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Charged-Particle Transport in anisotropic magnetic Turbulence
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Abstract: Turbulence with an associated turbulent magnetic field is common in astrophysical environments. The deter-
mination of the transport of charged particles both parallel and perpendicular to the mean magnetic field is of considerable
interest. Quasi-linear analysis or direct numerical simulation can be usedto find the effects of the turbulent magnetic field
on the transport of charged particles. A number of different magneticturbulence models have been proposed in the last
several decades. We present the results of studying particle transport in synthesized, anisotropic (Goldreich & Sridhar,
1995) turbulence and compare the results with those obtained using the standard isotropic turbulence model.
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1 Introduction

The scattering and diffusion of energetic charged particles
is not only important for understanding phenomena such
as diffusive shock acceleration but it also is a natural probe
of the statistical characteristics of magnetohydrodynamics
(MHD) turbulence. Although Parker’s transportation equa-
tion [1] allows us to describe the propagation of charged
particles, the transport coefficients needed in the equation
must be determined. Quasi-Linear Theory (QLT[2]) shows
that coefficients can be related to the correlation functionof
isotropic homogeneous magnetic turbulence, which shows
the important role of Field Line Random Walk (FLRW[3]).
However, the statistics in different turbulence models will
generally have different influences on the particle’s scat-
tering and diffusion. Among those models developed on
MHD Turbulence such as isotropic Slab [4], Slab plus 2D
[5, 6] , etc., a Kolmogorov type, incompressible one, first
proposed by [7] is chosen in this test particle simulation to
calculate the transport coefficients in the tensor.

Anisotropy in MHD turbulence was proposed nearly 30
years ago [8]. And observations have also shown the
anisotropy in the solar wind turbulence[9, 10]. In the
Goldreich-Sridhar model, for incompressible turbulence,in
the inertial range the turbulence cascade is also anisotropic.
The mixing of perpendicular motion and parallel waves are
connected byk‖VA ∼ k⊥vk, wherek‖ is the parallel mo-
tion component wave number,VA the Alfven speed,k⊥ the
perpendicular motion component wave vector,vk the speed
of the motion. This ”critical balance” betweenk‖ and
k⊥ in the local reference frame is assumed based on that:
1) the parallel wave modes are traveling at Alfven speed
along the field line while the normal components at speed

vk, 2) the parallel cascading time scale is(k‖VA)
−1 while

the perpendicular cascading time scale is(k⊥vk) and, 3)
these two time scales are equal to each other, which is the
critical balance condition. At this mixing rate the cascad-
ing energy would be equally partitioned in both direction.
This anisotropy changes the magnetic field and hence could
modify the scattering and diffusion of energetic particles
from the isotropic case, which is of great interest.

Recently, test particle simulations were performed by
Berensnyak et al 2011[11] using results from MHD tur-
bulence simulation. Our approach is different from theirs
in that it not only preserves the statistics of the magnetic
turbulence such as moments (mean, variance) and corre-
lation functions (power spectra), but also, because of the
synthesizing method, explores the full range of scales in the
inertial region. Alternatively, this could be achieved by in-
terpolation in Direct Numerical Simulations of turbulence
but only with limited resolution.

In this paper we compare the influence of the anisotropic
turbulence to the transport of charged energetic particles
with previous turbulence models in the context of protons
with energy from1MeV ∼ 1GeV traveling in the solar
wind. Section 2 describes the method used to generate the
turbulent magnetic field. Section 3 lists the parameters used
in simulation. Section 4 shows the results and section 5 is
discussion.

2 Magnetic turbulence

The static magnetic field which we used is synthesized
using a method similar to that used in Giacalone et al
[12] (hereafter referred as label12) for isotropic and com-
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posite turbulence. Here we use the power spectrum
function at wave numberk⊥ and k‖ with P (k⊥, k‖) ∼
(k⊥)

−10/3f(k‖/k
2/3
⊥ ), where k‖ is the parallel motion

component wave number and,k⊥ the perpendicular mo-
tion component wave vector[7]. To take into account
of the large scale magnetic field meandering, we adapt
an asymptotic function ofk−10/3

⊥ . For the function
f(L1/3k‖/(k⊥)

2/3), which dictates the critical balance be-
tweenk‖ andk⊥ in the local reference frame, we take the
exponential form[13]. The spectrum function used in the
simulation is listed as follow

P1(k⊥, k‖) =
σ2
BL

3 exp{−L1/3|k‖|/(k⊥)2/3}
6π(k⊥L)5/3(1 + k⊥L)5/3

(1)

Whereσ2
B is the variance of the magnetic field strength

and L is the turbulence injection length. If the power (P1)
is small, the spectrum turns to be isotropic. As the power
(P1) increases, it turns to elongate alongk⊥, which is the
direction normal to the mean field. This anisotropy corre-
sponds with what would be expected in Goldreich-Sridhar
type spectrum. If power spectrum is integrated overk‖ to
be a function only ofk⊥, the 1-D power spectrum index
is −5/3, as expected as the Kolmogorov power spectrum.
The power functionP2 is similar.

3 Tracking test particles

3.1 Trajectory integration

Since the energetic particles have a much lower density
than the thermal particles and a test particle simulation is
adequate. The motion of the charged particles is governed
by the Lorentz force:

dv
dt

=
q

mc
v × B (2)

where q is the charge, m the mass,v the velocity, and c the
speed of light.

We solve this equation using a fourth order, adaptive-step
Ronge-Kutta method ([14]). Each step is calculated by 5
sub-points within the step. And each step size is adjusted
to preserve the given step error tolerance. So if the equa-
tion is smooth, the time step can be relatively large. If the
parameters vary rapidly, the time step shrinks accordingly.
Although it is not a conservative method (for accumula-
tive truncation error), as in this simulation, the time step
is around103Ω−1

i (ion gyrofrequency) , which means the
truncation error is tolerable compared with the real solu-
tion.

For each case listed in table 1, we used 2400 particles and
48 realizations of magnetic field with different sets of ran-
dom wave modes as mentioned in the last section. And
for each realization there are 50 particles set with the same
initial speed and position but in different directions isotrop-
ically distributed.

Simulation Parameters
# E rg σ2 Lc λmin λmax

- MeV 10−3AU AU rg rg rg
1 1.0 0.193 1.0 51.9 0.519 5190
2 3.16 0.343 1.0 29.2 0.2917 2917
3 10.0 0.611 1.0 16.4 0.1637 1637
4 31.6 1.09 1.0 9.15 0.0915 915.4
5 100 1.98 1.0 5.06 0.0506 505.8
6 316 3.70 1.0 2.70 0.0270 270.0
7 1000 7.59 1.0 1.33 0.0133 132.6
8 31.6 1.09 0.5 9.15 0.0915 915.4
9 31.6 1.09 0.3 9.15 0.0915 915.4
10 31.6 1.09 0.1 9.15 0.0915 915.4
11 31.6 1.09 0.05 9.15 0.0915 915.4
12 31.6 1.09 0.01 9.15 0.0915 915.4

Table 1: All the cases are calculated in Goldreich Sridhar
type turbulence spectrum.

The transport coefficients are calculated in the same way
as in label12 by fitting the solution to a finite absorbing
boundary diffusion problem.

3.2 Parameters

Listed in Table 1 are simulation cases and related param-
eters. They are the same as in [12]. The variance of the
turbulence magnetic field is1.0 in case 1 to 7 and varies in
case 4 and 8 to 12.

4 Results

Table 2 shows the result of the simulations.

Simulation Results
Case κ⊥ κ‖ κ⊥/κ‖

- 1018 cm2

s 1020 cm2

s 1
1 3.224 1.043 0.031
2 6.434 2.200 0.029
3 11.39 4.791 0.024
4 27.06 12.49 0.022
5 53.47 27.22 0.020
6 118.3 67.20 0.018
7 234.3 163.4 0.014
8 16.76 25.71 0.0065
9 10.41 72.86 0.0014
10 8.691 121.8 0.0007
11 5.933 217.0 0.0003
12 1.457 345.6 4.2×10−5

Table 2: The results are from the correspondent cases using
GS[7] type turbulence spectrum as equation (1).

Figure 1 shows how theκ⊥, κ‖ (left panel) andκ⊥/κ‖ vary
with particle’s energy, as in case 1 to 6 in table 1. Both
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Figure 1: The left panel shows perpendicular and parallel transport coefficients in both GS type and isotropic turbulence
spectrum, as a function of the particle’s energy. The stars and crosses,κ⊥ andκ‖ respectively, are values in Table 2.
The solid lines are simulation results from cases with the isotropic turbulence power spectrum as in Giacalone et al [12].
The upper one is the parallel diffusion coefficient while thelower one the perpendicular coefficient. The upper and
lower dashed lines are the coefficients calculated by equations 3 and 5 respectively. The right panel shows their ratio as
the function of proton energy. Stars areκ⊥/κ‖’s from Table 2. And the crosses connected by the solid line represents
simulations results with isotropic turbulence model, and the dashed line is from equations (3) and (5) using GS type power
spectrum. All the results as according to the cases 1 to 7 in Table 1.

coefficients increase with particle’s energy, and the magni-
tude of these two coefficients are close to those calculated
in label12 from isotropic (and composite) turbulence spec-
trum. According to Quasi-Linear Theory, the perpendicular
coefficient is [2]

κ⊥ =
1

2

∫ 1

0

dµ{ µv
B2

0

P⊥(k⊥ = 0)

+
(1− µ2)v

2|µ|B2
0

P‖(k‖ =
Ω0

µv
)}

∼= vLc

6

σ2
B

B2
0

(3)

A quick estimate would tell us the dominate effect in both
isotropic and Goldreich-Sridhar type turbulence is in the
low wave number components. In the simulation it is ex-
pected to be lower than the estimate by the Quasi-Linear
Theory because we start fromk = 0.1(Lc−1). In the par-
allel diffusion case, the scattering rate and diffusion coeffi-
cient could be calculated by [2, 15, 16]

ν =
2Dµµ

1− µ2
=

π

3
Ω0

σ2
B

B2
0

Ω0Lc

(v|µ|)

(1 + Ω0Lc

v|µ| )
5/3

(4)

κ‖ =
3v3

πΩ2
0Lc

B2
0

σ2
B

∫ 1

0

µ(1− µ2)(1 +
Ω0Lc

vµ
)5/3dµ (5)

The values from simulation are close to the estimate from
equation 5. The ratioκ⊥/κ‖, unlike in the isotropic tur-
bulence case, decreases slightly with particle’s energy, as

shown in Figure 1. If we compare equation 3 to equation
5, we could see the ratio of transport is related tov2. How-
ever, it does not change much. As in the particle’s energy
range (1MeV ∼ 1GeV ) we tested, it is about0.01 ∼ 0.03
for a strong turbulence (σ2

B ∼ 1), or κ⊥ << κ‖. In Figure
2, this ratio is even smaller for milder turbulence variances.

Furthermore, in the Goldreich-Sridhar type turbulence, the
perpendicular diffusion coefficients are larger than that in
isotropic type. Since it is mainly controlled by the large
scale field component, the perpendicular transport coef-
ficients calculated in the simulation in both Goldreich-
Sridhar type and isotropic case are very close to each other.
This just confirms the Field Line Random Walk theory pro-
posed by [2] and [3] on particle’s transverse motion.

Notice also thatν ∼ (vµ)2/3σ2
B, then by Quasi-Linear

Theory, it is zero at pitch angleθ = 900 and would max-
imize atθ ∼ 00. Also it increases with particle’s energy
and the variance of magnetic turbulence . This could be re-
lated to the magnetic mirror effect induced by the fast mode
wave in the turbulence, which will increase the scattering
rate. While scattering rate is very important in diffusive
shock acceleration, one might estimate that in turbulence
model with strong fast mode related cascading, the accel-
eration will be enhanced.

Figure 2 shows how theκ⊥, κ‖ (left panel) andκ⊥/κ‖ vary
with the variance of the magnetic field, as the particle’s
energy is 31.6 MeV. In the left panel of figure 2 it shows
the perpendicular transport coefficient increases as the vari-
ance of the magnetic field increases, since in this case both
the scattering and field line random walk are stronger. The
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Figure 2: In the left panel, stars and crosses show perpendicular and parallel transport coefficients from Table 2, as a
function of variance of the field strength. Similar to Fig.1,The upper and lower dashed-dotted lines are from test particle
simulations with the isotropic power spectrum[12] for perpendicular and parallel diffusion coefficients respectively. In the
right panel, stars show the ratio ofκ⊥ to κ‖ from Table 2 varies with the variance of the field strength while the dashed
line represent the calculation from equations (3) and (5). The results are according to the case 4 and 8-12 in Table 1.

parallel transport coefficient is smaller, since the mean free
path in this case along the field line would be smaller. Com-
bine these two changes, the ratio of transport coefficient,
κ⊥/κ‖, is then increasing as the variance is enlarged.

5 Conclusion

Using the global Goldreich&Sridhar power spectrum we
constructed an globally anisotropic turbulent magnetic field
and performed test particle simulation to analyze particle’s
diffusion and the conclusions could be summarized as fol-
lows:
1. There is no big difference on particle’s diffusion be-
tween isotropic and globally anisotropic turbulence mag-
netic fields; Field Line Random Walk is sill the main factor
of particle’s diffusion;
2. The ratioκ⊥/κ‖ is about0.01 ∼ 0.03 for a strong tur-
bulence (σ2

B ∼ 1); and
3. κ⊥ ∼

√
Eσ2

B , κ‖ ∼
√
E3(σ2

B)
−1.

However, the synthesized magnetic turbulence is globally
anisotropic. One of the main feature of GS95 model is that
the magnetic turbulence may be local. In other words, the
nearly spherical turbulence eddy in the large scale (say, the
turbulence injection scale), would stretch along the local
mean magnetic field line to the shape of a highly elongated
spheroid in smaller and smaller scales in the turbulence in-
ertial range.
Therefore, one has to determine the local average field di-
rection when adding the parallel and perpendicular wave
components in different scales (|k‖| ∼ k

2/3
⊥ ). One of

the difficulties arises from the fact that when one is doing

the synthesize, the average field would be changed accord-
ingly. In the same time, the local critical balance condition
(|k‖| ∼ k

2/3
⊥ ) and zero-divergence condition (∇ · B = 0)

have to be maintained. How to incorporate the localized
feature in the synthesized magnetic field and how would
the anisotropic turbulence affect the transport of charged
particles will be the next step of this work.
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