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AB S TRACT

The maximum energy for cosmic ray acceleration at supernova shock fronts is usually

thought to be limited to around 1014±1015 eV by the size of the shock and the time for which

it propagates at high velocity. We show that the magnetic field can be amplified non-linearly

by the cosmic rays to many times the pre-shock value, thus increasing the acceleration rate

and facilitating acceleration to energies well above 1015 eV. A supernova remnant expanding

into a uniform circumstellar medium may accelerate protons to 1017 eV and heavy ions, with

charge Ze, to Z � 1017 eV: Expansion into a pre-existing stellar wind may increase the

maximum cosmic ray energy by a further factor of 10.

Key words: acceleration of particles ± magnetic fields ± plasmas ± shock waves ±

turbulence ± cosmic rays.

1 INTRODUCTION

The theory of diffusive shock acceleration of cosmic rays (Axford,

Leer & Skadron 1977; Bell 1978; Blandford & Ostriker 1978;

Krymsky 1977; reviewed by Drury 1983) is well established, but it

cannot easily account for the probably Galactic origin of cosmic

rays (CR) between the spectral knee at 1014±1015 eV and energies

of 1018±1019 eV; above which the origin is probably extragalactic

(Axford 1994). Lagage & Cesarsky (1983) showed that the

characteristic time for acceleration to a momentum p is t �
4D( p)/u2 where u is the shock velocity and D(p) is the spatial

diffusion coefficient of cosmic rays with momentum p. In the time

t the shock travels a distance 4D(p)/u. The shock eventually slows

by interaction with the surrounding medium and this places a limit

on the energy to which CR can be accelerated. The minimum

realistic coefficient for diffusion that is not perpendicular to the

magnetic field is D�p� � rgc=3 � pc=3ZeB; where rg is the CR

gyroradius, Z is the charge on the CR in units of e and B is the

magnetic field in front of the shock. Protons accelerated to

1015 eV in a magnetic field of 3 � 1026 G by a shock travelling at

104 km s21 require the shock to propagate at high velocity for a

distance 4:4 � 1017 m � 14 pc; taking a time t � 1400 yr: D(p)

can be less for perpendicular shocks when CR diffusion is across

the magnetic field, but this is a special case. Acceleration to

1015 eV by supernova remnants (SNR) is marginal and accelera-

tion to higher energies improbable unless the magnetic field is

larger than typical interstellar values. McKenzie & Volk (1982)

point out that CR might indeed be able to amplify the magnetic

field above that in the undisturbed medium ahead of the shock.

This would increase the rate of acceleration and facilitate

acceleration to higher energies. Here we further investigate this

possibility.

2 MAGNETIC F IELD GENERATION

CR in the vicinity of the shock are scattered by irregularities in the

magnetic field. In the linear theory, these irregularities consist of

Alfven waves generated by the CR themselves as they diffusively

drift through the plasma upstream of the shock. If Ua is the energy

density of the Alfven waves and Pcr is the CR pressure, then the

growth and advection of Ua in the shock rest frame (the inertial

frame in which the shock is at rest) obeys the equation

Ua

t
1 u

Ua

x
� va

Pcr

x
; �1�

where the plasma flows with positive velocity u into the shock

from the direction of x � 21; the Alfven speed va is assumed to

be much less than u, and Alfven wave damping is neglected. The

waves propagate in the direction opposite to the plasma flow. In a

steady state Ua=t � 0: If the background magnetic field is

uniform then va is independent of x, and the equation can be

integrated to give Ua � vaPcr=u: If Pcr0 is the CR pressure at the

shock, r is the upstream mass density, B is the background

magnetic field and DB is the fluctuating magnetic field �Ua �
DB2=m0�; then

DB

B

� �2

� Ma

Pcr0

ru2
; �2�

where Ma � u=va is the Alfven Mach number of the shock. CR

acceleration can be very efficient (Volk, Drury & McKenzie 1984;
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Bell 1987; Falle & Giddings 1987), Pcr0 , ru2; and Ma is

necessarily greater than 1, implying that the magnetic field is

amplified non-linearly. Naive application of this relation gives

DB=B @ 1 for parameters typical of young supernova remnants. A

shock moving at 104 km s21 into a medium containing 1 pro-

ton cm23 and a magnetic field of 3 � 1026 G has an Alfven Mach

number of Ma � 1500: A naive application of equation (2)

suggests an increase in the magnetic field energy by a factor of

1000. The conclusion is first that the linear theory breaks down

and secondly that it is at least possible that the magnetic energy

density close to the shock is much greater than that in the

undisturbed upstream plasma.

As the Alfven disturbance grows and DB/B approaches 1, it can

no longer be considered as a linear Alfven wave and energy can be

transferred by damping mechanisms and wave±wave coupling to

the thermal plasma, to kinetic motions, to non-Alfvenic waves or

to Alfven waves at other wavelengths. A full treatment of CR-

excited Alfven turbulence is beyond the scope of this paper, and

we propose the following approximate model.

In the linear case it was assumed that all Alfven disturbances

propagate (relative to the plasma) towards x � 21 at the Alfven

velocity. In the non-linear case, Alfven turbulence will consist of

structures that move in all directions. We assume that the

tensioning and relaxation of field lines isotropizes the motion of

magnetic structures on a time-scale t a. Since the characteristic

scale of the structures moving at velocity va is a CR gyroradius rg,

we assume that the characteristic winding and unwinding time of

field lines is rg/va, so we set ta � rg=va: We notionally separate

the Alfven turbulence into a component with energy density U1

propagating at speed va in the positive x direction and a

component with energy density U2 propagating at the same

speed in the negative x direction. We define a mean local velocity

of the Alfven turbulence as

vav � va
U1 2 U2

U1 1 U2

; �3�

and the rate at which CR transfer energy to Alfven turbulence

(force acting through a distance) is

u


x
�U1 1 U2� � 2vav

Pcr

x
: �4�

The CR pressure gradient Pcr=x . 0 increases the energy

density U2 of the reverse travelling component of the Alfven

turbulence and correspondingly decreases U1. We assume that the

rate of turbulent energy transfer from U2 to U1 is proportional to

U2, and that the rate of energy transfer from U1 to U2 is similarly

proportional to U1. This allows us to propose the following

equations, including both excitation and isotropization, for the

evolution of each component:

u
U2

x
�

U2

U1 1 U2

va
Pcr

x
2

va

rg
�U2 2 U1�; �5�

u
U1

x
� 2

U1

U1 1 U2

va
Pcr

x
2

va

rg
�U1 2 U2�: �6�

The first term on the right-hand side of each equation represents

wave excitation, and the second term represents wave isotropiza-

tion. The energy given by CR to each component of the wave is

allocated in proportion to its amplitude. In writing these equations

we made the approximations that u is constant and that the

advection of each component is at velocity u rather than u^ va;

which would allow for the motion of components at velocity ^va
relative to the plasma. These approximations should be adequate

for the high-energy CR, which in themselves have insufficient

energy density to modify the shock strongly or increase the

magnetic energy density to a value comparable with the plasma

kinetic energy density. Low-energy cosmic rays, having smaller

gyroradii, are confined more closely to the shock and have no

effect on the regions upstream occupied by the highest energy

cosmic rays.

Equations (5) and (6) determine the growth of the magnetic

field. We also need an equation for the CR spatial distribution in

response to scattering by the turbulence. CR are most strongly

scattered by magnetic structures with scalelengths comparable to

their gyroradius. For a complete treatment we would need to make

U1 and U2 functions of scalelength or wavenumber k, and we

would have to make Pcr a function of energy or CR gyroradius. To

simplify the analysis we confine it to CR with a characteristic

gyroradius rg and Alfven turbulence with a scalelength equal to rg.

We take U1 and U2 to be the energy density of structures with

wavenumber k � 1=rg over waveband Dk � k; and assume that

these structures interact with CR over a momentum range Dp � p;
where p is the momentum of CR with a gyroradius rg. We will

then extend the argument to a larger range of k and E.

We assume that the CR interact diffusively with the Alfven

turbulence with a diffusion coefficient D � crg=3; where rg �
p=eB and B �

�����������������������������

m0�U1 1 U2�
p

: This corresponds to CR inter-

acting with that part of the magnetic field constituting the

Alfven turbulence with the required scalelength. The CR distri-

bution is then determined by a balance between advection and

diffusion:

Pcr

x
�

uPcr

D
�

3euPcr

pc
�m0�U1 1 U2��1=2: �7�

The set of equations for U1, U2 and Pcr is completed by an

equation for the Alfven velocity va. In the region upstream of the

shock occupied by the highest energy cosmic rays, the main

contribution to the magnetic field comes from the Alfven

turbulence generated by these CR. Hence we can write

va �
U1 1 U2

r

� �1=2

; �8�

where r is the upstream plasma mass density, which is uniform

because u is uniform.

Writing W � U2 2 U1; equations (5)±(8) can be manipulated

to give the set of equations

2r2v2au
va

Pcr

� W �9�

u
W

Pcr

� va 12 u
W

Pcr

� �

; u �
2D

urg
; �10�

Pcr

x
�

u

D
Pcr: �11�

Since Pcr increases monotonically with x, equations (9) and (10)

can be viewed as coupled equations for W and va, which are both

functions of Pcr. In this model, u is independent of x. Since D �
rgc=3; u � 2c=3u and u @ 1 for cases considered here. These

equations can be put in dimensionless form:

dm

dh
� f 12

m

h

� �

;
d�f�3

dh
�

3

2
m;

dh

dl
� 2hf;
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where

m � u2
W

ru2
; f � u

va

u
; h � u

Pcr

ru2
;

l �
xue

��������

m0r
p

upc
�

xu

urg0va0
: �12�

rg0 and va0 are the CR gyroradius and Alfven velocity in some

reference magnetic field such as a typical interstellar field of

3mG. In essence, for a fixed density r and flow velocity u, f is a

measure of magnetic field, h a measure of CR pressure, l a mea-

sure of distance and m a measure of the anisotropy in the Alfven

turbulence. Note the importance of the parameter u in scaling the

equations. The first two equations of (12) can be solved, without

reference to the third, for the magnetic field as a function of the

CR pressure. The third equation then gives the magnetic field and

CR pressure spatial profiles as functions of x.

The solution separates into two regimes:

(i) a large u/c, relatively low CR pressure, small h and m ! h

regime (regime A) in which isotropization of the Alfven

turbulence can be neglected and the first of equations (12)

reduces to dm=dh � f;

(ii) a small u/c, high CR pressure, large h , regime (regime B) in

which isotropization dominates and the advective term (term on

the left-hand side) in the first of equations (12) can be neglected,

giving m � h: Regime B, if it applies at all, applies close to the

shock at late times when u/c is small.

A solution in regime A is m � h2=4; f � h=2: This solution

assumes that the magnetic field (/f) tends to zero as the CR

pressure (/h ) tends to zero. It neglects the interstellar magnetic

field far upstream where the CR pressure is very small, but this

neglect is acceptable because we are mainly interested in cases

where the field is amplified by a large factor. The solution in

regime B is m � h; f � �3=4�1=3�h2
2 h2

0�1=3; where h0 is a

constant of integration. The solutions for m cross at h � 4; and the
solutions for f match at this point if h2

0 � 16=3: Making this

approximation that the asymptotic solutions for regimes A and B

hold for all h , 4 and all h . 4 respectively gives the overall

solution

f �
h=2; m � h2=4 if h , 4;

�3h2=42 4�1=3; m � h if h . 4:

(

�13�

This approximate use of asymptotic solutions in place of the

correct solution of equations (12) causes a maximum error, close

to h � 4; of 20 per cent in f . This is a small error in comparison

with the uncertainties of the model.

Reverting to dimensional quantities, the solution for the Alfven

velocity can be written in terms of the ratio of the magnetic

pressure to the kinetic energy density

B2=2m0

ru2=2
�

1

4

Pcr

ru2

� �2

if
Pcr

ru2
,

6u

c
�Regime A�;

9uP2
cr

8cr2u4
2

27u3

2c3

� �2=3

if
Pcr

ru2
.

6u

c
�Regime B�:

8

>

>

>

>

<

>

>

>

>

:

�14�

It is likely that an SNR shock enters regime B late in the life of

the SNR when u ! c: Hence magnetic field amplification will be

weak when the SNR is well into the Sedov phase. During the early

free expansion phase, when the shock velocity is around or above

10 000 km s21, it is likely that the solution for Regime A applies

throughout the upstream plasma since Pcr is the pressure of only

the high-energy CR. In this case, the magnetic field is

B �
u

104 km s21

� � ne

cm23

� �1=2 Pcr

0:1ru2

� �

� 2:3 � 1024 G: �15�

The magnitude of the magnetic field depends upon the

uncertain ratio of the CR pressure Pcr to the plasma momentum

flux ru2. The total (thermal plus CR) pressure at a strong shock is

3ru2/4, so a CR modulated shock may have a CR pressure as large

as ru2/2. In our model, Pcr represents the pressure of CR at the

highest energy over a momentum range Dp � p: In the standard

linear theory of shock acceleration, the CR pressure and energy

density are equally spread over every decade of the spectrum. If

the spectrum spreads evenly between 109 and 1017 eV, then Pcr is

equal to the total CR pressure over the whole spectrum divided by

ln �1017=109� � 18:4; in which case, for a CR modulated shock,

Pcr < 0:03ru2: However, Bell (1987) showed that strong CR

modulation flattens the CR spectrum, and much of the energy is

given to the highest energy CR. In these conditions, Pcr might

easily reach values as large as 0.1ru2, implying magnetic fields

approaching a mG for a rapidly expanding SNR.

3 COMPARISON WITH SIMULATIONS

In a companion paper (Lucek & Bell 2000) we have simulated the

CR excitation of Alfven turbulence. CR, modelled as particles, are

initialized with a streaming velocity u, equivalent to the shock

velocity. The magnetic field is initialized as a uniform field with a

low-amplitude Alfvenic perturbation. The perturbation is ampli-

fied by the streaming CR to produce a tangled magnetic field with

an amplitude many times that of the original nearly uniform field.

The CR streaming is isotropized by the magnetic field. The effect

is largest when the wavelength of the initial perturbation is about

1/5 of the initial CR gyroradius. As the magnetic field is amplified

the CR gyroradius decreases until it matches the scalelength of the

magnetic field structure as expected for strong interaction between

waves and particles. The streaming is annulled in about one

CR gyroperiod, increasing the magnetic energy density to

�B2=2m0�=Pcr , �u=c�2; which differs from �B2=2m0�=Pcr �
Pcr=8ru

2 found for regime A in equation (14). For reasonable

SNR parameters, the two estimates give similar absolute

magnitudes but the processes are different because the simulated

turbulence is not excited by a stationary pressure gradient. The

turbulence is excited more rapidly in the simulation but this may

be a result of the initial conditions, and the simulated turbulence is

seen to grow less rapidly after one gyroperiod. It is encouraging

that the simulation (i) demonstrates that a magnetic field can be

amplified well above its seed value, (ii) shows that CR iso-

tropization occurs on a time-scale of a gyroperiod, implying a CR

mean path of a gyroradius and the validity of Bohm diffusion, and

(iii) generates a magnetic field even more rapidly than we assume

in this paper.

4 THE MAXIMUM COSMIC RAY ENERGY

Previous analysis (Lagage & Cesarsky 1983; Axford 1994) has

shown that a SNR expanding into a typical interstellar magnetic

field of a few mG is capable of accelerating protons to energies

around the spectral knee at 1014±1015 eV: Non-linear amplifica-

tion of the magnetic field to 100 times this value reduces the CR
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gyroradius, the upstream scalelength of the CR distribution, and

the acceleration time by a corresponding factor of 100. Since the

maximum energy, as calculated by Lagage & Cesarsky, is deter-

mined by the acceleration rate, it appears that magnetic field

amplification might offer an explanation for the continuation of

the CR spectrum beyond the knee. As shown by Hillas (1984),

the maximum CR energy depends upon the value of LvB, where

L, v and B are the characteristic distance, velocity and magnetic

field in the accelerating region. Across a wide range of possible

acceleration sites, the value of this parameter limits the

maximum energy to that of the knee. Magnetic field amplifica-

tion offers a means to increase LvB and accelerate CR to higher

energies.

The following argument is an adaptation for our circumstances

of that by Lagage & Cesarsky. The acceleration rate is propor-

tional to B/p. Acceleration is rapid at low momentum and slow at

high momentum. The dependence of the acceleration rate on B

means that acceleration is relatively more rapid at momenta at

which a large number of CR have amplified the magnetic field.

Because of these two considerations, a front in the CR density

will develop in momentum space at some momentum pfront. At

momenta below pfront, the CR density, B, and the acceleration rate

are all large. Above the front, beyond pfront, there are few CR, B

has not been amplified, and acceleration is slow. The rate at which

pfront increases can be estimated from the equation for the CR

phase space distribution function:

f

t
1

�uf �
x

2
1

3

u

x

1

p2
�fp3�
p

2


x
D
f

x

� �

� 0; �16�

where f �x; p; t� is the isotropic part of the distribution function

which is a function of position x, magnitude of momentum p and

time. Integration in x, in the approximation that f is constant across

the region in which u changes, gives



t

�

1

21

f dx � 2u2F 2
u1 2 u2

3

1

p2
�Fp3�
p

; �17�

where u1 and u2 are the upstream and downstream fluid

velocities, respectively, in the shock frame, and F is the value

of f at the shock. At the front in momentum space, the first term

on the right-hand side of equation (17) is much smaller than the

second term, so integration across the front from just below pfront
to just above pfront gives

dpfront

dt
�

u1 2 u2

3
pfrontF�pfront�

�

1

21

f �pfront� dx
� �

21

<

u1 2 u2

6Lcr
pfront <

u2eB

2c
; �18�

where we have made the approximation
�

1

21
f �pfront� dx �

2LcrF�pfront� and used Lcr � D=u � �c=u��rg=3�: The factor of 2

in the approximation for the spatial integral allows for the CR

spending equal times in the downstream and upstream regions.

The upstream and downstream dwelling times are the same if both

the plasma flow velocity and the CR diffusion coefficient decrease

by the compression ratio at the shock as expected (Lagage &

Cesarsky 1983). Equation (18) can be integrated over the expan-

sion of the SNR to give the maximum CR energy Efront (in eV)

after the SNR has expanded to a radius R:

Efront �
cpfront�R�

e
�

1

2

Pcr0

ru2

� �

m
1=2
0

�R

R0

u2r1=2 dr; �19�

where the magnetic field at any time is taken to be that

immediately upstream of the shock B2=m0 � �Pcr0=ru
2�2ru2; as

derived earlier, and Pcr0 is the value of Pcr at the shock. R0 is the

shock radius when acceleration begins. This may be set equal to

the radius of the progenitor star.

The SNR enters the self-similar Sedov phase when it has

swept up more than its own mass of circumstellar material.

During the Sedov phase, u / R23=2; so Efront increases little

once this phase has been entered. Indeed, CR acceleration is

restricted by the condition that the CR scaleheight upstream of

the shock must be smaller than the radius of the SNR. Because

magnetic field amplification weakens or ceases in the Sedov

phase, thus increasing the CR diffusivity, acceleration cannot

then take place beyond the usual Lagage & Cesarsky limit and

CR previously accelerated above the limit may be able to

escape the remnant.

The maximum CR energy Emax attained during the lifetime

of the SNR can be estimated by integrating through the preced-

ing free expansion, u � constant; until R � Rfree; i.e. Emax �
Efront�Rfree� where
�Rfree

R0

4prr2 dr � MSN �20�

and MSN is the ejected mass.

5 A UNIFORM CIRCUMSTELLAR MEDIUM

We first calculate Emax for a uniformly dense circumstellar

medium, giving

Emax �
1

2
�m0r�1=2

Pcr0

ru2

� �

u2
3MSN

4pr

� �1=3

; �21�

Emax �
u

104 km s21

� �2 ne

cm23

� �1=6 Pcr0

0:1ru2

� �

MSN

M0

� �1=3

� 1:5 � 1016 eV: �22�

This result suggests that expansion into a uniform circumstellar

medium can accelerate CR above the knee. Since the SNR

expansion velocity u can be as large as 40 000 km s21, proton

acceleration to 1017 eV, and acceleration of heavier ions above

1018 eV, is feasible.

6 EXPANSION INTO A STELLAR WIND

Volk & Biermann (1988) suggested that CR could be accelerated

to higher energies if the SNR expanded into a pre-existing stellar

wind from the giant progenitor to a Type II SN. They estimated

that the magnetic field in the wind, transported by the wind from

the surface of the star, could be many Gauss, resulting in rapid

CR acceleration. Their assumed stellar magnetic field may be

unreasonably large (Axford 1994), and here we consider the

possibility that the field might be amplified by CR streaming. As

reference parameters we take those appropriate for SN1993J in

which the SN shock expands at a velocity of around 20 000 km s21

into a stellar wind with a mass loss rate _M ù 5 � 1025M0 yr
21 at a

velocity vwind ù 10 km s21 (values taken from Fransson &

Bjornsson 1998). The progenitor was probably a red giant (e.g.

Marcaide et al. 1997).

In a steady wind, the circumstellar density is proportional to

R22 such that 4pR2rvwind � _M: Substituting this density into
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equation (19), the maximum energy resulting from acceleration

during the free expansion phase is

Emax �
1

2

Pcr0

ru2

� �

u2
m0

_M

4pvwind

� �1=2

ln
Rfree

R0

� �

�
u

2 � 104 km s21

� �2 _M

5 � 1025M0 yr21

� �1=2
Pcr0

0:1ru2

� �

�
vwind

10 km s21

� �

21=2 ln�Rfree=R0�
9

� �

� 1:0 � 1018 eV; �23�

where the value of the logarithmic term is based on a choice of

R0 � 1013 m: The maximum CR energy increases equally in each

decade of increase in radius, as shown by the logarithmic

dependence on Rfree. Hence Emax is not strongly dependent on

the initial and final expansion radii (R0 and Rfree). The increase in

Emax over the uniform density case is a result of the increased

density and magnetic field (dependent on density as given by

equation 15), especially during the early stages of the SN

explosion. These are given by

ne �
_M

5 � 1025M0 yr21

� �

vwind

10 km s21

� �

21 R

1013 m

� �

22

� 1:5 � 108 cm23; �24�

B �
u

2 � 104 km s21

� � _M

5 � 1025M0 yr21

� �1=2
Pcr0

0:1ru2

� �

�
vwind

10 km s21

� �

21=2 R

1013 m

� �

21

�5:6G: �25�

The large magnetic field when R is small yields very rapid

acceleration. For comparison, Fransson & Bjornsson deduce from

observations of SN 1993J a magnetic field which is an order of

magnitude larger than that given by equation (15), B ù

64�R=1013 m�21 G; which they suggest is the result of post-

shock turbulent amplification. However, their magnetic field is

probably a post-shock value, which will be 2±4 times the pre-

shock value, and our value of B is that on the scalelength of the

gyroradius of the highest energy CR. When shock compression

and the contribution of short scalelength fields is allowed for (e.g.

by putting Pcr0 < 0:5ru2�; then our estimate matches the

measurement by Fransson & Bjornsson surprisingly well. It is

notable that the dependence on R is the same. In any case, it is

encouraging that their results show that our estimated magnetic

field is not extravagantly large.

This looks very encouraging, but there is another limit on Emax

that we must consider, which in fact restricts Emax to a lower value

than that given in equation (23). So far, we have considered a

limitation on the time available for acceleration. There is also a

limitation on space. The CR scaleheight upstream of the shock,

Lcr, cannot exceed the radius of the SNR:

Lcr �
1

3

c

u
rg �

1

3

c

u

pmax

eB
< R; �26�

where Emax � cpmax=e: This spatial limit is close to that obtained

by Volk & Biermann by including adiabatic losses, and indeed the

two are closely connected. Observations of SN1006 (Tanimori et

al. 1998), show that, in at least some cases of CR acceleration, the

maximum CR energy does not fall far short of this limit. For

constant u and expansion into a stellar wind, B / r1=2 / R21; so
the spatial limit on Emax is independent of R for expansion into a

stellar wind. The spatial limit on the CR energy is

Emax �
u

2 � 104 km s21

� �2 _M

5 � 1025M0 yr21

� �1=2

�
Pcr0

0:1ru2

� �

vwind

10 km s21

� �

21=2
�3:4 � 1017 eV: �27�

Comparison with the temporal limit shows that this is tighter by a

factor ln�Rfree=R0�=3: As the spatial limit dominates, and this limit

is independent of the radius of the shock front, acceleration to the

limit occurs before the end of the free expansion phase. This

spatial limit does not affect the acceleration in a uniform

circumstellar medium discussed in Section 5.

Another possible limit on proton acceleration might be nuclear

interactions with background matter. A CR proton has a cross-

section of s � 3 � 10230 m2 for interaction with other protons

(Harwit 1973), giving rise to a loss time tloss � �necs�21 �
1015�ne=cm23�21 s: Equation (24) for ne in a stellar wind, implies,

for _M ù 5 � 1025M0 yr
21 and vwind ù 10 km s21; a loss time of

around 107 s at a radius of 1013m, which is an order of magnitude

longer than the SNR expansion time and therefore cannot inhibit

acceleration. As the SNR radius increases, the nuclear loss time

increases (inversely proportional to density) as R
2, whereas the

acceleration and expansion times increase only as R. Nuclear

losses do not inhibit the CR acceleration in the circumstances

considered here, but they might be important in circumstances that

are not much more extreme.

Nuclear losses might not inhibit acceleration but they are large

enough to suggest substantial gamma-ray emission up to PeV

energies through the production and decay of neutral pions. In the

conventional theory of shock acceleration, the highest energy CR

are produced in the Sedov phase and gamma-ray emission is

relatively low during the earlier free expansion phase. In contrast,

if CR streaming amplifies the field as suggested here, the highest

energy CR are produced during free expansion. If the SN expands

into a pre-existing stellar wind, the gamma-ray luminosity is

greatest early in the free expansion phase. Although the number of

accelerated CR increases with shock radius rs during free

expansion into a pre-existing wind, the characteristic density,

and hence the rate of gamma-ray production by each CR,

decreases as r22
s : This suggests that SNR should be most visible at

gamma-ray energies soon after the shock initially breaks out of the

progenitor atmosphere. If this scenario is correct, the emission of

gamma rays at the highest energy may cease during the Sedov

phase owing to the cessation of field amplification and the

probable escape from the SNR of the highest energy CR. It has

been shown (Drury, Aharonian & Volk 1994) that CR-produced

gamma rays from SNR should be on the verge of detectability. The

current upper limits on TeV gamma-ray emission (Buckley et al.

1998) are beginning to place constraints on the theory of diffusive

shock acceleration. Buckley et al. concentrated on observations of

SNR in the Sedov phase in the expectation that the SNR should

then be most visible at high energies. Our model suggests that

SNR might be more visible during free expansion.

7 CONCLUSIONS

A simple model for MHD turbulence suggests that CR might

amplify the pre-shock magnetic field to a magnitude much greater

than the seed interstellar value. This increases the rate of CR

acceleration, facilitating acceleration to energies above the knee in
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the CR spectrum. SNR expansion into a uniform circumstellar

medium should be able to accelerate protons to 1017 eV and heavy

ions above 1018 eV. Expansion into a pre-existing stellar wind

should enable acceleration to higher energies. For parameters

suitable for SN1993J, protons may be accelerated to 3 � 1017 eV:
The maximum energy is proportional to the square of the

expansion velocity. Expansion at 40 000 km s21 into the circum-

stellar environment of SN1993J would accelerate protons to

1018 eV and heavy ions to Z � 1018 eV: Hence it appears that CR

amplification of magnetic field can provide the explanation for the

origin of CR between the spectral knee at 1015 eV and the onset of

extragalactic acceleration at 1018±1019 eV (Wdowczyk & Wolfen-

dale 1989; Axford 1994). It is encouraging that our estimated

magnetic fields for expansion into a stellar wind are in line with

observational estimates, and that computational simulations

suggest, if anything, more rapid growth of magnetic field than

we assume here. Our model implies that the highest energy CR are

produced in the free expansion phase instead of the Sedov phase,

and that the gamma-ray luminosity of a SNR expanding into a pre-

existing stellar wind is greatest at the beginning of the free

expansion phase.

Because CR both above and below the knee are accelerated

by SNR, our theory has the advantage of naturally producing a

CR spectrum which connects smoothly the spectrum below the

knee to the steeper spectrum above the knee. The spectral

steepening at the knee probably arises from source statistics,

because (i) magnetic field amplification and acceleration above

the knee only takes place in young freely expanding SNR, and

(ii) acceleration to the highest energies in the range

1015±1018 eV is dependent on the presence of a pre-existing

stellar wind.
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