical factor was obtained in
A uergy bin by the simulations, which are nearly constant, changing from ~ 280 cm? sr at 10 GeV to
9’ st over 20 GeV. The fraction of live time to the total was 0.795 and 0.810 in BETS97 and BETSO8,
setively.

IECTRON FLUX AT TOP OF ATMOSPHERE ' *
Oir results of the absolute differential intensities of electrons are plotted in Figure 5, multiplied by B
darity, for BETS97 and BETS98. The discrepancies between these two observations are considered not
sigificant within the statistical errors. In Figure 6, we present the absolute intensities composed of
1597 and BETS98 compared with the HEAT results (Barwick et al. 1998) which cover the same enetgy
. Our results are consistent with HEAT, especially at the low energy region where the event statistics
“ligler, We can preliminarily describe the BETS results by a single power-law spectrum b o i
;ﬁ':(].Ol.[(E/1OGEV)—3.0110.09 m=2 5=l 5r=1 GeV 2,
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i discuss the details of
isti results is not enough to . s of
- beams. The SPat'i:tﬁtge::er our statistics by the 10ng~9ura;onl ;’;;lmmng 0{% .
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Lo '

¥

i) Pere s
{ Com/] ocal
jseVie”
6!
s

\
W

T e e B R | T T T 11111 | R S AL
s LR

tF ;
7 ' 3 g The re, we shd
BRS e aatn || o “Oervation, We
 al, Nucl. Instru. & Meth.,A 400341 Observe electrzgz
,Coutu S, et ail.,ApJ.,MIB,'(?Q,lQQS Over 1 TeV duri
et al.,Ap.J. 532,653,2000 w5

&lnma.mys over

p.J..199,669,1975 ‘
&ﬂ.-;ﬁ‘.D«'Lich L.t al. Ap.J.,287,622,1984
Stephens S.A. Stochaj,S.J. et al.,Ap.J.,436.769,1994

o9 o IN
u.T‘,'I‘a.teya,ma,N.,et al.,Pmedings 26th ICRC, Utah, 3.6.).I !;I]‘RODUCTL
gm:;t-mns in th
" brg of cosme

% 3 Propg, Ttion ¢

Kﬁmn;? Hiraiwa,H.et al. Ap.J., 238,394,1080 gy 19N digtg
. ,Komori,Y.,and Yoshida.K.,Adv. Space Res. 19 711.1997 loge l"sgiOn ¢
0.J.A.,Ap.J.,507 3271998 i ARG teg. 80 105 \OfT
J.,227,676,1979 Ry sy .
oshida, K., Yamagami,T. Murakami }{_e e 2 AL i  tiopg o> 8h
JA#?.MI.IQM' iR et al., Adv, Space Res.,26,1397,2000 AL At \t\l‘l“ l
e lt-'Y\Id&,T.,a_nd K.Kasahnm_,h/,-‘ in Polar | pper Atmosphere R 13.170 199 . "ent of ‘,‘1 \
SRS inteyama,N. Yoshida,K . Ouchi,Y. et al Nuci 1<, PR e seq . OF Proy

3} e .l\‘ Mo ] ¢ 3
et A 452 814 ! the X

R.,ﬂimplon.G.A.,and Cane,H.V.,Ap.J.,236 448.1950 :



