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Abstract

The PAMELA satellite experiment has measured the cosmic-ray positron
fraction between 1.5 GeV and 100 GeV. The need to reliably discriminate
between the positron signal and proton background has required the devel-
opment of an ad hoc analysis procedure. In this paper, a method for positron
identification is described and its stability and capability to yield a correct
background estimate is shown. The analysis includes new experimental data,
the application of three different fitting techniques for the background sam-
ple and an estimate of systematic uncertainties due to possible inaccuracies
in the background selection. The new experimental results confirm both so-
lar modulation effects on cosmic-rays with low rigidities and an anomalous
positron abundance above 10 GeV.
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1. Introduction

Recent measurements of cosmic-ray electrons and positrons carried out
by the ATIC [1], PAMELA [2] FERMI [3] and HESS experiments [4], extend
the previous balloon-borne [5, 6, 7, 8, 9, 10], and satellite [11] measure-
ments and represent a breakthrough in cosmic-ray physics. In particular it
is well known that an antimatter component that cannot be explained as
an effect of a purely secondary production mechanism, could provide insight
into the nature and distribution of particle sources in our galaxy [12]. The
PAMELA experiment has reported a measurement of the positron fraction,
i.e. the ratio of positron flux to the sum of electron and positron fluxes,
R = φ(e+)/(φ(e−)+φ(e+)), at energies between 1.5 GeV and 100 GeV, sam-
pled in 16 energy bins. The observations extend the energy range of previous
positron measurements and unambiguosly show an anomalous positron abun-
dance above 10 GeV. A reliable identification of electrons and positrons has
been performed by combining iformation from independent detectors within
the apparatus [2, 13]. The main difficulty in the measurement of R is the
dominating background flux from protons which is 103 (at 1 GV) and 104

(at 100 GV), times the positron flux. Furthermore, a precise estimate of the
proton contamination in the positron sample is a difficult task.

A widely adopted approach both in high energy physics and astrophysics,
consists of an intensive use of simulated signal and background samples to
train different multivariate classifiers, such as artificial neural networks and
support vector machines [15, 16]. It has been demonstrated that such a ap-
proach can improve background rejection in the signal sample [17, 18]. How-
ever this approach can introduce systematic uncertainties which are difficult
to estimate, for the real data.

In this paper we present a method used to obtain an updated the PAMELA
positron fraction [2] and further statistical procedures, based on wavelet
and kernel estimates, in order to estimate the proton contamination in the
positron sample. Although our approach is based on well known statisti-
cal techniques, we believe this methodology can be of interest because the
data analysis is mainly based on the discrimination capabilities of a single
detector, i.e. the electromagnetic calorimeter. Previously published results
[2] refer to data collected by the experiment between July 2006 and February
2008. Here, we present the methodology applied to larger data set collected
between July 2006 and December 2008.

In Section 2 the PAMELA experiment is briefly described. A detailed
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description of the apparatus can be found in [19]. In Section 3 the discrim-
inating variables used for the analysis are presented. In Section 4 the event
selection procedure is described: this is the first phase of the analysis and it
involves all the detectors of the PAMELA apparatus. The core of the anal-
ysis is described in Section 5. The methodologies developed to estimate the
positron fraction R and the statistical and systematic uncertainties are illus-
trated and applied to the PAMELA data. A summary of the experimental
results and the conclusions are presented in Section 6.

2. The PAMELA apparatus

As shown in Fig 1, the PAMELA apparatus is composed by the following
detectors (from top to bottom):

1. a time-of-flight system (ToF (S1, S2, S3));

2. a magnetic spectrometer;

3. an anticoincidence system (AC (CARD, CAT, CAS));

4. an electromagnetic imaging calorimeter;

5. a shower tail catcher scintillator (S4) and

6. a neutron detector.

The ToF system provides a fast signal for triggering the data acquisi-
tion and measures the time-of-flight and ionization energy losses (dE/dx)
of traversing particles. It also allows down-going particles to be reliably
identified. Multiple tracks, produced in interactions above the spectrome-
ter, are rejected by requiring that only one strip of the top ToF scintillator
(S1 and S2) layers register an energy deposition (hit). Similarly no hits were
permitted in either top scintillators of the AC system (CARD and CAT).
The magnetic spectrometer consists of a 0.43 T permanent magnet and a
silicon microstrip tracking system. It measures the rigidity of charged parti-
cles through their deflection in the magnetic field. During flight the spatial
resolution is observed to be 3 µm in the bending view, corresponding to a
Maximum Detectable Rigidity (MDR), defined as a 100% uncertainty in the
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rigidity determination, exceeding 1 TV. The dE/dx losses measured in S1
and the silicon layers of the magnetic spectrometer were used to select mini-
mum ionizing singly charged particles (mip) by requiring the measured dE/dx
to be less than twice that expected from a mip. The sampling calorimeter
comprises 44 silicon sensor planes interleaved with 22 plates of tungsten ab-
sorber. Each tungsten layer has a thickness of 0.26 cm corresponding to
0.74 radiation lengths. A high dynamic-range scintillator system (S4) and
a neutron detector are mounted under the calorimeter. The apparatus is
approximately 130 cm tall and with a mass of about 470 kg and it is inserted
inside a pressurized container attached to the Russian Resurs-DK1 satellite
[19].

Figure 1: A schematic overview of the PAMELA satellite experiment. The experiment
stands ∼ 1.3 m high and, from top to bottom, consists of a time-of-flight (ToF) system
(S1, S2, S3 scintillator planes), an anticoincidence shield system, a permanent magnet
spectrometer (the magnetic field runs in the y-direction), a silicon-tungsten electromag-
netic calorimeter, a shower tail scintillator (S4) and a neutron detector. The experiment
has an overall mass of 470 kg.

5



2.1. The imaging calorimeter

In this analysis the PAMELA silicon-tungsten sampling imaging calorime-
ter [20] plays a key role, due to its capability to give an accurate topological
description of the showers generated by the interaction of the cosmic-ray
particles.

Electromagnetic calorimeters have been widely used for particle discrimi-
nation in balloon-borne cosmic-ray experiments [5, 7, 21, 22]. The PAMELA
an imaging calorimeter is evolution of the instrument used in several balloon-
borne experiments [22, 23, 6] and its performances have been throughly in-
vestigated by means of test beam data and Monte Carlo simulations [20].
It is 16.3 radiation lengths (0.6 nuclear interaction lengths) deep, so both
electrons and positrons develop a well-contained electromagnetic shower in
the energy range of interest. In contrast, the majority of the protons will ei-
ther pass through the calorimeter as a minimum ionizing particle or interact
deeply in the calorimeter. In fact there is a high probability (>89%) that an
electromagnetic shower will start in the first 3 planes of the calorimeter. For
hadronic showers, the starting point is distributed more uniformly. Particle
identification based on the total measured energy and the starting point of
the reconstructed shower in the calorimeter can be tuned to reject 99.9% of
the protons, while selecting more than 95% of the electrons or positrons. The
remaining proton contamination in the positron sample can be eliminated us-
ing additional topological information, including the lateral and longitudinal
profile of the shower. Using particle beam data collected at CERN it was pre-
viously shown that less than one proton out of 100, 000 passes the calorimeter
electron selection up to 200 GeV/c, with a corresponding electron selection
efficiency of 80% [20].

3. Discriminating variable selection

The misidentification of electrons and protons are the largest sources of
background when estimating the positron fraction. This can occur if the sign-
of-charge is incorrectly assigned from the spectrometer data, or if electron-
and proton-like interaction patterns are confused in the calorimeter data.
The proton-to-positron flux ratio increases from approximately 103 at 1 GeV
to approximately 104 at 100 GeV and represents the major source of contam-
ination. Robust positron identification is therefore required and the residual
proton background must be carefully assessed. To do this a single discrimi-
nating variable is considered: the fraction F of calorimeter energy deposited
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inside a cylinder of radius 0.3 Molière radii. Fig. 2 shows F as a function of
deflection (rigidity−1). The axis of the cylinder is defined by extrapolating
the particle track reconstructed in the spectrometer. The Molière radius is
an important quantity in calorimetry as it quantifies the lateral spread of
an electromagnetic shower (about 90% of the shower energy is contained in
a cylinder with a radius equal to 1 Molière radius), and depends only on
the absorbing material (tungsten in this case). The events shown in Fig. 2
were selected requiring a match between the momentum measured by the
tracking system and the total detected energy and the starting point of the
shower in the calorimeter. For negatively-signed deflections, electrons are
clearly visible as a horizontal band with F lying mostly between 0.4 and
0.7. For positively-signed deflections, the similar horizontal band is natu-
rally associated to positrons, with the remaining points, mostly at F < 0.4,
designated as proton contamination. The validity of such event characteri-
zation was confirmed using the neutron yield from the calorimeter and the
ionization (dE/dx) losses measured in the spectrometer [13]. The spillover
limit for positrons is estimated from particle beam tests to be approximately
300 GeV. From particle beam tests the spillover limit for positions is esti-
mated to be approximately 300 GeV, primarily due to the tracker resolution.
The electron spillover background between 1.5 and 100 GeV is negligible.

4. Event selection

While the distribution shown in Fig. 2 presents a clear positron signature,
the residual proton background distribution must be quantified. It is worth-
while to note that the background distribution was obtained using the flight
calorimeter data and there was no dependence on simulations. In order to
build a background model, the total calorimeter depth of 22 detector planes
was divided in two non-mutually exclusive parts: an upper part comprising
planes 1− 20, and a lower part comprising planes 3− 22. The positron com-
ponent in positively charged events can be significantly reduced by selecting
particles that do not interact in the first 2 planes because only 2% of elec-
trons and positrons with rigidities greater than 1.5 GV pass this condition.
This requirement selects a nearly pure sample of protons entering the lower
part of the calorimeter (planes 3 − 22). The event selection methodology
was further validated using particle beam data collected prior to lunch and
data generated using the PAMELA Collaboration’s official simulation pro-
gram. This simulation is based on the GEANT package [24] version 3.21 and

7



1

10

210

1

10

210

 ]-1Deflection [ GV
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

F
ra

ct
io

n
 o

f 
en

er
g

y 
al

o
n

g
 t

h
e 

tr
ac

k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

10

210

Figure 2: Calorimeter energy fraction F . The fraction of calorimeter energy deposited
inside a cylinder of radius 0.3 Molière radii, as a function of deflection. The number of
events per bin is shown in different colours, as indicated in the colour scale. The axis of the
cylinder is defined by extrapolating the particle track reconstructed by the spectrometer.
The events were selected requiring a match between the momentum measured by the
tracking system and the total detected energy and requiring that the electromagnetic
shower starts developing in the first planes of the calorimeter.

reproduces the entire PAMELA apparatus.
Calorimeter variables (e.g. total detected energy, and lateral shower

spread) were evaluated for the upper and lower parts of the calorimeter.
Electrons and positrons were identified in the upper part of the calorimeter
using the total detected energy and the starting point of the shower. As an
example Fig. 3 shows the energy fraction F , for negatively charged parti-
cles in the rigidity range 28 − 42 GV selected as electrons in the upper half
of the calorimeter (panel a). Panels (b) and (c) show the F distributions
for positively-charged particles obtained for the lower (upper) part of the
calorimeter, i.e. protons (protons and positrons). The distributions in pan-
els (a) and (b) are clearly different while panel (c) shows a mixture of the
two distributions, which strongly supports the positron interpretation for the
electron-like F distribution in the sample of positively charged events.
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5. Positron/proton discrimination

As a result of the event selection described in the last section we obtained
the distributions of pure electrons, pure protons and a mixture of positrons
and protons, as shown in Fig. 3. Starting from these distributions the deter-
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Figure 3: Calorimeter energy fraction F : 28− 42 GV. Panel (a) shows the distribution of
the energy fraction for negatively charged particles, selected as electrons in the upper part
of the calorimeter. Panel (b) shows the same distribution for positively charged particles
selected as protons in the bottom part of the calorimeter. Panel (c) shows positively
charged particles, selected in the upper part of the calorimeter, i.e. protons and positrons.

mination of the ratio R, with the statistical and systematic error estimates,
consists of four main steps, as summarised in Fig. 4:

1. estimation of the probability density functions (pdf) for the experimen-
tal distributions shown in Fig. 3;

2. construction of a finite mixture density of probability;
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Figure 4: Flowchart of the methodology, based on different fitting and bootstrap techniques
developed to evaluate the positron fraction R.

3. estimation of the weight of the mixture by means of the maximum like-
lihood indicator;

4. estimation of the statistical errors by means of a bootstrap procedure.

In addition, an estimate of the systematic uncertainties due to inaccuracies
in the background identification is performed.

5.1. Pdf estimate

The proton experimental distributions provide information about the
background yields. In order to evaluate these distributions and to check
possible systematic errors in this phase of the analysis, three different meth-
ods have been implemented: beta, wavelets and kernel.

10



5.1.1. Beta pdf

Since the discriminating variable used for the analysis is the energy frac-
tion F , spanning the interval [0, 1], the rational choice is to fit the experimen-
tal distribution with a function spanning in the same interval and with few
free parameters, in order to avoid unphysical modeling of the experimental
data. We used the beta function [28]:

f(x) =
1

β(p, q)
xp−1(1− x)q−1. (1)

where p > 0, q > 0, and β(p, q) is

β(p, q) =

∫ 1

0

xp−1(1− x)q−1dx. (2)

This density has been used to fit both electrons and protons. A set of
parameters for each rigidity bins is obtained and used for the subsequent
steps of the analysis.
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Figure 5: Distribution of the energy fraction for positively charged particles selected as
protons for 3 different rigidity bins with a fit to a beta pdf.
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The mean of the beta pdf is:

x̄ =
p

p+ q
(3)

and its variance is:

σ2 =
pq

(p+ q)2 + (p+ q + 1)
. (4)

5.1.2. Wavelets

In the previous section, the distribution of the energy fraction was fitted
by means of a fixed family, i.e. we fitted a parametric law in the statistical
jargon. More precisely, we assumed a priori that the experimental distribu-
tions we observed should be generated according to a specific (beta) law in
[0, 1]. Although the choice of a beta function is natural for random variables
in this range, it is important to question how much our final results depend
on this assumption, i.e. their degree of robustness when varying the energy
fraction distribution over a much greater range of possibilities. Our goal here
is to explore the possibility of a nonparametric fit, where there is no a priori
assumption on the energy fraction distribution.
Over the last fifteen years, the statistical literature has focussed on the esti-
mation of density functions in this broader nonparametric setting. We refer
for instance to [31] for an introduction to this area of research. A wide con-
sensus has formed on the role of wavelet based methods as the most powerful
statistical techniques for nonparametric density estimation.

A wavelet system is essentially an orthonormal basis which is constructed
by dilations and translations of a mother and father function, leading to a
multiresolution scheme. The wavelets we are going to implement are those
proposed by Daubechies, which are computationally convenient as their sup-
port in the real domain is limited. More explicitly, the father wavelet satisfies
[31]:

ϕ(x) =
√
2
∑

k

hkϕ(2x− k) (5)

where hk are suitably chosen weights ([33]), whereas the mother wavelet sat-
isfies:

ψ(x) =
√
2
∑

k

(−1)k+1h1−kϕ(2x− k) (6)
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Figure 6: Distribution of the energy fraction for positively charged particles selected as
protons for 3 different rigidity bins with a wavelets fit.

The multiresolution expansion of a function f is then provided by:

f(x) =
∑

k

αkϕk(x) +
∑

j,k

βjkψjk(x) (7)

where αk and βjk are approximation and detail coefficients, respectively, and
the elements of the basis are constructed as

ψjk(x) = 2j/2ψ(2jx− k), j, k = 1, 2, ... (8)

In practice the coefficients αk and βjk are unknown and must be estimated
from the data. Given x1, ..., xn independent identically distributed random
variables with an unknown density f on R, suitable estimators are provided
by

α̂k =
1

n

n∑

i=1

ϕk(xi), β̂jk =
1

n

n∑

i=1

ψjk(xi). (9)
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These estimators can be viewed as convolutions of the empirical his-
tograms of the observations with the elements of the wavelets basis. At
this stage, an obvious estimator may be proposed, by simply replacing the
coefficients α, β in (7) by their sample estimates. This approach - the so
called linear wavelet estimator - has however been shown to be suboptimal
in general ([31] or [32]). On the other hand, a wide consensus has emerged in
the mathematical statistics community on the use of so-called wavelet thresh-
olding techniques. Here, small coefficients are suppressed by introducing a
threshold. In particular, in this paper a hard thresholding rule is used. In
this case, the estimator for f is defined by [31]:

f̂n(x) =
∑

k

α̂kϕk(x) +
∑

j,k

β̂H
jkψjk(x) (10)

where the coefficients β̂H
jk are defined by:

β̂H
jk = β̂jkI(|β̂jk| > t) (11)

(the indicator function is defined as usual, e.g. I(|X| > t) = 1 if |X| > t , 0
otherwise). The threshold level is chosen to be

t = c

√
logn

n
(12)

where c > 0 is a suitably chosen constant, and n is the number of observa-
tions in our sample. Intuitively, the rationale behind these techniques can
be explained as follows. The smaller sample coefficients can be expected
to be largely dominated by noise, so dropping them will improve the global
performance of the estimates. These argument can be made rigorous, in par-
ticular it can be shown that wavelet thresholding estimators yield basically
the optimal rate of convergence over a wide variety of loss functions, i.e.,
they (nearly) minimize over a wide class of functions f and norms ‖.‖Lp the
maximum risk

R(f̂n, f) = max
f

〈‖f̂n − f‖pLp〉 (13)

In practice, this means wavelet thresholding techniques enjoy robustness
properties which are important in our context. They are sensitive at the
same time to large scale features of the unknown energy distribution, and
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they are also expected to detect the possible existence of small scale effects,
such as local density spikes which could affect the final result. We refer again
to [31] and [32] for further details and discussion.

To fit the proton sample, the wavelet thresholding technique with the
Daubechies’ basis (in particular db3) has been used. A critical step has been
to find the best value for the parameter c in (12). We started fixing c = 3,
which is often recommended as rule-of-the-thumb choice. We further verified
by numerical experiments that our results are very stable for a wide range
of fluctuations around this value. The positron-to-electron ratio estimates
and corresponding confidence intervals are very close (indeed, in some cases
nearly undistinguishable) from those obtained with the parametric fit of the
beta distribution.

5.1.3. Kernel estimate

The kernel estimate is a statistical technique used to obtain an unbinned
and nonparametric estimate of the probability density function. In the uni-
variate case, the general kernel estimate of the parent distribution is given
by [36]:

f(x) =
1

nh

n∑

i=1

K(
x− xi
h

) (14)

where xi represents the data and h is the smoothing parameter (also called
the bandwidth). It is important to note that f(x) is bin-independent regard-
less of choice of K. K has the role to distribute the contribution of each data
point in the evaluation of the probability density function. Istead h have the
task to set the scale of kernel.

Since the discriminating variable is defined in the bounded interval [0, 1]
a beta kernel has been used [38]. The beta kernel is a non-negative kernel
and it is usually considered to estimate probability density functions with
compact supports.

The number of beta functions generated was equal to the number of bins
of the histogram and each beta function had a mean equal to the center of
histogram bins. The standard deviation of these functions has been chosen
through an application of the Kolmogorov-Smirnov test so that the initial
distribution of protons and the modified one were statistically compatible,
thereby rejecting the null hypothesis at 5% level.

The beta parameters (p, q) have been calculated inverting (3) and (4).
The kernel bandwith is assumed to be the histogram bin. The number of
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Figure 7: The distribution of positively charged particles selected as protons (grey) for
the rigidity bin 28 − 42 GV and the same distribution modified using the kernel method
(dark-grey).

events in each histogram of protons has been increased six fold compared to
the original histogram. Fig. 7 shows the real protons and the pseudo-proton
set for rigidity between 28 GV and 42 GV. Each pseudo-proton sample is then
analyzed in the same way as the real protons (in particular with wavelets-fit),
obtaining, for each energy bin, a new positron fraction.

5.2. Finite mixture density

A finite mixture of distributions is used for modelling dataset extracted
from not homogeneous population. It is useful to analize a sample drawn from
an unknown mixture of known distributions. In the procedure of the finite
mixture distributions an experimental distribution may be approximated as
a linear combination of probability distribution functions (pdfs) [26]:

g(x, p) =
n∑

i=1

pifi(x) (15)
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where g(x, p) is the pdf to estimate, fi(x) are known pdfs, n is the number of
pdfs, pi are the mixing proportions (0 < pi < 1 and

∑n
i=1 pi = 1) to estimate.

In the present analysis we model, for each energy interval, the distribu-
tion of the calorimeter energy fraction (F) for positively-charged particles as
mixture distribution [26] of the positrons and protons pdfs:

g(F) = pfb(F) + (1− p)fs(F) (16)

where fb(F) and fs(F) are the probability density functions for protons and
electrons, respectively and the pdfs fb and fs have been determinated in the
previous section. As a result of this phase of the analysis a set of unknown
weights pj , with j = 1,...,16, is obtained.

5.3. Maximum Likelihood

In order to find the values of unknown weights pj we used the well know
maximum likelihood method. In the present case the likelihood function, (for
each rigidity bin), is

Lj =

m∏

t=1

[
pjfb(Ft) + (1− pj)fs(Ft)

]
. (17)

where m is the number of independent observations x1, x2, ..., xm in each
rigidity bin.

The estimation of the parameters pj is done by maximizing the natural
logarithm of (17):

∂lnLj

∂pj
= 0. (18)

As a result of the three steps of the analysis, three different weights of
the mixture for each energy bin are obtained. Using the beta functions,
the wavelets transform and the kernel technique. In the next section the
bootstrap technique is introduced. It has been used to evaluate both the
positron fraction R and the statistical errors of the measurements.

5.4. Statistical error estimates by means of the bootstrap technique

The Bootstrap is a powerful method for analyzing small expensive-to-
collect data sets where prior information is sparse [34]. In this method,
a set of data is randomly resampled many times with replacement. Then
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Figure 8: The distribution of positively charged particles for the rigidity bin 28-42 GV

showing 3 pdf fits.

statistical indicators, such as the standard error or the confidence interval,
are evaluated from these new samples [35].

This procedure has been used to estimate the statistical error on the ratio
R.

Each experimental distributions for electrons, protons and positively-
charged particles have been resampled 1000 times, then the three steps of
the analysis procedure previously described have been repeated. For each
rigidity bin, a statistical distribution of the ratio R is thereby obtained.

As a first step, M = 1000 bootstrap resampling of positives sample were
applied. For each re-sample i the unknown parameter pi was estimated
by means of an un binned maximum likelihood analysis. As a second step
the procedure has been repeated N = 1000 times applying N bootstrap
resampling of electron and proton sample. So N × M estimations of the
number of positron candidates have been obtained. Then, the final number
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Rigidity at Percent error Percent error Percent error
spectrometer (GV) (beta) (wavelets) (kernel with wavelets)

1.5− 1.8 3.2% 2.6% 2.6%
1.8− 2.2 2.6% 2.9% 2.6%
2.2− 2.7 2.7% 2.6% 2.6%
2.7− 3.3 2.9% 3.1% 3.1%
3.3− 4.1 3.1% 3.9% 3.9%
4.1− 5.0 3.6% 3.8% 4.3%
5.0− 6.1 3.9% 5.7% 5.3%
6.1− 7.4 4.7% 4.8% 4.4%
7.4− 9.1 4.9% 4.9% 5.0%
9.1− 11.2 4.7% 5.7% 5.9%
11.2− 15.0 5.3% 5.0% 5.6%
15.0− 20.0 6.1% 5.4% 6.3%
20.0− 28.0 8.1% 7.5% 8.2%
28.0− 42.0 10.1% 9.5% 11.2%
42.0− 65.0 13.4% 12.4% 13.0%
65.0− 100.0 25% 29.5% 25.3%

Table 1: Statistical errors on the positron fraction R for all rigidity bins.

of positron candidates was obtained as:

n̄ =
1

N

N∑

i=1

(
1

M

M∑

j=1

nji) (19)

where nji in the number of positron candidates evaluated by each bootstrap
iteration. Therefore also N ×M estimations of positron fraction have been
obtained. In the present analysis we used the range from the 16th and 84th
percentiles of these distributions as the statistical error estimates of the ratio
R. As shown in Table 1 the statistical errors on the points range between
3% and 10% in all bins but the last two and then increase to just under
30% in the highest energy bin. Fig. 9 shows three new estimates of the
positron fraction, using the different fitting techniques adopted in this study.
Moreover, as shown in Tab. 2, the results obtained with the three different
background pdfs are consistent with each other.
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Figure 9: The positron fraction R obtained using the wavelets-fit (blue), beta-fit (red) and
kernel with wavelets-fit (green).
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5.5. Systematic uncertainties due to inaccuracies in the background selection

The main sources of systematic uncertainties in the determination of the
positron fraction are investigated in the following. Due to the equivalence of
the results obtained in the previous section with the three different pdfs, the
evaluation of the systematic uncertainties has been performed using only the
beta fit.

This is done by introducing a modification in the background distribution
using the weighted bootstrap technique. This particular technique consists
of positive weights applied to each observation of the dataset [39]. For each
rigidity bin, starting from a proton sample n(F) with mean x̄, two new
samples, n+(F) and n−(F), are generated:

1. n+(F) with mean x̄+ > x̄;

2. n−(F) with mean x̄− < x̄.

The bootstrap weights are chosen in order to have both n+(F) and n−(F)
statistically incompatible with n(F), according to the Kolmogorov-Smirnov
test.
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Rigidity at Mean kinetic energy Extrapolated φ(e+)
φ(e−)+φ(e+)

Extrapolated φ(e+)
φ(e−)+φ(e+)

Extrapolated φ(e+)
φ(e−)+φ(e+)

spectrometer (GV) at top of payload at top of payload at top of payload at top of payload with
beta/wavelets/kernel (GeV) with beta-fit with wavelets-fit kernel with wavelets-fit

1.5− 1.8 1.65 / 1.65 / 1.65 0.0639+0.0017
−0.0017 0.0673+0.0021

−0.0021 0.0670+0.0017
−0.0017

1.8− 2.2 1.99 / 1.99 / 1.99 0.0591+0.0015
−0.0015 0.0618+0.0018

−0.0018 0.0618+0.0016
−0.0016

2.2− 2.7 2.44 / 2.44 / 2.44 0.0564+0.0015
−0.0015 0.0598+0.0017

−0.0014 0.0587+0.0016
−0.0014

2.7− 3.3 2.99 / 2.99 / 2.99 0.0549+0.0016
−0.0016 0.0540+0.0016

−0.0017 0.0546+0.0018
−0.0015

3.3− 4.1 3.67 / 3.68 / 3.68 0.0537+0.0017
−0.0017 0.0516+0.0019

−0.0021 0.0508+0.0020
−0.0020

4.1− 5.0 4.49 / 4.51 / 4.52 0.0545+0.0020
−0.0020 0.0524+0.0020

−0.0020 0.0515+0.0022
−0.0022

5.0− 6.1 5.68 / 5.38 / 5.49 0.0602+0.0024
−0.0024 0.0520+0.0030

−0.0029 0.0535+0.0028
−0.0028

6.1− 7.4 6.78 / 6.80 / 7.02 0.0522+0.0024
−0.0024 0.0500+0.0024

−0.0025 0.0492+0.0022
−0.0022

7.4− 9.1 8.27 / 8.28 / 8.30 0.0576+0.0028
−0.0028 0.0504+0.0027

−0.0027 0.0543+0.0027
−0.0027

9.1− 11.2 10.16 / 10.17 /10.18 0.0570+0.0033
−0.0033 0.0541+0.0032

−0.0031 0.0518+0.0029
−0.0032

11.2− 15.0 13.11 / 13.12 / 13.13 0.0611+0.0032
−0.0033 0.0619+0.0032

−0.0030 0.0595+0.0031
−0.0035

15.0− 20.0 17.50 / 17.51 / 17.51 0.0630+0.0039
−0.0039 0.0628+0.0036

−0.0033 0.0590+0.0039
−0.0036

20.0− 28.0 23.99 / 24.00 / 24.01 0.0645+0.0052
−0.0052 0.0651+0.0048

−0.0051 0.0592+0.0045
−0.0051

28.0− 42.0 34.97 / 35.00 / 34.99 0.0733+0.0073
−0.0074 0.0833+0.0079

−0.0077 0.0651+0.0071
−0.0074

42.0− 65.0 53.43 / 53.44 / 53.48 0.090+0.012
−0.013 0.094+0.012

−0.012 0.093+0.013
−0.012

65.0− 100.0 82.39 / 82.41 / 82.47 0.106+0.028
−0.030 0.109+0.035

−0.037 0.132+0.034
−0.033

Table 2: Summary of the positron fraction results for the beta-fit, wavelets-fit and kernel with wavelets-fit. The errors are
defined by the range between the 16th and the 84th percentiles in the R distributions.
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Figure 10: The distribution of positively charged particles selected as protons for the
rigidity bin 28 - 42 GV and the same distribution when modified using the weighted
bootstrap technique.

Fig. 10 shows protons for the rigidity bin 28 - 42 GV and the same
distribution when modified using the weighted bootstrap technique. The
range encompassing R − R+ and R + R− is assumed as an estimate of the
systematic uncertainty due the inaccuracies in the background selection. Tab.
3 reports the systematic uncertainties assesed for each rigidity bin.
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Rigidity at Mean kinetic energy Extrapolated φ(e+)
φ(e−)+φ(e+)

Systematic

spectrometer (GV) at top of payload at top of payload uncertainties
beta-fit (GeV) with beta-fit

1.5− 1.8 1.65 0.0639+0.0017
−0.0017

+0.0010
−0.0017

1.8− 2.2 1.99 0.0591+0.0015
−0.0015

+0.0011
−0.0018

2.2− 2.7 2.44 0.0564+0.0015
−0.0015

+0.0012
−0.0014

2.7− 3.3 2.99 0.0549+0.0016
−0.0016

+0.0012
−0.0013

3.3− 4.1 3.67 0.0537+0.0017
−0.0017

+0.0011
−0.0013

4.1− 5.0 4.49 0.0545+0.0020
−0.0020

+0.0018
−0.0014

5.0− 6.1 5.68 0.0602+0.0024
−0.0024

+0.0024
−0.0015

6.1− 7.4 6.78 0.0522+0.0024
−0.0024

+0.0024
−0.0016

7.4− 9.1 8.27 0.0576+0.0028
−0.0028

+0.0038
−0.0018

9.1− 11.2 10.16 0.0570+0.0033
−0.0033

+0.0028
−0.0019

11.2− 15.0 13.11 0.0611+0.0032
−0.0033

+0.0028
−0.0018

15.0− 20.0 17.50 0.0630+0.0039
−0.0039

+0.0033
−0.0020

20.0− 28.0 23.99 0.0645+0.0052
−0.0052

+0.0045
−0.0030

28.0− 42.0 34.97 0.0733+0.0073
−0.0074

+0.0057
−0.0044

42.0− 65.0 53.43 0.090+0.012
−0.013

+0.013
−0.008

65.0− 100.0 82.39 0.106+0.028
−0.030

+0.037
−0.044

Table 3: Summary of positron fraction results, obtained with the beta-fit, including sta-
tistical and systematic errors.

6. Experimental results and conclusions

Fig 11 shows the positron fraction R obtained trough beta-fit with sta-
tistical and systematic errors summed in quadrature, compared with the
PAMELA positron fraction previously reported [2]. The solid line shows
a calculation by Moskalenko & Strong [40] for pure secondary production
of positrons during the propagation of cosmic-rays in the galaxy. Proton-
positron discrimination is provided the imaging calorimeter, the capability
to yield a trustworthy estimate of the positron and electron numbers in the
cosmic radiation at energies between 1.5 GeV to 100 GeV has been clearly
established. Compared to what is reported in [2]: a) new experimental data,
b) the application of three novel background models and c) an estimate of the
systematic uncertainties has been presented. The new experimental results
are in agreement with what reported in [2] and confirm both solar modu-
lation effects on cosmic-rays with low rigidities and an anomalous positron
abundance above 10 GeV.
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Figure 11: The positron fraction R obtained using a beta-fit with statistical and systematic
errors summed in quadrature (red), compared with the positron fraction reported in [2]
(black). The solid line shows a calculation by Moskalenko & Strong [40] for pure secondary
production of positrons during the propagation of cosmic-rays in the galaxy.
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