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Abstract: Both the acceleration of cosmic rays (CR) in supernova remnant shocks and their subsequent propagation
through the random magnetic field of the Galaxy deem to result in an almost isotropic CR spectrum. Yet the MILAGRO
TeV observatory and the IceCube discovered sharp (∼ 10◦) arrival anisotropies of CR nuclei. We suggest a mechanism
for producing such a CR beam which operates en route to the observer. The key assumption is that CRs are scattered by a
strongly anisotropic Alfven wave spectrum formed by the turbulent cascade across the local field direction. The strongest
pitch-angle scattering occurs for particles moving almost precisely along the field line. Partly because this direction is also
the direction of minimum of the large scale CR angular distribution, the enhanced scattering results in a weak but narrow
particle excess. The width, the fractional excess and the maximum momentum of the beam are calculated from a systematic
transport theory depending on a single scale l which can be associated with the longest Alfven wave, efficiently scattering
the beam. The best match to all the three characteristics of the beam is achieved at l ∼ 1pc. The distance to a possible
source of the beam is estimated to be within a few 100pc. Possible approaches to determination of the scale l from the
characteristics of the source are discussed. Alternative scenarios of drawing the beam from the galactic CR background
are considered. The beam related large scale anisotropic CR component is found to be energy independent which is also
consistent with the observations.
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Introduction The MILAGRO TeV observatory and
the IceCube discovered collimated beams dominated by
hadronic cosmic rays (CR) with a narrow (∼ 10◦) angular
distribution in the 10 TeV energy range [2, 1]. This is sur-
prising, since most of the CR acceleration and propagation
models predict only a weak, large scale anisotropy.
In this paper we suggest a novel mechanism for producing
a narrow CR beam. It is based on the strong anisotropy
of the MHD turbulence in the ISM. Such anisotropy is ex-
pected when the turbulence is driven at a long (outer) scale,
but unlike the isotropic Kolmogorov cascade, the incom-
pressible MHD cascade is directed perpendicularly to the
magnetic field in the wave vector space. This was shown
by Goldreich & Sridhar [4] (GS). The cascade proceeds
to k⊥rg (p) À 1 in the perpendicular wave number direc-
tion for the protons with the gyro-radii rg ∼ 1016cm, typi-
cal for the particles of the beam energies pc ∼ 10TeV and
the ISM magnetic field of a few µG. Contrary to the k⊥ di-
rection the spectrum spreading in k‖ is suppressed, so that

k‖ ∼ k2/3
⊥ l−1/3 ¿ k⊥, where l is the outer scale.

The CR scattering by the GS anisotropic spectrum was in-
vestigated in e.g., (Chandran 3). The pitch-angle scattering
rate is peaked at |µ|= |cosϑ | ≈ 1, i.e., for particles moving
along the field line, since for these particles k⊥rg (p⊥) <∼ 1.

Only particles with such small p⊥, i.e., with pitch angles
within sin2 ϑ <∼ ε ¿ 1 are scattered efficiently.

Angular distribution of particles For the purposes of
this paper we need the angular profile the pitch-angle scat-
tering coefficient near |µ| = 1, which we evaluate below.
Assuming the GS spectrum for the spectral wave density I,

I =
1

6π
k−10/3
⊥ l−1/3g

(
k‖l1/3

k2/3
⊥

)
e−τ/τk , (1)

the pitch-angle scattering coefficient can be represented as
follows ( e.g., 3)
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π
3
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Here, g(x) = H (1−|x|), where H is the Heaviside func-
tion and τk = (l/VA)(k⊥l)−2/3 is the turbulence correla-
tion time. For a small δ ,ε ¿ 1 (where δ = VA/v ≈ VA/c,
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ε = v/lΩ, Ω = eB0/p and v≈ c is the particle velocity) one
obtains

Dµµ ' 1
6

v
l

δ
[

ln
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1
ε

)
− 1

2
ln
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1−µ2)

](
1−µ2) (3)

Now we concentrate on the particular region, 1− µ2 <∼ ε ,
for which we obtain the following expression for the scat-
tering coefficient [6]

Dµµ =
π
2

v
l

(
1−µ2)

[
J2

1 (y)
y2 + ry4/3

]
(4)

where r∼ 10−2 and y =
√

(1−µ2)/ε . Clearly, we can ne-
glect the small second term in the brackets altogether, and
switch to the expression given by eq.(3) for y >∼ j1, where
j1 ≈ 3.8 being the first root of J1. The most important part
of the scattering coefficient Dµµ (y) is its sharp peak near
|µ| = 1 where it behaves as Dµµ ∝ J2

1 (y). As y grows and
approaches y = j1, Dµµ/

(
1−µ2

)
falls down to ∼ δ of its

peak value at |µ|= 1 and remains approximately constant,
eq.(3). The other peak occurs at µ ≈ 0 but it is not impor-
tant for our purposes.

Particle propagation Suppose that a source of CRs is
within the same magnetic flux tube with the Earth. We cal-
culate the CR propagation to the Earth below. Obviously,
the degree of CR anisotropy near the source may be signif-
icantly higher than that observed at the Earth. The propa-
gation problem may be considered being one dimensional
and stationary with the only spatial coordinate z, directed
along the flux tube from the source to the Earth.
The particle momentum is conserved and the transport
problem is in only two variables, the coordinate z and
the pitch angle ϑ (or µ ≡ cosϑ ). The characteristic (ϑ -
independent) pitch-angle scattering frequency νϑ (typical
for µ not too close to µ = 0,±1) can be written as:

Dµµ

1−µ2 ≈ νϑ ≡ v
l

(
δ ln

(
1
ε

)
+ ε3/2

)
/6 (5)

The equation for the CR distribution thus reads

(u+ µ)
∂ f
∂ z

=
∂

∂ µ
(
1−µ2)D(µ)

∂ f
∂ µ

(6)

Here u is the bulk flow (scattering centers) velocity along z
in units of the speed of light, u¿ 1, µ = cosϑ . The coor-
dinate z is normalized to the pitch-angle scattering length
c/νϑ ≈ v/νϑ , so that D(µ) = ν−1

ϑ Dµµ/
(
1−µ2

)
being

normalized to νϑ , is close to unity except for the narrow
peaks. Our purpose is to find a narrow feature (which may
be a bump or a hole) on the otherwise almost isotropic an-
gular spectrum f (µ). Clearly, this feature must be pinned
to one of the peaks of D(µ).
Let us consider the particle scattering problem given by
eq.(6) in a half space z ≥ 0 and assume that at z = 0
(source) the distribution function is f (0,µ) = f0 (µ). It

Figure 1: Schematic representation of initial and final
pitch-angle distributions and that of the diffusion coeffi-
cient Dµµ (µ).

is clear that if there are no particle sources at z = ∞, then
f (∞,µ) = f∞ = const, apart from the dependence of f on
the particle momentum as a parameter. It is convenient to
subtract f∞ from f , Ψ(z,µ, p) = f (z,µ , p)− f∞ (p), so that
the new function Ψ satisfies the same equation (6) as f and
the following boundary conditions

Ψ =
{

φ (µ) = f0 (µ)− f∞, z = 0
0, z = ∞

It is natural to expand the solution into the series of eigen-
functions Ψλ

Ψ = ∑
λ

Cλ Ψλ (µ)e−λ z (7)

to be found from the following spectral problem

d
dµ

(
1−µ2)D(µ)

dΨλ
dµ

+λ (u+ µ)Ψλ = 0 (8)

As is well known (7, see also 5), there exists a complete
set of the orthogonal eigenfunctions {Ψλ}λi=∞

λi=−∞ with the
discrete spectrum λi having no limiting points other than
at ±∞. If we consider the formal solution given by eq.(7)
at such a distance z where (λ2−λ1)z >∼ 1, with λ1,2 being
the first (smallest) positive eigenvalues, the solution will
be dominated by the first eigenfunction Ψλ1 . We know that
the anisotropy at the Earth is very small (∼ 10−3) and, as-
suming it being not so small at the source, we deduce that
λ1z À 1 so that the inequality (λ2−λ1)z À 1 should sat-
isfy as well and we can limit our treatment of the spec-
tral problem given by eq.(8) to the determination of only
the first positive eigenvalue with the corresponding eigen-
function. Although the function D(µ) has a strong peak at
µ ≈ 1, this peak is very narrow (∼ ε) and, as we mentioned,
a perturbation theory applies.
Outside of the peak region we assume D = 1 as an exact
value for D. Therefore, for

(
1−µ2

)
>∼ ε , the zeroth order

approximation of the outer expansion reads
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Figure 2: Unperturbed eigenfunction Φ(µ) ≡ Ψ(0)
λ1

(nu-
merical solution of eq.[9], dashed line). Perturbed solution
(solid line). The insert shows the solution behavior at the
end point, including the logarithmic term of the outer solu-
tion.

d
dµ

(
1−µ2) dΨ(0)

λ
dµ

+λ (0)µΨ(0)
λ = 0 (9)

To find λ (0) we require the solution to be regular at the both
singular points µ = ±1. It easy to find the required single
eigenvalue λ1 and the corresponding eigenfunction by a di-
rect numerical integration of the above equation. The result
is shown in Fig.2 and λ1 ≈ 14.54.
Since D ≡ 1 in the outer region, the perturbation can be
associated only with the perturbation of λ . Therefore, we
expand λ and Ψλ as λ = λ (0) + δλ + . . ., Ψλ = Ψ(0)

λ +

δλΨ(1)
λ + . . .. Here λ can be an arbitrary point of the spec-

trum λ = λi > 0, but we are primarily interested inλ = λ1.
The equation for Ψ(1)

λ takes the following form

d
dµ

(
1−µ2) dΨ(1)

λ
dµ

+λ (0)µΨ(1)
λ =−µΨ(0)

λ (10)

We can write the solution of the last equation as follows

Ψ(1)
λ =−Φ

µ̂

−1

U (µ ′)dµ ′

Φ2 (µ ′)(1−µ ′2)
(11)

where we have denoted Φ(µ) ≡ Ψ(0)
λ (µ), and U (µ) ≡´ µ

−1 µ ′Φ2 (µ ′)dµ ′.
Turning to the inner expansion of the solution of eq.(8), it is
convenient to stretch the variable µ at µ = 1 as follows w =
(1−µ)/b. Note that b = ε j2

1/2 is chosen in such a way
that D(w = 1) ≈ 1. Therefore, we represent D as D(w) =
a−1F (w)+1, w≤ 1 and D(w) = 1, w > 1, where F (w) =(
π/2 j2

1w
)

J2
1 ( j1

√
w). Here a = νϑ l/v¿ 1 and Eq.(8) can

be written as follows

d
dw

[F (w)+a] (2−bw)w
dΨi

λ
dw

+baλ (1−bw)Ψi
λ = 0

(12)
where the index i stands for the ’inner’ solution. In con-
trast to the outer problem we must impose the regularity
condition at µ = 1 (w = 0).
Working up to the second order in b ¿ 1, and integrating
eq.(12) by parts, we transform it into the following first
order equation

dΨi
λ

dw
+

λb
2

g′
[

1− λb
2

(
h
w
−g

)]
Ψi

λ = 0

Comparing with the outer solution yields Ψi
λ (0) ≈

Φ(1)/(1+λb/2) and δλ = b2λ 2Φ2 (1)/4U (1). Using
the matching procedure we determined the initially un-
known arbitrary constant of the inner solution Ψi

λ (0) and
the perturbation of the eigenvalue λ by matching the terms
in both equations that are independent of w and pro-
portional to lnw, respectively. The linear and quadratic
terms in w match automatically to the appropriate accu-
racy ∼ b2. This follows from the two further relations
Φ′ (1) = λΦ(1)/2, Φ′′ (1) = λΦ′ (1)/4, which can be ob-
tained from the Frobenius series of eq.(9) at the singular
end point µ = 1 with Ψ(0)

λ ≡Φ.

Beam characteristics After we have determined the an-
gular distribution of the beam, the question is whether it
is consistent with at least the prominent MILAGRO hot
spot A [2]. Two major beam parameters were calculated
in terms of the small parameter of the theory, ε = rg (p)/l,
where rg is the particle gyro-radius and l is maximum wave
length beyond which particles interact with waves adiabat-
ically. The first parameter of the beam is its angular width
(in terms of µ = cosϑ ) b = j2

1ε/2 ≈ 7.3ε and the second
is its strength, which can be conveniently expressed as the
ratio of the beam excess to the amplitude of the first eigen-
function, δΦ(1)/Φ(1)≈ λ1b/2≈ 53.4ε . Since ε ∝ p, the
spectrum of the beam should be one power harder than the
CR large scale anisotropic component inside the flux tube.
This is consistent with the Milagro beam spectrum, pro-
vided that Φ scales with momentum similarly to the galac-
tic CR background.
According to the MILAGRO Region A observations,
the beam width is about ∆ϑ ∼ 10◦, where ∆ϑ ≈
cos−1 (1−b) ≈ √

2b = j1
√

ε so that we obtain for ε the
following constraint from the observed MILAGRO Spot A
ε ≈ ∆ϑ 2/ j1 ≈ 2.1 ·10−3. This estimate yields the strength
of the beam at the level of ≈ 0.1 which is also consistent
with the MILAGRO fractional excess of the beams A and
B measured with respect to the large scale anisotropy.

Beam Sustainability Now that we have calculated the
pitch-angle distribution of a narrow CR beam formed from
a wide angleanisotropic CR flux by its interaction with the
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background ISM turbulence, we need to check whether
the beam will survive the pitch-angle scattering by self-
generated waves. Assuming a power-law momentum scal-
ing for the background CRs, FC (p) ∝ p−qc (with qc = 4.6−
4.7) we can obtain an expression for the beam instability
threshold distribution Fth

(
p‖

) ≡ δ ·FC
(

p‖
)
/(qc−2), so

that if FB
(

p‖
)≤Fth

(
p‖

)
, the beam can sustain its angu-

lar distribution. Otherwise, it will be spread in pitch angle
to satisfy the last inequality. Using the expressions for the
width of the beam and for its amplitude relative to Φ(µ, p),
we can represent FB

(
p‖

)
as follows

FB
(

p‖
)

=
λ1b2

2
F0

(
p‖

)
=

1
8

λ1 j4
1ε2F0

(
p‖

)
(13)

where we have denoted F0 (p) ≡ Φ(µ = 1, p). Then, our
constraint FB

(
p‖

) ≤ Fth
(

p‖
)

can be represented in the
following way

F0 (p)≤ A
VA

c
l2

r2
g (p)

FC (p) (14)

where rg = pc/eB0 is the particle gyro-radius. We denoted
by A the following numerical factor A = 8/λ1 j4

1 (qc−2)≈
10−3. Due to the factor r−2

g in the relation given by eq.(14),
the function F0 (p) is constrained at high momenta. Assum-
ing that F0 is not much steeper than the background distri-
bution FC, we infer from eq.(14) that there exists maximum
momentum pBmax, beyond which the beam would spread in
pitch-angle and dissolve in the CR background,

pBmax

mc
' 1

K

√
VA

c
A
α

(15)

where we have introduced the following parameter which
is the major small parameter of the theory K ≡ c/lωc =
εmc/p. Here ωc is the proton cyclotron (non-relativistic)
frequency and l is the maximum turbulence scale beyond
which the particles response becomes adiabatic. Based
on the two independent MILAGRO measurements of the
width and the fractional excess of the Beam A, we in-
ferred the parameter ε ∼ 10−3. Assuming that this value
of ε relates to the 1TeV beam median energy, we obtain
K ∼ 10−6. Taking VA/c ∼ 10−4 and α ∼ A ∼ 10−3, we
obtain pBmax ∼ 10 TeV. This is encouragingly close to the
MILAGRO estimates of the beam cut-off energy.

Summary The principal results of this paper are as fol-
lows. Assuming only a large scale anisotropic distribution
of CRs (generated, for example by a nearby accelerator,
such as a SNR) and a Goldreich & Sridhar [4] (GS) cas-
cade of Alfvenic turbulence originating from some scale l,
which is the longest scale relevant for the wave-particle in-
teractions, we calculated the propagation of the CRs down
their gradient along the interstellar magnetic field. It is
found that the CR distribution develops a characteristic an-
gular shape consisting of a large scale anisotropic part (first
eigenfunction of the pitch-angle scattering operator) super-
posed by a beam, tightly focused in the momentum space in

the local field direction. The large scale anisotropy carries
the momentum dependence of the source, while both the
beam angular width and its fractional excess (with respect
to the large scale anisotropic component) grow with mo-
mentum (as

√
p and p, respectively). Apart from the width

and the fractional excess of the beam, the theory predicts
its maximum momentum on the ground that beyond this
momentum the beam destroys itself. All the three quan-
tities are completely determined by the turbulence scale l.
Even if l is considered unknown, it can be inferred from any
of the three independent MILAGRO measurements. These
are the width, the fractional excess and the maximum en-
ergy of the beam, and all the three consistently imply the
same scale l ∼1 pc. The calculated beam maximum mo-
mentum encouragingly agrees with that measured by MI-
LAGRO (~10 TeV/c). The theoretical value for the angu-
lar width of the beam is found to be ∆ϑ ' 4

√
ε , where

ε = rg (p)/l ¿ 1. The beam fractional excess related to the
large scale anisotropic part of the CR distribution is' 50ε .
Both quantities also match the Milagro results for E ∼ 1−2
TeV. So, the beam has a momentum scaling that is one
power shallower than the CR carrier, it is drawn from.
The model suggested in this paper becomes devoid of free
parameters, if the knee energy at∼ 3PeV can be associated
with the maximum CR energy of the source of the beam
and thus the unknown parameter l can be associated with
the gyroradius of a 3PeV particle. Even though such an
association is not proven, our propagation model predicts
the three beam characteristics: its width, fractional excess
and maximum energy to be the functions of a single quan-
tity, the longest wave-particle interaction scale l. They all
give the correct MILAGRO values for l ' 1 pc, which is
unlikely to be coincidental.
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