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Abstract

Cadabra is an open access program ideally suited to complex tensor commutations in
General Relativity. Tensor expressions are written in LaTeX while an enhanced version
of Python is used to control the computations. This tutorial assumes no prior knowledge
of Cadabra. It consists of a series of examples covering a range of topics from basic
syntax such as declarations, functions, program control, component computations, input
and output through to complete computations including a derivation of two of the BSSN
equations from the ADM equations. Numerous exercises are included along with complete
solutions. All of the source code for the examples, exercises and solutions are available
on GitHub.

Introduction

The main goal in writing this tutorial was to provide the reader with sufficient knowledge
so that they can use Cadabra [1, 2] to do meaningful computations in general relativity. It
was written for readers with no prior knowledge of Cadabra and is presented as a series of
examples using familiar computations (such as verifying that the Levi-Civita connection is a
metric connection) as vehicles to present the various elements of Cadabra.

The tutorial contains many exercises (with complete solutions) that allow the reader to test
their understanding as well to explore some of the side issues raised in the main thread of the
tutorial.

The LaTeX and Cadabra sources for the tutorial can be found on the author’s GitHib site (see
Part 4 for the relevant URL).

This tutorial is a significantly extended version of a similar tutorial written in 2009 [3]. Though
the 2009 tutorial has been updated to comply with the version 2.0 syntax it does not contain
any of the extensive additions introduced in version 2.0. It should be noted that version 1.0 of
Cadabra is no longer supported and all users are encouraged to migrate to version 2.0. Note
also the version 2.0 syntax is not backward compatible with that of version 1.0.
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Computations in General Relativity

Here are three examples of the kinds of computation that are often required in General Rela-
tivity.

Numerical computation.

Use a numerical method to evolve the time symmetric initial data for a geodesic slicing
of a Schwarzschild spacetime in an isotropic gauge.

Algebraic computation.

Compute the Riemann tensor for the metric ds2 = Φ(r)2 (dr2 + r2dΩ2).

Tensor computations.

Verify that 0 = gab;c given Γabc = 1
2
gad (gdc,b + gbd,c − gbc,d).

What tools are available to perform these computations? For the first example, it is hard to
envisage not using a computer to do the job. The second example is one which could easily be
done by hand or on a computer (using, for example, GRTensorIII [4], Maxima [5] or Cadabra,
the subject of this tutorial). The third examples is so simple that most people would use
traditional pencil and paper methods. However, there are many other tensor computations
in General Relativity that are particular tedious to push through by hand (e.g., developing
higher order Riemann normal expansions of the metric or performing perturbation expansions
of the vacuum field equations). So there is very good reason to seek help by way of a computer
program designed specially to manipulate tensor expressions. This tutorial will provide a brief
introduction to one such program, Cadabra, and how it can be used in General Relativity.

Besides Cadabra, there are a number of other programs that, to varying degrees, can manipulate
tensor expressions, including GRTensorIII [4], Maxima [5], Canon [6], Riemann [7] and xAct
[8]. No attempt will be made here to provide even a cursory review of the above programs
(however, see the recent review by MacCallum [9]). Instead, the intention in this tutorial will
be to show how Cadabra can be used to do useful work in General Relativity.

Given that Cadabra is just one of a number of programs that can manipulate tensor expressions,
the obvious question would be – why chose Cadabra?

One of Cadabra’s main selling points is its elegant and simple syntax. This is based on a subset
of LaTeX to express tensor expressions, Python to coordinate the computations and some
unique Cadabra syntax to describe properties of various objects (e.g., index sets, symmetries,
commutation rules etc.). This leads to a shallow learning curve and codes that are clear and easy
to read. The core program of Cadabra is written in C++ including highly optimised procedures
for simplifying complex tensor expressions. It has a strong user base, active discussion forums
and is under active development.

Another strong point of Cadabra is its use of LaTeX for tensor expressions for not only input
to Cadabra but also for output from Cadabra. This means that output from one Cadabra
code can be easily used in other Cadabra codes or even in separate LaTeX documents. Indeed
this document is a case in point – all of the results appearing later in this document were
computed in separate Cadabra codes and included, without change, from the corresponding
Cadabra output.

The following examples were deliberately constructed so as to require little mathematical de-
velopment (for the current audience) while being of sufficient complexity to allow Cadabra’s
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features to be properly showcased. For the majority of this tutorial no assumptions will be
made about the dimensionality of the space other than in Example 10 (4 dimensions) and Ex-
ample 13 (3 dimensions). The Misner-Thorne-Wheeler (MTW [10]) conventions will be used
for the metric signature and the Riemann tensor. The connection will be assumed to be metric
compatible (i.e., the Levi-Civita connection). Abstract index notation will be used but on the
odd occasion where an explicit component based equation is given, the components will be
given in a coordinate basis.

The Cadabra software

The full source for Cadabra can be found on the GitHub page [2] while binaries for popular
versions of Linux and Windows can be found in the downloads section of the Cadabra home
page [1]. There are no binaries for macOS but it is a simple matter to compile from the source
using Homebrew. Complete instructions are available on the Cadabra GitHub page [2].

There are two main ways to run Cadabra, either through the command line or through a GUI
interface similar to the notebook interfaces used by Jupyter and Mathematica. The command
line version of Cadabra works with plain text files, such as foo.cdb. These files can be created
using any text editor and contain Cadabra statements. To run Cadabra on the file foo.cdb you
need only type

cadabra2 foo.cdb

on the command line. In contrast, files like foo.cnb are Cadabra notebooks and can contain
not only Cadabra statements but also Cadabra output as well as LaTeX markup. These files
are not intended to be edited in a plain text editor but rather are created, edited and executed
entirely from within the Cadabra GUI. To initiate the GUI and load the notebook foo.cnb type

cadabra2-gtk foo.cnb

on the command line. Once the GUI has started you can edit or execute the current notebook
or use the File menu item to navigate to other notebooks. The menu in the GUI contains the
usual set of entries that should need little explanation. However, if it is not obvious what a
particular menu item does, then just click on that item and note what happens – though do
chose to work on a test file. There are not many menu items so this click and observe method
should reveal most of the menu actions in a short time.
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The tutorial sources

The complete set of LaTeX and Cadabra sources can be obtained by cloning from the GitHub
site.

git clone https://github.com/leo-brewin/cadabra-tutorial

This will create a directory cadabra-tutorial containing all of the sources. Here is a brief
description of the main directories and their contents.

pdf/ This document as well as the .pdf files for the exercises
and examples.

source/tex/ The LaTeX source for this document.

source/cadabra/example*.tex The LaTeX/Cadabra source for each of the examples in
this document. These are written in the hybrid-latex
format in which the Cadabra code is embeded in a LaTeX
document. The tools to process these files are provided
in the hybrid-latex directory.

source/cadabra/cdb/ The raw Cadabra sources extracted from the hybrid-latex
files in source/cadabra/example*.tex. These are in .cdb

format and are provided for readers who like to copy-
paste the Cadabra code into a cadabra2-gtk window.

source/cadabra/exercises/ This directory contains the worked solutions for all of the
exercises.

source/cadabra/fragments/ Some of the exercises asks the reader to use specific frag-
ments of code. Those fragments can be found in this
directory – saving the reader from the tedium of writing
the code by hand.

source/cadabra/tests/ This directory is used only when running tests (quelle
surprise). To check that everything is working correctly
just run make tests from the source/cadabra directory.
See the main README.md file for more details.

hybrid-latex/ This directory contains all the tools needed to process the
hybrid-latex files. See the file hybrid-latex/INSTALL.txt

for instructions on where to copy theses files.
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Notation

The following examples will contain lines of Cadabra code as well as the corresponding output.
The question here is – how is that correspondence conveyed to the reader? The device used
here will be to match the output against the line number of the code.

Here is a small fragment of a larger Cadabra code (drawn from Example 5).

1 expr := A_{a} v^{a} + B_{a} v^{a} + C_{a} v^{a};

2 zoom (expr, $B_{a} Q??$)

3 substitute (expr, $v^{a} -> w^{a}$);

4 unzoom (expr)

Try to ignore the code (for the moment) and focus instead on the small line numbers in the left
hand margin. These numbers are not part of the Cadabra syntax but have been added here so
that individual lines of code can be identified. They are also used as tags to match against the
Cadabra output which, in this case, just happens to be (have faith)

Aav
a +Bav

a + Cav
a = . . .+Bav

a + . . . /2/

= . . .+Baw
a + . . . /3/

= Aav
a +Baw

a + Cav
a /4/

The weird looking equation numbers on the right hand side are matched to the line numbers
in the Cadabra code. Thus /2/ is the output generated by line 2 of the Cadabra code, likewise
the output for line 3 is given by /3/.
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Part 1 Essential elements

This first part of the tutorial consists of a set of examples that are intended for readers with
little or no experience with Cadabra. Each section is built around a simple example based
on some familiar elements of general relativity. These context based examples are used to
introduce the essential elements of Cadabra required for routine tensor computations.

The second part of this tutorial switches the focus from introducing Cadabra to applying
Cadabra to more substantial questions (which once again cover well known topics in general
relativity). The examples are a hotchpotch reflecting the research interest of the author.

The examples are supported by many exercises with full solutions. The exercises are not
essential for progression through the later examples but they do help the reader to test their
understanding of basic aspects of Cadabra. They also explore aspects of Cadabra not otherwise
covered in the main thread of this tutorial.
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1 Hello metric connection

How might Cadabra be used to verify that 0 = ∇cgab given 2Γabc = gad (∂bgdc + ∂cgbd − ∂dgbc)?

This may seem an odd way to start but here is the full Cadabra code.

1 # Define some properties

2

3 {a,b,c,d,e,f,h,i,j,k,l,m,n,o,p,q,r,s,t,u#}::Indices.

4

5 g_{a b}::Metric.

6 g_{a}^{b}::KroneckerDelta.

7

8 \nabla{#}::Derivative.

9 \partial{#}::PartialDerivative.

10

11 # Define rules for covariant derivative and the Christoffel symbol

12

13 nabla := \nabla_{c}{g_{a b}} -> \partial_{c}{g_{a b}} - g_{a d}\Gamma^{d}_{b c}

14 - g_{d b}\Gamma^{d}_{a c};

15

16 Gamma := \Gamma^{a}_{b c} -> (1/2) g^{a d} ( \partial_{b}{g_{d c}}

17 + \partial_{c}{g_{b d}}

18 - \partial_{d}{g_{b c}} );

19

20 # Start with a simple expression

21

22 cderiv := \nabla_{c}{g_{a b}};

23

24 # Do the computations

25

26 substitute (cderiv, nabla);

27 substitute (cderiv, Gamma);

28 distribute (cderiv);

29 eliminate_metric (cderiv);

30 eliminate_kronecker (cderiv);

31 canonicalise (cderiv);

The output from the above code is

∇cgab → ∂cgab − gadΓdbc − gdbΓdac /13/

Γabc →
1

2
gad (∂bgdc + ∂cgbd − ∂dgbc) /16/
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∇cgab = ∂cgab − gadΓdbc − gdbΓdac /26/

= ∂cgab −
1

2
gadg

de (∂bgec + ∂cgbe − ∂egbc)−
1

2
gdbg

de (∂agec + ∂cgae − ∂egac) /27/

= ∂cgab −
1

2
gadg

de∂bgec −
1

2
gadg

de∂cgbe +
1

2
gadg

de∂egbc −
1

2
gdbg

de∂agec −
1

2
gdbg

de∂cgae

+
1

2
gdbg

de∂egac /28/

= ∂cgab −
1

2
ga
e∂bgec −

1

2
ga
e∂cgbe +

1

2
ga
e∂egbc −

1

2
gb
e∂agec −

1

2
gb
e∂cgae +

1

2
gb
e∂egac /29/

=
1

2
∂cgab −

1

2
∂cgba /30/

= 0 /31/

Each of these line shows selected stages of processing by Cadabra. The zero in the final line
shows that ∇cgab is indeed zero for the given choice of Γabc.

Note that for each line of output shown above, Cadabra wrote only the part between the equals
sign and the (apparent) equation number on the far right. Everything else was added by the
author to put the Cadabra output into context. The number on the far right matches the line
number in the source while the text to the left of the equals sign identifies the object associated
with the Cadabra output. So though the above output is not exactly what would be seen in
the GUI it is important to note that the Cadabra output has not been modified in any way
other than to be sandwiched between the equals sign on the left and the line number on the
right.

Looking back at the above code, the obvious question is – what does each line do? For some
lines the answer is clear but for others there are elements of the syntax that do require further
explanation. Thus at this point it is useful to spend a bit of time working through the above
Cadabra code in some detail.

Statements in the Cadabra grammar fall into a number of distinct categories: comments, proper-
ties, expressions, algorithms and a broad category that consists of any valid Python statement.
Comments in Cadabra are single lines that begin with one or more spaces (or tabs) followed by
the # character. Any text after the # will be treated as a comment. There are four comments
in the above example (lines 1, 11, 20 and 24). The statements in lines 3 to 9 assign properties
to some symbols, while those in lines 13 to 22 define three expressions named nabla, Gamma and
cderiv. The remaining statements apply algorithms to the expressions (i.e., they perform the
computations). Note that algorithms are, in the eyes of Python, ordinary Python functions.
Python functions can also be applied to Cadabra objects and thus could also be described as
algorithms. But as this may lead to some confusion the convention adopted in this tutorial is
that the term algorithm will be reserved exclusively for Cadabra’s own functions.

Cadabra statements can consist of one or more lines of text. Thus Cadabra sets clear rules
about how a statement can be constructed from a series of lines. It will read its input, line by
line, while also looking for a clear marker to indicate the end of the current statement. For
properties and expressions the statement will be terminated by either a dot . or a semi-colon
;. The situation is slightly different for algorithms – they are terminated either by a dot,
a semi-colon or by the closing right parenthesis of the algorithm. In all cases, Cadabra will
generate output only for those statements that end with a semi-colon. Python statements are
terminated in the normal Python manner.
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Once Cadabra has digested the source it will pass a slightly modified copy onto its own internal
version of Python (enhanced to support Cadabra’s algorithms). Thus the original Cadabra
source must conform to Python’s strict (but simple) indentation rules.

What do these statements actually mean? The first statement

3 {a,b,c,d,e,f,h,i,j,k,l,m,n,o,p,q,r,s,t,u#}::Indices.

simply declares a set of symbols that may be used as indices. The last symbol u# informs
Cadabra that an infinite set of indices of the form u1,u2,u3 · · · is allowed. If you prefer to work
with Greek indices then you could declare

{\alpha,\beta,\gamma,\mu,\nu,\theta,\phi#}::Indices.

Note that all of the usual LaTeX Greek symbols are understood by Cadabra. They can be used
as indices or symbols (e.g., \Gamma can be used to denote a Christoffel symbol). However, they
can not be used as identifiers (i.e., they can not appear on the left hand side of an assignment).
Thus the following statement will raise a syntax error

\Gamma := (1/2) g^{a d} ( \partial_{b}{g_{d c}}

+ \partial_{c}{g_{b d}}

- \partial_{d}{g_{b c}} );

The next pair of statements

5 g_{a b}::Metric.

6 g_{a}^{b}::KroneckerDelta.

declares that g_{a b} represents a (symmetric) metric and that ga
b is the usual Kronecker delta

(i.e., ga
b = δba).

The following pair of statements

8 \nabla{#}::Derivative.

9 \partial{#}::PartialDerivative.

assigns a derivative property to the symbols \nabla and \partial. The distinction between
the ::Derivative and ::PartialDerivative properties is that only those derivative operators
declared as ::PartialDerivative will be taken as self-commuting (∂a∂b = ∂b∂a). Note that the
# in each declaration signifies that any number of indices (up or down) are allowed. That is
both \partial{a} and \partial{a b c d} will be seen by Cadabra as derivative operators. This
interpretation of {#} carries over to other declarations, for example \delta{#}::KroneckerDelta

declares \delta to be a Kronecker delta with any number of upper or lower indices (and in any
order).

The next three statements define three expressions, nabla, Gamma and cderiv.

11 # Define rules for covariant derivative and the Christoffel symbol

12

13 nabla := \nabla_{c}{g_{a b}} -> \partial_{c}{g_{a b}} - g_{a d}\Gamma^{d}_{b c}

14 - g_{d b}\Gamma^{d}_{a c};

15

16 Gamma := \Gamma^{a}_{b c} -> (1/2) g^{a d} ( \partial_{b}{g_{d c}}

17 + \partial_{c}{g_{b d}}

18 - \partial_{d}{g_{b c}} );

9



19

20 # Start with a simple expression

21

22 cderiv := \nabla_{c}{g_{a b}};

The name of the expression appears to the left of the ‘:=’ characters while the corresponding
tensor expression appears on the right using a familiar LaTeX syntax. Tensor indices such as
a,b,c... should always be separated by one or more spaces (unlike the case in LaTeX). This
ensures that Cadabra knows exactly how many indices belong to an object (e.g., g_{ab} would
be interpreted as an object with one covariant index ab). This rule can be relaxed when the
index set contains its own delimiter such as the slash that appears when indices are written
using LaTeX names. Thus an object like g_{\alpha\beta} clearly contains just two indices.

Note carefully the braces around the metric term in \partial_{c}{g_{a b}}. This is essential
– the symbol \partial is an operator and thus needs an argument to act on, namely, the
argument contained inside the pair of braces.

There is one very important operational difference between the expressions for cderiv and those
for nabla and Gamma. The expression cderiv defines a Cadabra object that will be manipulated
in stages towards the final result (in line 31). These changes are obtained by applying Cadabra’s
algorithms (lines 26 to 31) to cderiv. The other expressions, nabla and Gamma, are known as
substitution rules and each are of the form

rule := target -> replacement;

They provide Cadabra with all the information needed to replace any instances of ∇cgab and
Γabc with the appropriate combination of the metric and its derivatives. The application of
these rules can be seen in lines 26 and 27 with each call to substitute applying a rule to the
expression cderiv.

After Cadabra has executed the calls to substitute, the object cderiv will consist solely of
terms built from the metric and its derivatives. Though this may look simple there is a very
important and subtle detail that must be noted. The substitution rule Gamma as given above
was for Γabc yet the expression for cderiv requires Γdbc and Γdac. Cadabra handles this index
manipulation by relabelling dummy indices in such a way as to avoid index clashes. This feature
also exists in xAct.

The remaining few statements

28 distribute (cderiv);

29 eliminate_metric (cderiv);

30 eliminate_kronecker (cderiv);

31 canonicalise (cderiv);

serve only to massage the expression towards the expected result – zero. Each of the statements
applies an algorithm to the expression cderiv with the result replacing the original value of
cderiv. That is, Cadabra’s algorithms makes in-place changes to Cadabra objects. The algo-
rithm distribute is used to expand products, it will expand a (b+c) into a b + a c. In line 5
of the code the property ::Metric was given to g_{a b}. This is used by the eliminate_metric

algorithm to convert combinations such as g_{a c} g^{c b} into a Kronecker-delta δba which
(not surprisingly) is eliminated by the eliminate_kronecker algorithm. The canonicalise al-
gorithm is one of Cadabra’s most useful algorithms (on a par with substitute) as it can apply
a wide range of simplifications and general housekeeping. In this case it makes use of the sym-
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metric property of the metric to complete the final step of the calculation. The result in line
/31/ is zero as expected.

1.1 Cadabra syntax summary

The above discussion has introduced some key elements of the Cadabra syntax. Other elements
will be discussed later as the need arises. Though this does present a shallow learning curve
(consider the alternative where mastery of the full syntax tree is required before seeing any
examples) it does mean that important information is scattered throughout the tutorial. This
of course makes it harder to find key information after the first reading. To mitigate that
problem, here is a short summary of the Cadabra syntax that will be seen in later examples
and exercises.

This summary will only cover the very basics needed to work through this tutorial. Many
elements of the Cadabra syntax will not be discussed here. For a complete and definitive
reference please see the Cadabra web pages https://cadabra.science/help.html.

The first point to emphasise is that Cadabra is built upon Python and LaTeX and thus Cadabra
codes must adhere to their respective syntaxes.

Parsing

Parsing a Cadabra program serves two purposes. First, it checks for correctness of the code.
Second, it converts any statements unique to Cadabra (such as {a,b,c}::Indices) into state-
ments that can be understood by Python. The result is a new program written entirely in
Python (with the Cadabra elements implemented as function calls to an external library). This
preprocess step can be seen in action using the command line tool cadabra2python. To create
the Python code for the file foo.cdb you need only type

cadabra2python foo.cdb foo.py

Statement termination

Since statements can be composed of one or more lines of text there must be some rule for
deciding when a series of lines constitutes a single statement. Python statements are ter-
minated according to Python’s rules. Here are some examples of valid and invalid Python
statements.

foo = bah # valid

foo = simplify (bah) # valid

bah := derive (foo) # invalid, use = not := for Python assignment

A Cadabra statement can be terminated using either a dot ., a semi-colon ; or the closing
right parenthesis ) for functions and algorithms. Using a semi-colon to terminate a statement
will force Cadabra to print the output generated by the statement. Here are two Cadabra
statements, only the first is valid.

foo := A_{a} B_{b}; # valid

bah = B_{a} A_{b}. # invalid, use := not = for Cadabra assignment

Continuation

Python statements can be split across lines in a number of ways including line breaks between
items in a list. A slash at the end of line also signifies a continuation. This is standard Python.
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For Cadabra the rules are not so simple. Properties (e.g., ::Indices) can not be split across
multiple lines. However, multiple instances are allowed and will be stored as a sequence of
property lists. Examples of this will be seen later in Exercise 1.6 and Example 12. In contrast,
Cadabra expressions such as foo := A_{a} B_{b}. can be split across more than one line by
including line breaks as needed and with proper termination (e.g., a dot or a semi-colon). Note
that Python’s indentation rules apply only to the first line of a group – the remaining lines can
be indented to suit. See also the discussion on very long lines in the Miscellaneous section of
Part 3.

Identifiers

Identifiers can be built using standard alphanumeric characters (excluding the special characters
like !@#$%^$ etc.). Python allows underscore characters but as they are also used by LaTeX to
introduce subscripts it is best to not use an underscore in a Cadabra identifier (it is allowed
but it can cause confusion for the reader). In this tutorial all identifiers will be built from the
alphanumeric characters (a to z, A to Z and 0 to 9) and occasionally LaTeX symbol names.

Assignment

Assignments in Python are made using = as in foo = "abc" while in Cadabra they are made
(mostly) using :=. One reason for this small difference is the simple fact that Python does not
understand assignments made from LaTeX expressions. For example, foo = A_{a} B_{b} would
make no sense in pure Python. Thus := is used to signal that the assignment foo := A_{a} B_{b}.

must be made by Cadabra rather than Python.

The same assignment can also be made using Cadabra’s Ex function using foo = Ex(r"A_{a} B_{b}").
This function takes a (raw) string, converts it into a Python compliant datastructure (an Exnode)
and assigns the result to the left hand side (i.e., to foo). Since this statement is handled by
Cadabra’s own enhanced version of Python (to include Ex) the assignment uses = rather than
:=. Note also the absence of an explicit termination character (no dot or colon) and also the use
of the raw string r"...". The raw string is not needed in this example but would be required
if the string contained any slashes (e.g., a LaTeX symbol like \Gamma). The function Ex is very
useful when building expressions from smaller pieces (see for example the function truncate in
Example 4).

It must be noted that identifiers carry no residual information about their origins (= or :=).
Thus any statement like bah = foo will have the usual Python meaning, namely, that bah and
foo share one copy of the data pointed to by foo. There are many occasions were a second
distinct copy of the data is required. Copies of pure Cadabra objects (i.e., created using := or
Ex) can be made using statements like bah := @(foo);. The @(...) is simply a function that
returns a copy of the given Cadabra object. This construction will be used many times in this
tutorial (the first instance can be seen in Exercise 1.7).

Comment character

The hash character # is used in Python to start a comment. All text on the line following and
including the hash will be ignored by Python. But in Cadabra the hash character is used in
many property declarations. Here are some examples (put aside for the moment what these
mean, just accept that they are valid Cadabra statements)

{a,b,c,d,e#}::Indices.

\delta{#}::KroneckerDelta.

D{#}::LaTeXForm{"\nabla"}.

This dual use of the hash character forces a compromise to be made – comments are not allowed
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as trailing text on a pure Cadabra line (e.g., on the end of a property declaration). Despite
this restriction, there are a few occasions in this tutorial were trailing comments are used for
convenience and to save space. These trailing comments would need to be removed before
passing the code to Cadabraa. Other comments, for example lines that begin with a hash or as
trailing text on a pure Python line, are allowed.

Indentation

All Cadabra programs must conform to Python’s indentation rules. These rules may, at first
sight, seem strange for people not familiar with Python but they are not too hard to understand.
The basic idea is that code blocks that might in other languages be wrapped in {} or begin/end
pairs are indented by at least one space (usually four spaces) from the surrounding code. This
applies to if-then-else blocks, for-loops, function definitions and nested blocks (and more). Here
are a few examples

foo = 123

if foo == 123:

bah = 456

print ("in True")

else:

bah = 789

print ("in False")

print (bah)

def swap (my_string):

first_char = my_string[0]

second_char = my_string[1]

my_string[0] = second_char

my_string[1] = first_char

return my_string

Similar indenting is often used in other languages as a way to improve the readability of the
code. In Python this use of indentation is mandatory.

CamelCase and snake case

Though Cadabra is case sensitive it does not stipulate which case to use for various con-
structions. However, the common practice is to use CamelCase for properties (e.g., ::Indices,
::Derivative) and snake_case for algorithms and functions (e.g., and sort_product, product_rule).
Two obvious (trivial) exceptions are the function Ex and the use of uppercase LaTeX names
for identifiers such as \Gamma.

Substitution rules

Cadabra’s substitute algorithm works its magic on an expression under the control of a sub-
stitution rule (or a list of rules, see below). The rules can be specified either as a named rule,
for example,

foo := A^{a b} -> B^{a} C^{b}.

substitute (bah, foo)

or as an anonymous rule, for example,

aThis task is handled automatically by the hybrid-latex scripts, see https://github.com/leo-brewin/

hybrid-latex
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substitute (bah, $A^{a b} -> B^{a} C^{b}$)

Both of these examples do the same job – replacing Aab in bah with BaCb.

Rules can also be built using an equal sign rather than the forward arrow ->. Thus the above
examples could be written as

foo := A^{a b} = B^{a} C^{b}.

substitute (bah, foo)

and

substitute (bah, $A^{a b} = B^{a} C^{b}$)

The end result will be exactly as before (replacing Aab with BaCb). There is one important
difference between these two constructions. Rules built using the equal sign must have identical
free indices on either side of the equal sign. In contrast, rules built using -> are are not bound
by this rule. This gives the programmer great flexibility in manipulating the index structure
of an expression – it also opens the door for making a complete mess of the expression (with
great power comes great responsibility :). See items 11 and 12 in Part 3 for more details on
this point.

Anonymous rules are convenient for one-off substitutions (and are used extensively in the Gauss
equation example). They also provide data locality – the rule is in plain sight making clear the
changes that are about to be applied. In contrast, a named rule may be defined far away from its
use thus forcing the reader to hunt through the code for the definition. Named rules are useful
when that rule is likely to be used many times (for example a rule for a covariant derivative) or
when the rule has an important meaning (e.g., a rule for the Riemann tensor). Named rules,
unlike anonymous rules, can also be split across one or more lines, for example

RFromGamma := R -> g^{a b} g^{c d} ( \partial_{c}{\Gamma_{a b d}}

- \partial_{d}{\Gamma_{a b c}}

+ \Gamma_{e a d} \Gamma^{e}_{b c}

- \Gamma_{e a c} \Gamma^{e}_{b d} ).

You can also create a list of rules using

RFromGamma := { R -> R_{a b} g^{a b},

R_{a b} -> R_{a c b d} g^{c d},

R_{a b c d} -> \partial_{c}{\Gamma_{a b d}}

- \partial_{d}{\Gamma_{a b c}}

+ \Gamma_{e a d} \Gamma^{e}_{b c}

- \Gamma_{e a c} \Gamma^{e}_{b d} }.

This rule contains three simple rules, delimited by commas and wrapped in braces (so it is a
Python list). To properly apply this rule you would need to use

RicciScalar := R.

substitute (RicciScalar, RFromGamma)

substitute (RicciScalar, RFromGamma)

substitute (RicciScalar, RFromGamma)

Now you might well ask – Why are there three calls to substitute? In the first call only
the first rule R -> R_{a b} g^{a b} will be matched. The second and third calls are needed
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to match the terms introduced in the previous calls. Having to call substitute many times
is a bit tedious but the good news is that Cadabra provides a short cut by allowing you to
write

RicciScalar := R.

substitute (RicciScalar, RFromGamma, repeat=True)

The repeat=True clause will force Cadabra to keep applying rules until the expression settles
down (i.e., no changes from one substitution to the next).

Lists of rules can be concatenated with other rules using the addition operator. Thus you can
also write

RFromRab := R -> R_{a b} g^{a b}.

RabFromGamma := { R_{a b} -> R_{a c b d} g^{c d},

R_{a b c d} -> \partial_{c}{\Gamma_{a b d}}

- \partial_{d}{\Gamma_{a b c}}

+ \Gamma_{e a d} \Gamma^{e}_{b c}

- \Gamma_{e a c} \Gamma^{e}_{b d} }.

RFromGamma = RFromRab + RabFromGamma

There is one caveat that must be noted – the version of Cadabrab used in this tutorial does not
allow the addition of rules that each contains just a simple rule (as simple rules are not lists).
A simple hack is to convert each simple rule to a list by adding a trivial rule, (e.g., replace
foo->bah with {foo->bah,x->x}).

Line splitting

Cadabra allows expressions to be split across one or more lines such as

Rabcd := R_{a b c d} -> \partial_{c}{\Gamma_{a b d}}

- \partial_{d}{\Gamma_{a b c}}

+ \Gamma_{e a d} \Gamma^{e}_{b c}

- \Gamma_{e a c} \Gamma^{e}_{b d}.

However, it does not allow property lists or anonymous rules (i.e., $...$) to be split. Thus
each of the following statements will raise an error.

{a, b, c, d,

e, f, g, h, i, j}::Indices.

{R_{a b c d},

\partial_{e}{R_{a b c d}}}::SortOrder.

substitute (foo, $R -> R_{a b} g^{a b},

R_{a b} -> R_{a c b d} g^{c d}$)

For property lists the preferred solution is to use one line (no matter how long it might be).
Thus you would use

{a, b, c, d, e, f, g, h, i, j}::Indices.

{R_{a b c d},\partial_{e}{R_{a b c d}}}::SortOrder.

bCadabra 2.2.7 (build 2268.ba747e0b49 dated 2019-12-01)
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The easiest solution for anonymous rules is to replace them with a named rule.

See the discussion on line splitting in Part 3 below for an alternative solutions for property lists
and anonymous rules.

Exercises

1.1. Given that

Γa bc =
1

2
gad (∂bgdc + ∂cgbd − ∂dgbc)

use Cadabra to verify that

Γabc = Γacb

Hint: Define a rule for Γabc based on the above definition. Then apply that rule to the
expression Γabc−Γacb and finally use suitable Cadabra algorithms to simplify the result.

1.2. Define Γabc (the Christoffel symbols of the first kind) by

Γabc = gadΓ
d
bc

Use Cadabra to verify that

Γabc + Γbac = ∂cgab

Hint: Define two rules, one for Γabc as per the previous exercise and one for Γabc as
per the above definition. Apply both rules to the expression Γabc + Γbac− ∂cgab then use
suitable Cadabra algorithms to simplify the result.

1.3. Modify your Cadabra code from the previous example to apply just one rule to Γabc +
Γbac − ∂cgab.

Hint: Cadabra allows rules to act not only on expressions but also on other rules. Use
this feature to construct a single rule from the original pair.

Note. To avoid a Cadabra runtime error you may need to replace ::Indices. with
::Indices(position=independent). This point will be discussed in more detail in the
following example (on covariant differentiation).

1.4. This exercise is a brief experiment with Cadabra’s sort_product algorithm. Apply
sort_product to each of the following expressions and carefully note the result. You
should be able to glean from these examples the default sort order used by Cadabra.

(1) CfweBdvcAbua

(2) ΩfγeΠdβcΓbαa

(3) CfweBdvcAbuaΩfγeΠdβcΓbαa

(4) ∂fC
fwl∂dB

dvk∂bA
bujΩi∂

eγeΠh∂
cβcΓg∂

aαa

(5) ∂Cw∂Bv∂AuΩ∂γΠ∂βΓ∂α

(6) AbAaAcdeAfg

(7) AaA
a + AaAa

The results of the first four examples shows that Cadabra’s default sort can be sum-
marised as
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UPPERCASE < SLASH-UPPERCASE < slash-lowercase < lowercase

The fifth example shows that Cadabra’s default sort ordering usually ignores indices. The
exception, as shown in the final pair of examples, is when object names are repeated. In
such cases Cadabra will sort the terms based on their indices.

Cadabra does allow some control over the sort order by explicitly listing the order in a
::SortOrder property. Each of the following are valid instances of a sort order list

{F,E,D,C,B,A}::SortOrder.

{R_{a b}, R_{a b c d}, R^{a b c d}}::SortOrder.

{\partial_{a}{g_{b c}}, \partial{a b}{R}}::SortOrder.

1.5. Look back at the last example in the previous exercise. Cadabra returned AaA
a +

AaAa which, assuming A is self-commuting, can be simplified to 2AaA
a. If the original

expression had been AaZ
a +ZaAa then the result (after sort_product) would have been

2AaZ
a. This should give you a clue as to how the first expression (involving just A) can

be sorted to give 2AaA
a. Write a code that does the job. An extension of this idea will

be developed later in Exercise 4.6.

1.6. Cadabra does allow multiple instances of the ::SortOrder property. Run the following
code through Cadabra and observe the result.

{D,C,B,A}::SortOrder.

foo := A B C D;

sort_product (foo);

{V,U}::SortOrder.

foo := U V A B C D;

sort_product (foo);

{A,B,C,D}::SortOrder.

foo := U V D C B A;

sort_product (foo);

The results may seem surprising. The final results for foo is foo = D C B A V U. But
looking at third instance of SortOrder it is reasonable to expect foo = A B C D V U.
How can this be? The answer lies in how Cadabra handles multiple instances of the
SortOrder. The logic is a bit tricky but it goes as follows. The sorting is done using
Bubble Sort. This works by sorting a list one pair at a time. Suppose P and Q define
a pair PQ. The correct order might require the pair to be swapped. That decision, to
swap or not, is made by first searching for the first list that contains P. If that list also
contains Q then that list will be used to determine if Pand Q should be swapped. In all
other cases (i.e., when a suitable SortOrder list can not be found) the correct order for
PQ will be found from Cadabra’s default sort order.

The upshot is that repeat entries in SortOrder, either in a list or across lists, play no
part in setting the order. The repeat entries, such as the entire third list above, will in
effect by ignored.

An alternative to using SortOrder will be presented later in Exercise 4.6.
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1.7. This exercise explores the differences between foo = bah and foo := @(bah). The first
ensures that both foo and bah share the same data. Any changes to either foo or bah will
be shared by its partner. Using foo := @(bah) creates a fresh copy of bah and assigns foo
to that copy. Any subsequent changes to foo will not be reflected in bah and vice-versa.

The following code demonstrates this behaviour by using the id function to reveal the
location in the computer’s memory where the object resides (i.e., a memory address).
Careful inspection of the source and the corresponding output should convince you that
the above description is correct.

{a,b,c,d,e,f,h#}::Indices.

foo := B_{b} A_{a}.

bah := A_{a} C_{c}.

print("foo = "+str(foo))

print("bah = "+str(bah)+"\n")

print("type foo = "+str(type(foo)))

print("type bah = "+str(type(bah))+"\n")

print("id foo = "+str(id(foo)))

print("id bah = "+str(id(bah))+"\n")

bah = foo

print("foo = "+str(foo))

print("bah = "+str(bah)+"\n")

sort_product (foo)

print("bah = "+str(bah)+"\n")

print("id foo = "+str(id(foo)))

print("id bah = "+str(id(bah))+"\n")

bah := @(foo).

print("id foo = "+str(id(foo)))

print("id bah = "+str(id(bah))+"\n")

1.8. The following code contains a number of syntax errors. Identify and correct the errors
then test the corrected code by running it through Cadabra.

{a,b,c,d,e,f#}::Indices.

C{#}::Symmetric.

foo := A_{a} B_{b} + C_{ab}.

bah := B_{b} A_{a} + C_{ba}.

meh := @(foo) - @(bah)

if meh == 0:

print ("meh is zero, and all is good")

success = True.
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else:

print ("meh is not zero, oops")

success = False.

canonicalise (meh).

sort_product (meh);

{\alpha\beta\gamma}::Indices.

foo := Ex ("A_{ab} - A_{a b}");

bah := Ex ("A_{\alpha\beta} - A_{\alpha \beta}");

1.9. This and the following two exercises deal with simple index manipulations. Consider a
pair of tensors Aa and Bb defined by

Aa = AacC
c and Bb = BbcC

c

The two tensors have distinct free indices but share a common dummy index c. How
does Cadabra handle the possible index clash when constructing a product of Aa with
Bb? The answer can be found by running this simple code

{a,b,c,d,e,f,h#}::Indices.

foo := A_{a c} C^{c}.

bah := B_{b c} C^{c}.

foobah := @(foo) @(bah).

Run the above code and look closely at the result. You should notice that Cadabra has
automatically adjusted the dummy indices to avoid a clash.

1.10. Another common index operation is to relabel the free indices. Write a Cadabra code
that relabels Aabc to Auvw. You can do this by contracting Aabc with suitably chosen
Kronecker deltas.

1.11. Suppose now that you need to cycle the free indices, say from Aabc to Abca. This can be
done using two rounds of Kronecker deltas. But there is an elegant and simpler solution
using Cadabra’s substitution rules. The idea is to create a rule that replaces a temporary
object like Tabc with Aabc. Then apply that rule (using susbtitute) to Tbca. Note the
cycled indices on T . Write a Cadabra code that implements this neat trick.
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2 Covariant differentiation

Cadabra does not have native algorithms to compute covariant derivatives, Riemann tensors,
Ricci tensors and so on. One of its strengths is that it provides a rich set of simple tools by
which such objects can be constructed. This second example will show how Cadabra can be
trained to compute covariant derivatives.

For a simple vector such as va the standard textbook definition of the covariant derivative ∇bv
a

is

∇bv
a = ∂bv

a + Γacbv
c

A simple way to implement this in Cadabra would be to first define symbols to represent the
derivative operators

\nabla{#}::Derivative.

\partial{#}::PartialDerivative.

and then define a rule for the actual covariant derivative

deriv := \nabla_{a}{v^{b}} -> \partial_{a}{v^{b}} + \Gamma^{b}_{c a} v^{c}.

This rule could then be used to replace any instances of ∇bv
a in a Cadabra expression such as

foo with the appropriate partial derivatives and Christoffel symbols using

substitute (foo,deriv)

From here it is a simple matter to construct a working code – just add a definition for the
indices and some lines to simplify the output. This leads to the following minimal working
code.

1 {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u#}::Indices.

2

3 \nabla{#}::Derivative.

4 \partial{#}::PartialDerivative.

5

6 # rule for covariant derivative of v^{a}

7

8 deriv := \nabla_{a}{v^{b}} -> \partial_{a}{v^{b}} + \Gamma^{b}_{c a} v^{c}.

9

10 # create an expression

11

12 foo := \nabla_{a}{v^{b}}.

13

14 # apply the rule, then simplify

15

16 substitute (foo,deriv)

17 canonicalise (foo)

The corresponding output is

∇av
b = ∂av

b + Γbcav
c /16/

= ∂av
b + Γbcavc /17/
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The first line in the output is as expected – it simply repeats the definition given above. How-
ever, the second line is not exactly as expected – note how the second index on the Christoffel
symbol has been raised (while the corresponding index on v has been lowered). Though this
is mathematically correct, it is not standard practice and it would be better if Cadabra could
be persuaded to not do such index gymnastics. The solution is to inform Cadabra that the
upper and lower indices are to be left as is by adding the qualifier position=independent to
the ::Indices property. That is

1 {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u#}::Indices(position=independent).

The corresponding output is now

∇av
b = ∂av

b + Γbcav
c /16/

= ∂av
b + Γbcav

c /17/

In this instance the changes brought about by specifying (position=independent) are simply
cosmetic. There are, however, cases where strict control must be maintained over the raising
and lowering of indices (usually by explicit use of the metric). This is particularly true for
expressions that involve derivative operators. Without the (position=independent) qualifier
the canonicalise algorithm might (incorrectly) raise or lower an index inside the derivative,
such as b in ∂aV

b. Of course, if the derivative operator is compatible with the metric (e.g., ∇g =
0) then there is no issue and the indices can be declared without the (position=independent)

qualifier (though the aesthetics of the output might not be ideal).

The above discussion also explains why (position=independent) was required in Exercise 1.3.
Without it Cadabra will treat \Gamma_{a b c} and \Gamma^{a}_{b c} as one and the same.
Thus any attempt to apply a substitution on \Gamma^{a}_{b c} in the rule
\Gamma_{a b c} -> g_{a d}\Gamma^{d}_{b c} will actually be applied to both \Gamma terms.
This removes all trace of \Gamma from the rule (you can verify this by making small changes to
your code from Exercise 1.3). See also Exercise 2.8 for more adventures with indices.

There remains one minor problem with the above code – the rule in line 8 was designed explicitly
for covariant derivatives of va and thus is not applicable to other objects such as ua or expressions
like ua + va. The solution lies in defining a rule that is applicable to a wider class of objects.
Cadabra has a simple syntax that uses a single post-fix question mark to define a generic object.
Thus A? will match objects such as P, Q, PQ etc. The upshot is that the original rule for the
covariant derivative can be generalised to

6 # template for covariant derivative of a vector

7

8 deriv := \nabla_{a}{A?^{b}} -> \partial_{a}{A?^{b}} + \Gamma^{b}_{c a} A?^{c}.

This rule will work as expected when applied to ∇au
b, ∇av

b and ∇au
b +∇av

b.
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Exercises

2.1. Use the definitions

∇au
b = ∂au

b + Γbcau
c

and

∇avb = ∂avb − Γcabvc

to verify that

∇a

(
vbu

b
)

= ∂a
(
vbu

b
)

Hint: Begin by applying the product rule to ∇a

(
vbu

b
)
− ∂a

(
vbu

b
)
. You can do so using

either Cadabra’s product_rule algorithm or you can create two rules, one for each of the
derivative operators, ∇ and ∂. You might also need product_sort and rename_dummies

for housekeeping.

2.2. Given Aa and Bb, define vab by vab = AaBb. Adapt your Cadabra codes for ∇avb to
verify that

∇avbc = ∂avbc − Γdbavdc − Γdcavbd

2.3. In a similar vein, given vab = AaBb show that

∇av
b
c = ∂av

b
c + Γbdav

d
c − Γdcav

b
d

This and the previous exercise show how easy it is to use Cadabra to verify standard
textbook definitions for covariant derivatives. Setting vab = AaBb might appear to limit
the validity of the above result. However, since any tensor can be built as a linear
combination of products of vectors and dual-vectors and as the above is linear in vab it
follows that the result does hold for any choice of vab (as expected). This same trick
could be used to discover equations for covariant derivatives of any tensor, however, it is
much easier to just code up the textbook definition as shown in the following example.

2.4. The objective in this and the following exercise is to build a single rule that expresses
∇a∇bv

c in terms of v, Γ and their partial derivatives. As a start, use the following frag-
ment to build a Cadabra code. Observe the result of the call to substitute.

deriv1 := \nabla_{a}{v^{b}} -> \partial_{a}{v^{b}}

+ \Gamma^{b}_{d a} v^{d}.

deriv2 := \nabla_{a}{\nabla_{b}{v^{c}}} -> \partial_{a}{\nabla_{b}{v^{c}}}

+ \Gamma^{c}_{d a} \nabla_{b}{v^{d}}

- \Gamma^{d}_{b a} \nabla_{d}{v^{c}}.

substitute (deriv2,deriv1)
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2.5. The previous exercise showed that calls to substitute will be applied to all terms in an
expression, in this case to both sides of the rule deriv2. One way to avoid this problem
is to ensure that the left hand side of the expression does not contain the target of the
rule being applied. Using the same rules as above for deriv1 and deriv2 build a new
code using

expr := v^{c}_{b a} -> \nabla_{a}{\nabla_{b}{v^{c}}}.

substitute (expr,deriv2)

substitute (expr,deriv1)

You might like to tidy the final result by substituting ∇a∇bv
c for vcba. A variation on

this code will be presented in the following section on the Riemann tensor.

2.6. Use Cadabra to verify that for any scalar function φ

(∇a∇b −∇b∇a)φ = (Γcab − Γcba)∂cφ

2.7. A popular strategy in proving various theorems in differential geometry is to first assume
that coordinates have been chosen so that the metric connection vanishes at some (ar-
bitrarily) chosen point. This step kills a whole raft of terms and from there the theorem
becomes almost trivial to prove. Suppose that this step, of setting Γ = 0, is to be applied
to the following expression (this is not part of any deep theorem it was invented just to
set the scene)

Γabc(x) = Γabc + xd∂dΓ
a
bc

Write a Cadabra code that uses a substitution rule to set Γ = 0 while retaining the
partial derivative.

2.8. Cadabra actually has three choices for the position keyword, namely position=free,
position=fixed and position=independent. with position=free as the default. The
difference between the three choices is the degree of freedom given to Cadabra in raising
and lowering indices. As already seen, position=free allows Cadabra to freely raise and
lower indices while position=indpendent instructs Cadabra to leave index raising and
lowering to the user. The choice position=fixed lies between these two extremes. It
will allow canonicalise to raise and lower matching dummy indices. These three cases
are demonstrated in the following code. Run the code and look closely the output. You
should see the behaviour just described.

{a,b,c}::Indices(position=free).

foo := A_{a b} + A^{a b}.

substitute (foo, $A_{a b} -> B_{a b}$)

{p,q,r}::Indices(position=fixed).

foo := A_{p q} B^{p q} + A^{p q} B_{p q}.

canonicalise (foo)

{u,v,w}::Indices(position=independent).
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foo := A_{u v} B^{u v} + A^{u v} B_{u v}.

canonicalise (foo)

Note that mixed indices as in Aab+A
ab should never occur in general relativity. Cadabra

will flag such cases as an error when using position=fixed or position=independent.

These exercises show that it is not too hard to create rules for each covariant derivative of
interest though it might be tedious listing all possible cases (even when using constructions like
A? etc.). Unfortunately, Cadabra’s pattern matching repertoire, such as A?, does not extend to
arbitrary tensors. Thus it is not possible to write a single rule that covers every possible form of
covariant derivative. However, with Cadabra’s native interface to Python, it is possible to write
a function that will return the full covariant derivative for an arbitrary tensor. Unfortunately,
the inner workings of this function draw upon many aspects of Cadabra’s core syntax that are
beyond the scope of this tutorial. For full details see https://cadabra.science/notebooks/

ref_programming.html
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3 To Riemann and beyond

The Riemann tensor for a symmetric connection can be computed (in a coordinate basis) using

Ra
bcd = ∂cΓ

a
bd − ∂dΓa bc + Γe bdΓ

a
ce − Γe bcΓ

a
de

A standard computation in differential geometry then shows that

V a
;b;c − V a

;c;b = −Ra
dbcV

d

where the symbol ; denotes covariant differentiation for the connection Γabc. The purpose of
this example is to show how Cadabra can be used to recover the above definition of Ra

bcd by
direct computation of the left hand side of the previous equation.

One way to expand V a
;b;c − V a

;c;b is combine two expressions, one for V a
;b and one for V a

b;c

with V a
b equal to V a

;b. This suggest the following Cadabra fragment

# rules for the first two covariant derivs of V^a

deriv1 := V^{a}_{; b} -> \partial_{b}{V^{a}}

+ \Gamma^{a}_{c b} V^{c}.

deriv2 := V^{a}_{; b ; c} -> \partial_{c}{V^{a}_{; b}}

+ \Gamma^{a}_{d c} V^{d}_{; b}

- \Gamma^{d}_{b c} V^{a}_{; d}.

Though this is a faithful transcription of the underlying mathematics this fragment is taking a
small liberty with the syntax – Cadabra might treat the ; as a tensor index despite not being
declared in the list of valid indices (i.e., the ::Indices). It turns out that Cadabra is smart
enough to not make this mistake, either by good design or by good fortune. However, any
ambiguity (on Cadabra’s part) can be avoided by using

# force ; to not be seen as a tensor index

;::Symbol;

There remains one issue (before looking at the complete code) – How can Cadabra be informed
that the connection is symmetric? Cadabra does support the ::Symmetric and ::AntiSymmetric

properties but these apply to all of the indices of the attached objects. For the case of Γabc,
which is symmetric only on the lower pair of indices, Cadabra provides a more sophisticated
property as follows

\Gamma^{a}_{b c}::TableauSymmetry(shape={2}, indices={1,2});

This does look a bit cryptic so a brief explanation of the syntax would be helpful. But doing
so at this stage will take the discussion to far from the current objective – to compute the
Riemann tensor. Thus a deeper explanation will be deferred until after the main results have
been presented. Here now is the complete Cadabra code.

1 {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u#}::Indices(position=independent).

2

3 \partial{#}::PartialDerivative.

25



4

5 \Gamma^{a}_{b c}::TableauSymmetry(shape={2}, indices={1,2});

6

7 # force ; to not be seen as a tensor index

8

9 ;::Symbol;

10

11 # rules for the first two covariant derivs of V^a

12

13 deriv1 := V^{a}_{; b} -> \partial_{b}{V^{a}}

14 + \Gamma^{a}_{c b} V^{c}.

15

16 deriv2 := V^{a}_{; b ; c} -> \partial_{c}{V^{a}_{; b}}

17 + \Gamma^{a}_{d c} V^{d}_{; b}

18 - \Gamma^{d}_{b c} V^{a}_{; d}.

19

20 substitute (deriv2,deriv1)

21

22 # commute the second covariant derivatives

23

24 Vabc := V^{a}_{; b ; c} - V^{a}_{; c ; b}.

25

26 substitute (Vabc,deriv2)

27

28 distribute (Vabc)

29 product_rule (Vabc)

30

31 # tidy up

32

33 sort_product (Vabc)

34 rename_dummies (Vabc)

35 canonicalise (Vabc)

36 sort_sum (Vabc)

37 factor_out (Vabc,$V^{a?}$)

The three rules used in the above code are reported by Cadabra as follows

V a
;b → ∂bV

a + ΓacbV
c /13/

V a
;b;c → ∂cV

a
;b + ΓadcV

d
;b − ΓdbcV

a
;d /16/

V a
;b;c → ∂c

(
∂bV

a + ΓadbV
d
)

+ Γadc
(
∂bV

d + ΓdebV
e
)
− Γdbc (∂dV

a + ΓaedV
e) /20/

The last of these (obtained by substituting the first rule into the second) can be used to expand
V a

;b;c − V a
;c;b. This leads to

V a
;b;c − V a

;c;b = ∂c
(
∂bV

a + ΓadbV
d
)

+ Γadc
(
∂bV

d + ΓdebV
e
)
− Γdbc (∂dV

a + ΓaedV
e)

− ∂b
(
∂cV

a + ΓadcV
d
)
− Γadb

(
∂cV

d + ΓdecV
e
)

+ Γdcb (∂dV
a + ΓaedV

e) /26/

Now the simplifications begin. First the brackets are expanded

V a
;b;c − V a

;c;b = ∂cbV
a + ∂c

(
ΓadbV

d
)

+ Γadc∂bV
d + ΓadcΓ

d
ebV

e−Γdbc∂dV
a−ΓdbcΓ

a
edV

e− ∂bcV a

− ∂b
(
ΓadcV

d
)
− Γadb∂cV

d − ΓadbΓ
d
ecV

e + Γdcb∂dV
a + ΓdcbΓ

a
edV

e /28/
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followed by the product rule

V a
;b;c − V a

;c;b = ∂cbV
a + ∂cΓ

a
dbV

d + ΓadcΓ
d
ebV

e − Γdbc∂dV
a − ΓdbcΓ

a
edV

e − ∂bcV a − ∂bΓadcV d

− ΓadbΓ
d
ecV

e + Γdcb∂dV
a + ΓdcbΓ

a
edV

e /29/

Notice that some obvious cancelations have not been made (e.g., the ∂2bcV
a terms could be can-

celled). These cancellations (and other minor aesthetic improvements) will be handled by the
canonicalise algorithm. In order to allow canonicalise to catch as many simplifications as pos-
sible it is common to do some basic housekeeping on the expression before calling canonicalise.
In most cases it is sufficient to sort the products then rename the dummy indices. This leads
to

V a
;b;c − V a

;c;b = ∂cbV
a + V d∂cΓ

a
db + V eΓadcΓ

d
eb − Γdbc∂dV

a − V eΓaedΓ
d
bc − ∂bcV a − V d∂bΓ

a
dc

− V eΓadbΓ
d
ec + Γdcb∂dV

a + V eΓaedΓ
d
cb /33/

= ∂cbV
a + V d∂cΓ

a
db + V dΓaecΓ

e
db − Γdbc∂dV

a − V dΓadeΓ
e
bc − ∂bcV a − V d∂bΓ

a
dc

− V dΓaebΓ
e
dc + Γdcb∂dV

a + V dΓadeΓ
e
cb /34/

= V d∂cΓ
a
bd + V dΓaceΓ

e
bd − V d∂bΓ

a
cd − V dΓabeΓ

e
cd /35/

The final pair of lines in the above code massages the Cadabra output into a familiar form

V a
;b;c − V a

;c;b = V d∂cΓ
a
bd − V d∂bΓ

a
cd − V dΓabeΓ

e
cd + V dΓaceΓ

e
bd /36/

= V d (∂cΓ
a
bd − ∂bΓacd − ΓabeΓ

e
cd + ΓaceΓ

e
bd) /37/

3.1 Symmetry and Young diagrams

As noted above, the syntax involving the ::TableauSymmetry does require some (limited) ex-
planation. Cadabra uses sophisticated algorithms to handle tensor symmetries based on the
Littlewood-Richardson algorithm for finding a basis of the irreducible representations of totally
symmetric groups. The algorithm uses Young diagrams which consist of a set of cells arranged
as series of rows which in turn are described by the ::TableauSymmetry property. In short,
the index symmetries of a tensor are encoded in these diagrams. The shape={...} parameter
describes the shape of a Young diagram, in this case it consists of one row with two cells. The
indices={...} parameter describes how the tensor’s indices are assigned to the cells. For this
purpose, the indices on the tensor are counted from left to right starting with zero. So in the
above example the lower two indices b and c are counted as 1 and 2 and they are assigned to
the two cells of the Young diagram. More details on using tableaux as a way to describe tensor
symmetries can be found in the Cadabra manual.

3.2 A cheap hack for a symmetric connection

If Young diagrams and tableaux seem a bit too cryptic then there is a (less than ideal) al-
ternative. One way to obtain a symmetric connection is to temporarily put Γabc = GaGbc

where Gbc = Gcb, ask Cadabra to make its simplifications and then return the Γabc to the
result. This is not a mathematical operation, it is just a trick to help Cadabra spot what
symmetries are available. Here is a fragment of code that does the job (in the absence of any
::TableauSymmetry)
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...

# trick to impose zero torsion (symmetric connection)

G_{a b}::Symmetric.

substitute (Vabc,$\Gamma^{a}_{b c} -> G^{a} G_{b c}$)

sort_product (Vabc)

rename_dummies (Vabc)

canonicalise (Vabc)

substitute (Vabc,$G^{a} G_{b c} -> \Gamma^{a}_{b c}$,repeat=True)

# tidy up and display the results

...

The problem with this approach is that if the pair of terms Ga and Gbc ever get separated (e.g.,
from a product rule) then it may not be possible to complete the last step of this trick, that is,
to eliminate the Ga and Gab in favour of Γabc. Another road to danger lies in playing this trick
when products of connections are involved. For example, using this trick on ΓabcΓ

d
ef −ΓdbcΓ

a
ef

would cause all terms to cancel giving zero as the result. This is clearly wrong. But if it can
be shown that such problems can not arise (e.g., there are no derivatives or the equations are
linear in the connection) then this method is rather easy to apply. It also provides a quick way
to implement more complicated symmetries (e.g., if Aabcde is symmetric in the first two and last
three indices put Aabcde = GabGcde with both Gab and Gabc declared as ::Symmetric).

Note the use of repeat=True in the call to substitute in the above code. It ensures that every
product GaGbc is replaced with Γabc. This point is explored further in Exercise 3.10 below.

Exercises

3.1. Write one or more Cadabra codes to verify the following symmetries of Ra
bcd

0 = Ra
bcd +Ra

bdc

0 = Ra
bcd +Ra

dbc +Ra
cdb

0 = Ra
bcd;e +Ra

bec;d +Ra
bde;c

3.2. Rewrite the code given in the above text for Ra
bcd to use ∇ as the derivative operator

rather than the symbol ;.

Hint: You may want to look back at Exercise 2.5.

3.3. Using

∂cgab = Γd acgdb + Γd bcgad

Ra
bcd = ∂cΓ

a
bd − ∂dΓa bc + Γe bdΓ

a
ce − Γe bcΓ

a
de

write a Cadabra code to express Rabcd = gaeR
e
bcd in terms of Γabc, Γabc and their partial

derivatives.
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3.4. Use the result of the previous exercise to verify that

Rabcd = −Rbacd

Rabcd = Rcdab

Hint: Rewrite the equations in the form Q = 0 (for some suitable choice of Q) then use
Cadabra to evaluate and simplify the left hand side.

3.5. Use Cadabra to verify that

(∇d∇c −∇c∇d) (AaBb) = Bb (∇d∇c −∇c∇d)Aa + Aa (∇d∇c −∇c∇d)Bb

This exercise involves little more than successive applications of the product rule. You
do not need to express ∇ in terms of the connection.

The above result leads to a nice simplification. Define a new derivative operator Dab by

Dab = ∇b∇a −∇a∇b

then the above result can be written as

Dcd (AaBb) = Dcd (Aa)Bb + AaDcd (Bb)

This is easy to remember – it has the form of a product rule for a typical derivative
operator.

3.6. Suppose Rabcd = AaBbCcDd. Use the D operator introduced in the previous exercise to
verify that

(∇f∇e −∇e∇f )Rabcd = RgbcdR
g
aef +RagcdR

g
bef +RabgdR

g
cef +RabcgR

g
def

You may need the following equation

(∇c∇b −∇b∇c)Va = Dbc (Va) = Rd
abcVd

3.7. This exercise is a variation of the previous exercise – it is the full computation made
without any tricks or assumptions on the form of Rabcd.

You will find it easier to use the symbol ; as the derivative operator rather than ∇ (as
per Example 3). You will also need to create rules for both the first and second covariant
derivatives of Rabcd and, for the final step, a rule to recover Ra

bcd from terms involving
the connection and its partial derivatives.

This exercise requires a lot more work than the previous exercise. Do not try to write a
complete code from scratch. Start with a trivial code. Then extend that code one line at
a time looking closely at Cadabra’s output before choosing the next Cadabra statement.
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3.8. Another standard result in differential geometry is that the Ricci tensor Rab for a sym-
metric connection is itself symmetric. That is, given

0 = Ra
bcd +Ra

dbc +Ra
cdb

0 = Rabcd +Rbacd

0 = Rabcd +Rabdc

then

Rab = Rc
acb = Rba

The same result can also be obtained directly using

∂cg
ab = −gaegbf∂cgef

Γa bc =
1

2
gad (∂bgdc + ∂cgbd − ∂dgbc)

Ra
bcd = ∂cΓ

a
bd − ∂dΓa bc + Γe bdΓ

a
ce − Γe bcΓ

a
de

Use this last set of equations as a basis for a Cadabra code to verify that Rab = Rba.

3.9. Adapt your Cadabra code from the previous exercise to express Rab solely in terms of
gab, its first and second partial derivatives and gab. Your answer should not contain any
partial derivatives of gab.

3.10. The code given in Example 3.2 included the following line

substitute (Vabc,$G^{a} G_{b c} -> \Gamma^{a}_{b c}$,repeat=True)

Is the repeat=True argument really necessary? Modify the source for Example 3 by
removing this argument, run the new code and observe the result. You should see that
the result differs from the original result. This behaviour can be understood using the
following simplified code.

foo := A B + A B A B + A B A B A B + A B A B A B A B .

bah := A B + A B A B + A B A B A B + A B A B A B A B .

substitute (foo,$A B -> A$)

substitute (bah,$A B -> A$,repeat=True)

Before the two calls to substitute both foo and bah will equal AB+ABAB+ABABAB+
ABABABAB and after the two calls to substitute their values will be

foo = A+ AAB + AABAB + AABABAB

bah = A+ AA+ AAA+ AAAA

By inspection it is easy to infer the action of substitute with and without the repeat=True
argument. Without the repeat=True argument only the first occurrence of the target in
each product term will be substituted. In contrast, when repeat=True argument is used
Cadabra will repeat the process until all possible matches have been made.
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4 Feel the Function

Since Cadabra’s core language is built on Python (and implemented in C++ for efficiency) it
inherits all of the functionality of Python including the use of functions. Here is a simple
example of a function in Cadabra

1 def tidy (expr):

2 sort_product (expr)

3 rename_dummies (expr)

4 canonicalise (expr)

5 return expr

This function takes a single argument expr, applies a sequence of Cadabra algorithms to expr

and finally returns the updated version of expr. Since tidy is a Python function, it must conform
to all of Python’s rules governing functions in particular the use of a consistent indentation in
the body of the function. The function can be called using

foo = tidy (bah)

This applies tidy to bah and saves the result in foo. Note that this is a pure Python statement
and thus the assignment is made using = rather than :=. This also explains the absence of
a Cadabra statement terminator (such as .) – it is a Python statement and thus it should
conform to the Python’s rules for statement termination.

As a more involved example consider the situation where you are asked to extract the cubic
terms from a polynomial such as

Quartic := c^{a}

+ c^{a}_{b} x^b

+ c^{a}_{b c} x^b x^c

+ c^{a}_{b c d} x^b x^c x^d

+ c^{a}_{b c d e} x^b x^c x^d x^e.

One approach (there are others, e.g., emulating a truncated Taylor series) is to use Cadabra’s
::Weight property and the keep_weight algorithm. The idea is to assign (invisible) weights to
the terms of the polynomial (through the ::Weight property) and then extract terms matching
a chosen weight (using the keep_weight algorithm).

Here is a Cadabra function that does the job.

1 def truncate (poly,n):

2

3 # assign a weight to x^{a} and give it a label

4 x^{a}::Weight(label=\epsilon).

5

6 # start with an empty expression

7 ans = Ex("0")

8

9 # loop over selected terms in the source

10 for i in range (0,n+1):

11

12 foo := @(poly).

13 bah = Ex("\epsilon = " + str(i))

14

31



15 # extract a single term

16 keep_weight (foo, bah)

17

18 # update the running sum

19 ans = ans + foo

20

21 # all done, return final answer

22 return ans

Though this function follows a fairly standard idiom – start with an empty sum and loop over
all terms while updating the rolling sum – some elements of the syntax have not been described
so far and thus a few lines of explanation are warranted.

Line 4 identifies xa as the target to carry the weights (and is given the label \epsilon to
distinguish it from other targets declared by other instances of ::Weight). Cadabra now sees
the polynomial as if it had been written as

Quartic := c^{a}

+ c^{a}_{b} x^b \eps

+ c^{a}_{b c} x^b x^c \eps^2

+ c^{a}_{b c d} x^b x^c x^d \eps^3

+ c^{a}_{b c d e} x^b x^c x^d x^e \eps^4.

The function Ex (used in lines 7 and 13) is a Cadabra function that takes a string (or zero)
and returns a Cadabra expression for that string. Thus line 7 sets the rolling sum ans to
zero while line 13 sets the target bah for the next term to extract from the polynomial. The
syntax foo := @(poly) is Cadabra’s way of creating a fresh copy of poly and saving it in foo.
Line 16 extracts the desired term from foo and overwrites foo with the result (as per most
Cadabra algorithms). The Python for-loop starts with i=0 and continues for n+1 iterations
thus covering the range i=0,1,2,...n.

The function could be called as follows

Cubic = truncate (Quartic,3)

with the final result exactly as expected – the leading cubic part of the original quartic poly-
nomial.

Exercises

In each of the following exercises you can assume that each polynomial is of the form

p(x) = ca + cabx
b + cabcx

bxc + cabcdx
bxcxd + cabcdex

bxcxdxe

where the coefficients ca, cab, c
a
bc etc. may vary from one polynomial to another. The

restriction to quartics is just to avoid the complexities that might otherwise arise with
highr order polynomials.
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4.1. Write a function that returns the first partial derivative of a polynomial, that is ∂b(p(x)).
For a quadratic such as

p(x) = ca + cabx
b + cabcx

bxc

the function should return

∂b(p(x)) = cab + cabcx
c + cacbx

c

Hint: Begin by making substitutions like xa → xa + δa then expand in powers of δa. At
a later stage in your function you will need to make a second substitution δa → 1. This
last step is not without its risks as you will discover in the following exercise.

Note. There are other (better) ways to differentiate expressions. One such method can
be found following the solution for this exercise.

4.2. The solution for the previous exercise contains the following three lines

sort_product (foo)

rename_dummies (foo)

factor_out (foo,$\delta^{a?}$)

Comment out those lines and then re-run the code. Look carefully at the output. Are
you worried? You should be! Look at the free indices – (a, b) for the first and third
terms and (a, c) on the second term. The source of this problem is the substitution
\delta^{a} -> 1. This changes the index structure and is thus a very risky operation.
It should only ever be used when it is clear that problems such as that just seen can
not arise. One way to prepare an expression for rules like \delta^{a} -> 1 is to use
sort_product, rename_dummies, canonicalise and factor_out to ensure that the expres-
sion contains just one instance of δa.

4.3. Write a function that accepts two polynomials and returns their product truncated to
a given order. The easiest solution is to multiply both polynomials, expand and then
truncate at the desired order. The problem with this solution is that it requires the full
product to be computed which wastes both time and memory. The better solution is
to construct the product term by term, starting from 0-th order and stopping at the
required order. You could start by writing a function that returns a term of a given
order from a polynomial (you can use the truncate function from the main example as
a starting point). This function could then be embedded in a loop to build a single term
of the product. A further loop can be used to construct all of the required terms.

Note. When testing your function do ensure that the free indices on the two polynomials
do not clash.

4.4. Here is a simple expression that is crying out for some TLC.

p(x) =
1

3
Aabx

axb +
1

9
Becx

cxe − 1

5
CpcBdqg

cdxpxq

The formatting could definitely be improved by factoring out the xa and by clearing
the fractions. Write a function with two arguments – the above polynomial and a scale
factor. The scale factor should be used to clear the numerators. Your function should
return the following expression

p(x) =
1

45
xaxb

(
15Aab + 5Bab − 9BcaCbdg

dc
)
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4.5. This is a simple extension of the previous exercise. This time the messy polynomial is

p(x) =
1

7
Aex

e − 1

3
Bfx

f

+
1

3
Aabx

axb +
1

9
Becx

cxe − 1

5
CpcBdqg

cdxpxq

+
3

7
Aabcx

axbxc − 1

5
BabCcdeg

cdxaxbxe +
7

11
BabBcdCefgg

bcgdfxaxexg

This expression contains 1st, 2nd and 3rd order terms in xa. Write a function that first
extracts the 1st, 2nd and 3rd order terms then tidies each using a function based on that
from the previous exercise. Finally, rebuild the expression using the three (tidy) terms.
You should obtain

p(x) =
1

21
xa (3Aa − 7Ba)

+
1

45
xaxb

(
15Aab + 5Bab − 9BcaCbdg

dc
)

+
1

385
xaxbxc

(
165Aabc − 77BabCdecg

de + 245BadBefCbgcg
degfg

)
4.6. As noted in an earlier Exercise 1.6, successive instances of SortOrder might not pro-

duce the desired result (e.g., using {A,B}::SortOrder as an attempt to undo a previous
{B,A}::SortOrder will fail). How can such problems be avoided? If the expression that
needs to be sorted is composed solely of items with names like AAA01, AAA02, AAA03 etc.
then the sorting can be done using Cadabra’s default sort order (i.e., no need to declare
SortOrder).

Write a function that uses the substitute algorithm to replace targeted objects with
names like AAA01, AAA02, AAA03 etc. Use this as a basis to sort the expression. Then
undo the substitutions and return the now sorted expression.

Test your function by sorting the following expression to place all of the xa to the left
of all other terms

expr := g_{a b} x^{a} x^{b} + \Gamma_{a b c} x^{a} x^{b} x^{c}

The value of this approach is that it allows you to create bespoke sort functions that
will work as intended every time. The coding is certainly more tedious than using
::SortOrder though the certainty of the result probably justifies the effort.

4.7. Since Cadabra’s functions like sort_product, canoniclaise etc. can alter their argument
in place it is possible to write functions like

def tidy (obj):

sort_product (obj)

rename_dummies (obj)

canonicalise (obj)

foo := C^{f} B^{a} A_{f a}.

tidy (foo)

Notice the absence of a line like return obj. This function will work as expected but it
is not standard Python practice. However, a function like
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def tidy (obj):

bah := @(obj)

sort_product (bah)

rename_dummies (bah)

canonicalise (bah)

obj := @(bah)

foo := C^{f} B^{a} A_{f a}.

tidy (foo)

will not return the correct result. Verify these claims by running each of the above codes
and observing the result for foo. A good working practice is to always use a Python
return statement to return the final result of the function.
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5 Stay focused

When massaging an expression towards a desired form it is often the case that some terms in the
expression need special attention while others can be left as they stand. One way to implement
this workflow in Cadabra is to manually pull apart the expression then allow Cadabra to do its
magic on the separate pieces. This is not ideal and it would be better if the expression could
be left intact while restricting Cadabra’s actions to targeted parts of the expression. Cadabra
provides two algorithms zoom and unzoom designed to focus Cadabra’s attention to specific
targets in an expression.

As an example, consider the task of replacing the second v^{a} in the following expression with
w^{a}

expr := A_{a} v^{a} + B_{a} v^{a} + C_{a} v^{a};

Using substitute (expr,$v^{a}->w^{a}$) would replace each instance of v^{a} with w^{a}.
Thus some further information must be given to Cadabra to restrict its attention to just the
middle term – this is where the zoom and unzoom algorithms enter the scene. Here is a short
Cadabra fragment that uses zoom and unzoom to do the job properly.

1 expr := A_{a} v^{a} + B_{a} v^{a} + C_{a} v^{a};

2 zoom (expr, $B_{a} Q??$)

3 substitute (expr, $v^{a} -> w^{a}$);

4 unzoom (expr)

The corresponding output is as follows.

Aav
a +Bav

a + Cav
a = . . .+Bav

a + . . . /2/

= . . .+Baw
a + . . . /3/

= Aav
a +Baw

a + Cav
a /4/

The zoom algorithm is designed to zoom in on selected parts of an expression. When zoom is
in play Cadabra will use ellipses . . . to denote those parts of the expression currently hidden
from view. This can be seen in lines /2/ and /3/ of the above output. The original view is
recovered with the call to unzoom in line 4. Note that for the duration of a zoom/unzoom pair,
Cadabra retains the full expression even though it only displays the parts selected by zoom.

A close look at the call to zoom in line 2 above reveals that zoom takes two arguments, the first is
the expression that will be zoom’ed and the second is a pattern that describes the target. In this
case the pattern is B_{a}Q??. The first part of this pattern B_{a} is easy to understand while
the second part Q?? is suggestive of a pattern matching rule. This is the second of Cadabra’s
pattern matching rulesc – the first pattern, such as A?_{a}, matches any tensor with a single
downstairs index, the second pattern, such as Q??, matches an arbitrary expression composed of
sums and products of arbitrary tensors. Thus Q?? will match each of the following expressions
Aa, AaBa, Va + WabcP

bc. The pattern used in the above example was B_{a} Q?? and thus
will match only the middle term of the original expression. The upshot is that the call to
substitute will only alter the middle term. This can be seen clearly in lines /2/ and /3/ of
the above output. The final line of the output is the result of the call to unzoom in line 4. This
shows that first and third terms where indeed left untouched by substitute.

cCadabra also supports conditional and regular expression patterns. See https://cadabra.science/

notebooks/ref_patterns.html for more details.
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Note that the choice of Q in the pattern Q?? is not ordained by Cadabra – any symbol could be
used. Note also that these double question mark patterns can be used in substitution rules. For
example, the rule A_{a} W?? -> B_{a} W?? would replace A_{a} with B_{a} in any expression
that begins with A_{a}.

Finally note that nesting of calls to zoom and unzoom is allowed and this can be used for greater
control in selecting targets within an expression.

5.1 Tags

Suppose that Vab is an anti-symmetric tensor, i.e., Vab = −Vba. Then it is clear that an expres-
sion like 2Vab − 3Vba can be reduced to just 5Vab. This reduction could easily be implemented
in Cadabra using something like the following

V_{a b}::AntiSymmetric.

expr := 2 V_{a b} - 3 V_{b a}.

canonicalise (expr)

Now suppose that you wished to achieve the same result but without assigning the AntiSymmetric
property to V_{a b}. Clearly the call to canoncialise will no longer swap the indices on the
second term and thus the expression will remain in its original form. The challenge is to per-
suade Cadabra to swap the indices on the second term. This suggests a substitution like the
following

expr := 2 V_{a b} - 3 V_{b a}.

substitute (expr, $3 V_{a b} -> - 3 V_{a b})

Alas, this too will fail as Cadabra will report a runtime error – numerical factors on the left of
a rule, such as 3 in the above code, are not allowed. A similar problem arises when trying to
use zoom to shift the focus. Thus the following code

expr := 2 V_{a b} - 3 V_{b a}.

zoom (expr, $3 V_{b a})

substitute (expr, $V_{a b} -> - V_{a b})

will produce a similar runtime error.

One solution to this problem is to modify the expression by adding unique tags to each term.
These tags can then be used as the targets for zoom. The tagged expression can then be
manipulated to achieve the desired result after which the tags are removed. For the current
example, reducing 2Vab − 3Vba to 5Vab, this is certainly a case of using a jet plane to cross a
street but the general method is applicable to much more challenging problems (as shown in
Example 12 in part 3).

The process of adding and clearing tags can be achieved with calls to the following pair of
functions

1 def add_tags (obj,tag):

2 n = 0

3 ans = Ex(’0’)

4 for i in obj.top().terms():

5 foo = obj[i]

6 bah = Ex(tag+’_{’+str(n)+’}’)
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7 ans := @(ans) + @(bah) @(foo).

8 n = n + 1

9 return ans

10

11 def clear_tags (obj,tag):

12 ans := @(obj).

13 foo = Ex(tag+’_{a?} -> 1’)

14 substitute (ans,foo)

15 return ans

The operation of each function involves a simple mix of Python and Cadabra constructs. Both
functions take two arguments, the first is the expression to be tagged and the second is a string
that describes the base of the tag. The tag base, for example µ, is used to generate a sequence
of tags such as µ0, µ1, µ2, . . . . The add_tags function uses a for-loop to select each term in
the expression (line 5), multiplies that term by the tag and then updates a rolling sum (line 7).
The clear_tags function does its job by simply replacing all tags with the number 1.

Here is a short code fragment that demonstrates how these functions can be used to reduce
2Vab − 3Vba to 5Vab.

1 expr := 2 V_{p q} - 3 V_{q p}.

2

3 expr = add_tags (expr,’\\mu’)

4

5 zoom (expr, $\mu_{1} Q??$)

6 substitute (expr, $V_{a b} -> - V_{b a}$)

7 unzoom (expr)

8

9 expr = clear_tags (expr,’\\mu’)

The corresponding output is as follows.

2Vpq − 3Vqp = 2µ0Vpq − 3µ1Vqp /3/

= . . .− 3µ1Vqp /5/

= . . .+ 3µ1Vpq /6/

= 2µ0Vpq + 3µ1Vpq /7/

= 5Vpq /9/

The main objection to this method is that it requires explicit knowledge of the left to right
order of the terms in an expression. Consider for example an expression that happens to have
say 10 terms and assume that the tag function have been used to target the µ7 term. If some
changes are made to the code preceding that expression then it is possible that the term of
interest may no longer be matched to µ7. The re-ordering of the terms might now find the
target term matched with µ4. This would require corresponding changes to the calls to zoom. It
is also possible that this same problem could arise, not through any change of the users code,
but by changes made by the Cadabra team to the internal workings of its own functions. The
bottom line is that the user must take care when using these functions – careful scrutiny of the
output should be standard practice!
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Exercises

5.1. Verify that the following substitution rule

expr := A_{a} (P^{b}+Q^{b}) + C_{a} V^{b}.

swap := A_{a} B?? + C_{a} D?? -> A_{a} D?? + C_{a} B??

can be used to swap the expressions attached to A_{a} and C_{a}.

5.2. Verify the claim that Cadabra will report a runtime error when attempting the following
substitution

expr := 2 V_{a b} - 3 V_{b a}.

substitute (expr, $3 V_{b a} -> - 3 V_{a b})

5.3. Use a suitable substitution pattern to delete the second term in the following polynomial

p(x) = AabB
ab + AabAcdB

abBcd − CabBab

Do not use a tagged expression – that approach will be left for the next exercise.

5.4. Repeat the previous exercise but this time making use of the add_tags and clear_tags

functions.

Hint: A simple way to delete a term is to multiply it by zero.

5.5. A common method of introducing a Riemann tensor into a computation is to make use
of the simple commutation rule for covariant derivatives, namely

V a
;b;c = V a

;c;b −Ra
dbcV

d

Use this equation as the basis of a Cadabra code to simplify the expression V a
;b;c−V a

;c;b

to the expected result, namely −Ra
dbcV

d.

Hint: You will need to work with a tagged expression.
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6 Full disclosure

Previous examples in this tutorial have shown that Cadabra is no slouch when it comes to
complex tensor algebra. The purpose of this example is to show that it is also a dab hand
at component computations, that is, given a set of coordinates, compute the components of a
tensor in those coordinates.

Here is a rather simple first example. Given the components of Va, compute the components of
a new tensor dV defined by dVab = ∂bVa − ∂aVb. This computation entails a few basic steps –
choose a set of coordinates, express the components of V in those coordinates then evaluate dV .
The information required by Cadabra is much the same as just described – a set of coordinates,
the components of Va and a way to compute dVab from Va. Here is a short Cadabra code that
does the job.

1 {\theta, \varphi}::Coordinate.

2 {a,b,c,d,e,f,g,h#}::Indices(values={\theta, \varphi}, position=independent).

3

4 \partial{#}::PartialDerivative.

5

6 V := { V_{\theta} = \varphi, V_{\varphi} = \sin(\theta) }.

7 dV := \partial_{b}{V_{a}} - \partial_{a}{V_{b}}.

8

9 evaluate (dV, V)

The first line declares a pair of symbols for the coordinates while the second line attaches those
coordinates to the indices. Note the use of Greek letters to denote the coordinates in contrast
to the Latin characters used for the tensor indices. This is an aesthetic choice commonly used
in research articles in General Relativity to make clear the distinction between an abstract
expression for a tensor and its components in a given frame (known as the Penrose abstract
index notation). Note also that only two coordinates were declared in the first line – this
implies that the tensors live in a two dimensional space. The components of Va are described
in line 6 as an explicit list of values. Each entry in the list is of the form foo = bah where foo

is one of the components of a tensor (in this case Va) while bah is a scalar expression (i.e., an
expression that does not contain any free indices, there are other restrictions as noted below).
Line 7 informs Cadabra how to compute dVab from Va while the final line completes the job –
it evaluates each of the components of dVab. The output from the above code is

Va = [Vθ = ϕ, Vϕ = sin θ] /6/

∂bVa − ∂aVb = �ab

{
�ϕθ = cos θ − 1
�θϕ = − cos θ + 1

/7/

The format of the output shown in line /7/ is typical of Cadabra’s output for a call to evaluate.
It displays the non-zero components as a table using a � as a place holder for the underlying
tensor. Note that the expression on the far left of line /7/ has been added here to aid in reading
the output – this term was not generated by Cadabra but was included by hand. Cadabra’s
output begins with �ab in that same line of output. The ab subscripts on �ab are matched to
the indices of the source on the left and the components on the right. Thus with a = θ and
b = ϕ the above output reads as

∂ϕVθ − ∂θVϕ = �θϕ = − cos θ + 1
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Cadabra does place some restrictions on the scalar expressions that can be used when describing
a component of a tensor (given as bah in the above paragraph). It is easier to show by example
what Cadabra will or will not accept for a scalar expression rather than spelling out Cadabra’s
rules in detail. Here are set of definitions for Va that are allowed by Cadabra.

V := { V_{\theta} = \varphi, V_{\varphi} = \sin(\theta) }.

V := { V_{\theta} = \varphi, V_{\varphi} = \partial_{\theta}{\sin(\theta)} }.

V := { V_{\theta} = f(\theta,\varphi), V_{\varphi} = g(\theta,\varphi)}.

In contrast, each of the following definitions will be rejected by Cadabra.

V := { V_{a} = W_{a} }. # don’t use free indices

V := { V_{\theta} = \theta, V_{\varphi} = V_{\theta} }. # don’t use sub/super-scripts

V := { V_{\theta} = \varphi^2, V_{\varphi} = \theta }. # use ** for powers

One other notable exception is that Cadabrad does not (yet) support the use of derivative
operators on the left hand side of the component rules. The following code fragment will raise
a Cadabra run time error.

\partial{#}::PartialDerivative.

V_{a}::Depends(\theta,\varphi,\partial{#}).

V := { \partial{\theta}{V_{\varphi}} = \cos(\theta) }. # partial derivs not supported

A workaround for problems like this is given later in Exercise 6.8.

6.1 Riemann curvature of a 2-sphere

This approach can be easily extended to a somewhat more realistic example – computing the
Riemann tensor for a 2-spheree. The starting point in this case is the metric of a 2-sphere,
which in polar coordinates (θ, ϕ) can be written as

ds2 = r2
(
dθ2 + sin2 θ dϕ2

)
The metric components are described in Cadabra by a list of non-zero components

gab := { g_{\theta\theta} = r**2,

g_{\varphi\varphi} = r**2 \sin(\theta)**2 }.

Since the Riemann tensor also depends on the inverse metric gab the gab must also be known
to Cadabra before computing the Riemann tensor. In this simple example it is easy compute
the inverse by hand and then provide a list such as

iab := { g^{\theta\theta} = 1/r**2,

g^{\varphi\varphi} = 1/(r**2 \sin(\theta)**2) }.

A second method is to use Cadabra’s complete algorithm (see the source code of this example
for a modified version that uses complete).

Note that the lists for gab and iab contain all of their non-zero components. These are just
lists of simple expressions and Cadabra knows nothing about any symmetries that might be

dCadabra 2.2.7 (build 2268.ba747e0b49 dated 2019-12-01)
eThis example is adapted from the Cadabra web page https://cadabra.science/notebooks/sphere.html
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associated with these lists. In our case the underlying tensors are symmetric so it is essential
that all non-zero components be included in the list including those that could be inferred from
the symmetries. Thus for a metric of the form ds2 = du2 +2uvdudv+dv2 the components must
be specified using

gab := { g_{u u} = 1, g_{u v} = uv,

g_{v u} = uv, g_{v v} = 1 }.

Here is the complete code for the Riemann tensor for the 2-sphere.

1 {\theta, \varphi}::Coordinate.

2 {a,b,c,d,e,f,g,h#}::Indices(values={\theta, \varphi}, position=independent).

3

4 \partial{#}::PartialDerivative.

5

6 Gamma := \Gamma^{a}_{b c} -> 1/2 g^{a d} ( \partial_{b}{g_{d c}}

7 + \partial_{c}{g_{b d}}

8 - \partial_{d}{g_{b c}}).

9

10 Rabcd := R^{a}_{b c d} -> \partial_{c}{\Gamma^{a}_{b d}}

11 - \partial_{d}{\Gamma^{a}_{b c}}

12 + \Gamma^{e}_{b d} \Gamma^{a}_{c e}

13 - \Gamma^{e}_{b c} \Gamma^{a}_{d e}.

14

15 gab := { g_{\theta\theta} = r**2,

16 g_{\varphi\varphi} = r**2 \sin(\theta)**2 }.

17

18 iab := { g^{\theta\theta} = 1/r**2,

19 g^{\varphi\varphi} = 1/(r**2 \sin(\theta)**2) }.

20

21 substitute (Rabcd, Gamma)

22

23 evaluate (Gamma, gab+iab, rhsonly=True)

24 evaluate (Rabcd, gab+iab, rhsonly=True)

There are two minor aspects of the above code that should be noted. First, each call to evaluate

acts on a Cadabra rule and thus the argument rhsonly=True is used to restrict the action of
evaluate to just the right hand side of the rule. Second, the construction gab+iab results in a
single list built from gab and iab (this is standard Python syntax).

The output from the above code is as follows[
gθθ = r2, gϕϕ = r2(sin θ)2

]
/15/[

gθθ = r−2, gϕϕ =
(
r2(sin θ)2

)−1
]

/18/

42



Γabc → �cb
a


�ϕθ

ϕ = (tan θ)−1

�θϕ
ϕ = (tan θ)−1

�ϕϕ
θ = −1

2
sin (2θ)

/23/

Ra
bcd → �db

a
c


�ϕϕ

θ
θ = (sin θ)2

�ϕθ
ϕ
θ = −1

�θϕ
θ
ϕ = −(sin θ)2

�θθ
ϕ
ϕ = 1

/24/

The above results are mostly self-explanatory. However, the notation used in displaying the
Riemann components does require a brief explanation. Note that the order of the indices on
the left and right hand sides do not match. Despite this fact, the indices do maintain a strict
one-to-one correspondence. For example, the component Rθ

ϕθϕ has indices a = θ, b = ϕ, c = θ
and d = ϕ which, on the right hand side, corresponds to �ϕϕ

θ
θ. Thus Rθ

ϕθϕ = �ϕϕ
θ
θ = sin2 θ.

There is one small variation on the above code that is worth noting. Suppose that Rabcd had
been declared as

10 Rabcd := \partial_{c}{\Gamma^{a}_{b d}}

11 - \partial_{d}{\Gamma^{a}_{b c}}

12 + \Gamma^{e}_{b d} \Gamma^{a}_{c e}

13 - \Gamma^{e}_{b c} \Gamma^{a}_{d e}.

The object Rabcd is no longer a substitution rule but rather a simple Cadabra expression. Thus
there is no need in this case for the rhsonly=True argument in the call to evaluate. The output
from the above code is

�db
a
c


�ϕϕ

θ
θ = (sin θ)2

�ϕθ
ϕ
θ = −1

�θϕ
θ
ϕ = −(sin θ)2

�θθ
ϕ
ϕ = 1

which no longer contains the informative left hand side, that is, Ra
bcd →. So when writing code

it may be useful to apply the evaluate algorithm to a rule (if convenient) rather than a simple
expression. The advantage in doing so is that the left hand side of the rule retains a useful
reminder of how the indices map to the components on the right hand side.

6.2 Selecting components

Calls to evaluate will return a Cadabra object that contains all of the non-zero components.
This raises a simple question – How can individual components of a tensor be found? The
simplest answer is to call the Cadabra function get_component. The Rθ

ϕθϕ component of
the Riemann tensor Ra

bcd can be obtained using the following code (appended to the above
code)

25 from cdb.core.component import *

26

27 Riem := R^{a}_{b c d}.

28 substitute (Riem, Rabcd) # convert from a rule to a simple expression

29

30 RiemCompt = get_component (Riem, $\theta, \varphi, \theta, \varphi$)
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This will return

Rθ
ϕθϕ = −(sin θ)2 /30/

The same results can also be obtained by projecting the tensor onto a suitable combination of
basis elements. Thus Rθ

ϕθϕ can be computed using Ra
bcde

θ
ae
b
ϕe

c
θe
d
ϕe where eθ = ∂θ and eϕ = ∂ϕ

are the standard basis for the coordinates (θ, ϕ). The following code fragment will do the job.

theta{#}::LaTeXForm{"\theta"}.

varphi{#}::LaTeXForm{"\varphi"}.

gab := { g_{\theta \theta} = r**2,

g_{\varphi \varphi} = r**2 \sin(\theta)**2 }.

iab := { g^{\theta\theta} = 1/r**2,

g^{\varphi\varphi} = 1/(r**2 \sin(\theta)**2) }.

# define the basis for vectors and dual vectors

basis := {theta^{\theta} = 1, varphi^{\varphi} = 1}.

dual := {theta_{\theta} = 1, varphi_{\varphi} = 1}.

# obtain components by contracting with basis

compt := R^{a}_{b c d} theta_{a} varphi^{b} theta^{c} varphi^{d}.

substitute (compt, Rabcd)

evaluate (compt, gab+iab+basis+dual)

This fragment will require all the usual property definitions but more importantly it requires
a definition of the tensor Rabcd. This can be taken from either line 21 or 24 of the 2-sphere
example given above.

6.3 Components in pure Python/SymPy

It is quite likely that one of the reasons for extracting one or more components of a tensor
is that some numerical values are sought (e.g., for plotting or for use in a separate numerical
simulation).

How can a Cadabra expression be evaluated numerically? This clearly sounds like a job for
Python/SymPy (or NumPy). But first the Cadabra expression, which may contain LaTeX
markup, needs to be reformatted for use by Python. This is rather easy – just apply the
._sympy_() method to convert the Cadabra expression to a SymPy expression. Note that
the ._sympy() method is the counterpart to Cadabra’s Ex function (which converts strings to
Cadabra expressions).

Thus a Python expression for the ϕϕ component of the 2-metric could be created using

r, theta, varphi = symbols(’r theta varphi’)

gphiphi = compt._sympy_()
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where compt is the result obtained above using the projection method. The first line is needed
only when gphiphi will be subsequently processed by SymPy operations. Note that the usual
Python line

from sympy import *

is not needed as this is always included by Cadabra as part of its initialisation.

You can verify that the before and after expressions have the expected types by using the
following code fragment

print (’type compt = ’ + str(type(compt)))

print (’type gphiphi = ’ + str(type(gphiphi)))

This produces the following output

type compt = <class ’cadabra2.Ex’>

type gphiphi = <class ’sympy.core.mul.Mul’>

Exercises

6.1. Modify the original example by replacing line 7 with

7 dV := dV_{a b} -> \partial_{b}{V_{a}} - \partial_{a}{V_{b}}.

Observe the output then repeat using

7 dV := dV_{a b} -> \partial_{b}{V_{a}} - \partial_{a}{V_{b}}.

8 evaluate (dV, V, rhsonly=True)

6.2. Modify the original example by replacing lines 6 and 7 with

6 V := { V_{\theta} = f(\theta,\varphi), V_{\varphi} = g(\theta,\varphi) }.

7 dV := \partial_{b}{V_{a}} + \partial_{a}{V_{b}}.

Run the new code and observe the output. Not much to say here other than to admire
your handiwork.

6.3. When processing a statement like evaluate(foo,bah) Cadabra will use bah as a pool of
expressions to fulfil any requests while evaluating each component of bah. What happens
if the pool does not contain the requested component? If the pool contains some but
not all entries for a tensor then the remaining entries are taken to be zero. Now run a
code built on this fragment

bah := {V_{\theta} = \varphi, V_{\varphi} = \sin(\theta)}.

foo := U_{a} V_{b}.

evaluate (foo, bah)

The output should show that Cadabra has assumed that all entries of Ua are non-zero
despite there being no entries for Ua in the pool bah.

6.4. Extend the sample code for the 2-sphere to also compute the scalar curvature. The result
should be 2/r2 (as expected).
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6.5. Verify that the Schwarzschild metric in isotropic coordinates

ds2 = −
(

2r −m
2r +m

)2

dt2 +
(

1 +
m

2r

)4 (
dr2 + r2

(
dθ2 + sin2 θ dφ2

) )
is a solution of the vacuum Einstein equations 0 = Rab.

6.6. Compute the Ricci tensor Rab for the Kasner metric

ds2 = −dt2 + t2p1dx2 + t2p2dy2 + t2p3dz2

Hence verify that the Ricci tensor vanishes provided

p1 + p2 + p3 = p21 + p22 + p23 = 1

6.7. Consider the Schwarzschild metric in Schwarzschild coordinates

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2

(
dθ2 + sin2 θ dφ2

)
where f(r) = (1− 2m/r). Show that each of the following vectors

(i) ξ = ξa∂a = ∂t

(ii) ξ = ξa∂a = ∂ϕ

(iii) ξ = ξa∂a = sinϕ∂θ + cot θ cosϕ∂ϕ

(iv) ξ = ξa∂a = cosϕ∂θ − cot θ sinϕ∂ϕ

is a solution of Killing’s equation

0 = ξa;b + ξb;a

Hint: You will need to provide two lists of components, one for gab and one for ξa.
Note. To avoid a runtime error you will need to write cot θ as cos θ/sin θ.

6.8. The current version of Cadabraf does not support component rules that include derivative
operators in the targets of the component definitions. Thus code like the following will
raise a run time error.

{\theta, \varphi}::Coordinate.

{a,b,c,d,e,f,g,h#}::Indices(values={\theta, \varphi}, position=independent).

\partial{#}::PartialDerivative.

V_{a}::Depends(\theta,\varphi,\partial{#}).

dVrule := { \partial_{\theta}{V_{\varphi}} = \sin(\theta),

\partial_{\varphi}{V_{\theta}} = \cos(\theta)}.

dV := \partial_{b}{V_{a}} - \partial_{a}{V_{b}}.

evaluate (dV, dVrule)

Though the intention is clear, Cadabra (at present) does not allow the rule dVrule to be
used in the call to evaluate. One solution to this impasse is to hide the derivative from
evaluate by making a substitution \partial_{a}{V_{b}} -> dV_{a b} then applying
evaluate to dV_{a b}. Test this idea by modifying the above code to include this hack.

fCadabra 2.2.7 (build 2268.ba747e0b49 dated 2019-12-01)
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7 Escape to C

An increasingly popular approach in computational physics is to harness the power of programs
like Mathematica and Maple to convert differential equations into computational procedures
written in a language like C or Fortran (see [11] and [12]). Cadabra can take this one step
further by first processing the tensor equations before handing the results over to Mathematica,
Maple or even Cadabra’s own internal version of SymPy. This opens up the possibility of using
Cadabra, from beginning to end, by starting with a complex tensor equation, such as Einstein’s
equations, and then doing all the work required to produce a stand alone C program.

All but the last stage of this workflow can be easily handled using techniques described in the
previous examples. The final stage of this workflow, where the C-code is created, can be easily
implemented using the Codegen package from Python/Sympy. The basic idea is to iterate over
a list of expressions, passing each expression to Codegen and then saving the results to a file.
Here is a short Python code that writes raw C-code for a single tensorg.

1 def write_code (obj,name,filename,rank):

2

3 import os

4

5 from sympy.printing.ccode import C99CodePrinter as printer

6 from sympy.printing.codeprinter import Assignment

7

8 idx=[] # indices in the form [{x, x}, {x, y} ...]

9 lst=[] # corresponding terms [termxx, termxy, ...]

10

11 for i in range( len(obj[rank]) ): # rank = num. of free indices

12 idx.append( str(obj[rank][i][0]._sympy_()) ) # indices for this term

13 lst.append( str(obj[rank][i][1]._sympy_()) ) # the matching term

14

15 mat = sympy.Matrix([lst]) # row vector of terms

16 sub_exprs, simplified_rhs = sympy.cse(mat) # optimise code

17

18 with open(os.getcwd() + ’/’ + filename, ’w’) as out:

19

20 for lhs, rhs in sub_exprs:

21 out.write(printer().doprint(Assignment(lhs, rhs))+’\n’)

22

23 for index, rhs in enumerate (simplified_rhs[0]):

24 lhs = sympy.Symbol(name+’ ’+(idx[index]).replace(’, ’,’][’))

25 out.write(printer().doprint(Assignment(lhs, rhs))+’\n’)

The function write_code takes four arguments. The first, obj, is a list of components of the
tensor created in a prior call to evaluate. The second, name, is a string representing the C-array
name. Entries in this array will be the C-code for the corresponding tensor component with
indices matching exactly those of the tensor represented by obj. The third argument is simply
the filename while the final argument, rank, equals the number of free indices on the tensor.

The function write_code also applies basic optimisation of the C-code by looking for common
subexpressions and writes these (as assignments to variables like x0, x1, x2 ...) to the file ahead
of the tensor components.

gAn extended version of the function, suitable for use with tensors and scalars, can be found in
hybrid-latex/python/writecode.py
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The argument obj is assumed to be the result of a call to evaluate. As noted in Example 6 (on
the 2-sphere) there are two ways to call evaluate, the first uses a simple expression as in

Rab := R_{a b};

evaluate (Rab, ...)

while the second uses a substitution rule as in

Rab := R_{a b} -> R^{c}_{a c b};

evaluate (Rab, ...)

The function write_code is designed for the first case and expects a call like write_code(Rab,...).
However, if the components were created using the second method, then the correct call would
be write_code(Rab[1],...). Using Rab[1] steps over the leading Rab -> part of Rab.

The connection, Riemann and Ricci components for the 2-sphere (using the Cadabra code from
Example 6) could be converted to C using

write_code (Gamma[1], ’myGamma’, ’example-07-gamma.c’, 3)

write_code (Rabcd[1], ’myRabcd’, ’example-07-rabcd.c’, 4)

write_code (Rab[1], ’myRab’, ’example-07-rab.c’, 2)

This creates the following C code for the connection

x0 = 1.0/tan(theta);

myGamma [varphi][theta][varphi] = x0;

myGamma [theta][varphi][varphi] = x0;

myGamma [varphi][varphi][theta] = -1.0/2.0*sin(2*theta);

Clearly this C-code would not compile (as it stands) for it lacks some basic declarations (e.g.,
array declarations for myGamma and access to the math library). One solution could be to modify
the function write_code to fill in the missing pieces but a better solution is treat the above
code as a fragment to be included (either by hand or by a #include) into a separate C-program.

Exercises

7.1. Using the result of Exercise 3.9 (i.e., Rab in terms of gab) write a Cadabra code that creates
C-code that could be the used to compute each of the components of Rab. Assume a
generic 3d-metric and assume the coordinates are labelled x,y,z.

Hint: You may need to refer back to Exercise 6.8 to hide the first and second partial
derivatives of gab. You could also need to add simplify=False to the argument list in
the call to evaluate. The function write_code will optimise the C-code so there is not
a great deal to be gained by asking Sympy to also optimise its output.
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8 Expressions of interest

A common paradigm in computational science is to break a given problem into smaller parts
with each part allocated to a single computer code. This obviously requires some cooperation
between the various programs, usually in the form of sharing results – the programs exchange
information by exporting and importing data in some suitable format.

Can such a paradigm be applied in the context of Cadabra? Put another way, Is it possible to
share Cadabra content between different Cadabra programs? Though this might sound like a
simple question it does raise some serious issues. Recall that a Cadabra expression is more than
just an object with a list of indices – it may also be subject to a set of properties such as index
sets, symmetries, commutation rules etc. Thus when an object is exported the question arises
– how much information about its properties should also be exported? And when that object is
imported into another program might the inherited properties clash with those declared in the
host code? (e.g., an object declared as symmetric in foo.cdb might be imported by bah.cdb

where it is (incorrectly) declared as anti-symmetric).

8.1 Importing Cadabra code

Cadabra supports the usual Python constructs for importing code from other sources. This
make it rather easy for sibling codes to share content. For example, suppose foo.cdb is a plain
text file with the following content

{a,b,c,d,e,f,g,h}::Indices(position=independent).

R_{a b c d}::RiemannTensor.

Then another Cadabra program can import the above code as in this example

from foo import *

expr := R_{a b c d} + R_{a b d c}.

The result of this simple example is zero (since Rabcd = −Rabdc).

A good use of this method would be to include all of the common properties from a collection of
codes in one file. Each code in the collection would then import this shared library. This saves
the programmer time and also ensures consistent definitions across the collection. However,
this still leaves the problem of sharing results between one or more programs. One solution,
as described in the following section, is to use basic Python I/O to read and write the data as
required.

Note that the assumption that foo.cdb is a plain text file is not essential as this method works
equally well with Cadabra notebooks such as foo.cnb.

Be aware that there is a little trap that might catch the unwary. Whenever Cadabra is asked
to import a library (either from an explict call in your code or during Cadabra’s startup) it
will go on a merry hunt looking for the first matching library – and that may not be the library
you had expected. For example, during startup Cadabra will import various standard libraries
including sympy. If you happen to have your own version of sympy.cdb then Cadabra will use
your version rather than the system version – and that would not play well down the track.
The simple solution is to ensure that all of your library names do not clash with any Cadabra
or Python libraries.
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8.2 Basic data I/O

The basic idea is to store Cadabra objects as strings in a Python dictionary which in turn is
stored as a file in JSON format. The Python code hybrid-latex/python/cdblib.py consists of
three simple Python functions with the following headers

def create (file_name): # create a library or clear an exiting library

def put (key_name,object,file_name): # add an object to the library

def get (key_name,file_name): # retrieve an object from the library

The implementation of these functions is not all that important here (see the source code in
hybrid-latex/python for full details). Note that there are no explicit functions to open or close
the library as such actions are handled internally in the put and get functions.

Here is a simple example that demonstrates the use of these functions. It creates two expres-
sions, writes them to a library, reads them back in but with new names and finally checks that
the new objects agree with the originals.

lib_name = ’example-08.json’

create (lib_name)

\nabla{#}::Derivative.

gab := g_{a b} - 1/3 x^{c} x^{d} R_{a c b d}

- 1/6 x^{c} x^{d} x^{e} \nabla_{c}{R_{a d b e}}.

iab := g^{a b} + 1/3 x^{c} x^{d} g^{a e} g^{b f} R_{c e d f}

+ 1/6 x^{c} x^{d} x^{e} g^{a f} g^{b g} \nabla_{c}{R_{d f e g}}.

put (’g_ab’,gab,lib_name)

put (’g^ab’,iab,lib_name)

gBar = get (’g_ab’,lib_name)

iBar = get (’g^ab’,lib_name)

tmp := @(gab) - @(gBar).

tmp := @(iab) - @(iBar).

The output from the above code is as follows. First, the two original objects, gab and gab,
exported to the file example-08.json

gab(x) = gab −
1

3
xcxdRacbd −

1

6
xcxdxe∇cRadbe

gab(x) = gab +
1

3
xcxdgaegbfRcedf +

1

6
xcxdxegafgbg∇cRdfeg

Second, the new objects, ḡab and ḡab, imported by reading the file example-08.json

ḡab(x) = gab −
1

3
xcxdRacbd −

1

6
xcxdxe∇cRadbe

ḡab(x) = gab +
1

3
xcxdgaegbfRcedf +

1

6
xcxdxegafgbg∇cRdfeg
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Finally, here is the proof that the new and old objects agree

gab(x)− ḡab(x) = 0

gab(x)− ḡab(x) = 0
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Part 2 Applications

The examples in the first part of this tutorial were chosen to be sufficiently simple so as to
allow the reader to easily gain a good understanding of Cadabra. The risk in using such simple
examples is that they might convey the (incorrect) notion that Cadabra is suitable only for such
simple calculations. The examples in this second part were chosen to dispel such notions – they
are non-trivial calculations and demonstrate that Cadabra is more than capable of handling
serious computations in general relativity.

The discussion in each of the following examples will not be as detailed as that given in Part
1. Also, as there are no exercises in this part the reader is encouraged to experiment with the
source code (in source/cadabra/).
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9 The Gauss equation

In this example Cadabra will be used to derive the Gauss equation which relates the induced
and ambient curvatures of a hypersurface in an n−dimensional Riemannian manifold.

The basics of the underlying mathematics are as follows. Suppose Σ is an (n− 1)−dimensional
subspace of an n−dimensional space M . Suppose M is equipped with Riemannian metric g
and a metric compatible derivative operator ∇. The subspace Σ will, by way of its embedding
in M , inherit a metric and a derivative operator which will be denoted by h and D respectively.
Let na be the oriented unit normal to Σ. Then the metrics of Σ and M are related by

gab = hab + nanb

while, for any dual-vector va lying in Σ (i.e., van
a = 0),

Dbva = hdbh
c
a ∇dvc

where hab = gab − nanb is the projection operator. The curvature tensor for (Σ, h,D) can then
be obtained by computing (DcDb −DbDc) va. This is all very standard and can be found in
most textbooks on differential geometry (see [13]).

Translating these equations into Cadabra code is straightforward and follows a now familiar
pattern. Unlike the previous examples, the discussion will begin by considering the fragments
of code needed to express the basic mathematical relations as just given. These code fragments
will later be glued together to form a complete Cadabra program.

Consider the definition of the projection operator hab = gab− nanb and its use in defining D in
terms of ∇. The symbol hab will be used to record the projection operator and vpq to record
the covariant derivative Dqvp. Thus the code will contain the lines

hab:=h^{a}_{b} -> g^{a}_{b} - n^{a} n_{b}:

vpq:=v_{p q} -> h^{a}_{p} h^{b}_{q} \nabla_{b}{v_{a}}:

The code will also need an expression for the commutation of the covariant derivatives,
(DrDq −DqDr) vp which will be written as vpqr

vpqr:=h^{a}_{p} h^{b}_{q} h^{c}_{r} ( \nabla_{c}{v_{a b}} - \nabla_{b}{v_{a c}} ).

substitute (vpq,hab)

substitute (vpqr,vpq)

Some standard substitutions will also be needed to simplify and tidy the result. These substi-
tutions (and all of the previous definitions) are exactly what would normally be used if these
calculations were done by hand. For example, the lines

substitute (vpqr,$h^{a}_{b} n^{b} -> 0$)

substitute (vpqr,$h^{a}_{b} n_{a} -> 0$)

expresses the condition that na is normal to the subspace, 0 = nbhab and 0 = nbhb
a. The

line

substitute (vpqr,$\nabla_{a}{g^{b}_{c}} -> 0$)

states that the covariant derivative of g is zero while the line
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substitute (vpqr,$n^{a} \nabla_{b}{v_{a}} -> -v_{a} \nabla_{b}{n^{a}}$)

is a simple re-working of 0 = ∇ (nava) = (∇na) va + na (∇va) to eliminate first derivatives of
va from the expression vpqr. The next line

substitute (vpqr,$v_{a} \nabla_{b}{n^{a}} -> v_{p} h^{p}_{a} \nabla_{b}{n^{a}}$)

squeezes a projection operator between va and ∇na. This is allowed because va has zero normal
component. Finally, lines like

substitute (vpqr,$h^{p}_{a} h^{q}_{b} \nabla_{p}{n_{q}} -> K_{a b}$)

substitute (vpqr,$h^{p}_{a} h^{q}_{b} \nabla_{p}{n^{b}} -> K_{a}^{q}$)

can be used to introduce the extrinsic curvature tensor Kab.

The above code fragments will need to be supplemented with extra statements, such as an
index set, substitution and simplification rules etc., before Cadabra can do its job. Such pieces
of code are very similar to those given in the previous examples and thus require no further
explanation here. Here then is the final code.

1 {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u#}::Indices(position=independent).

2

3 \nabla{#}::Derivative.

4

5 K_{a b}::Symmetric.

6 g^{a}_{b}::KroneckerDelta.

7

8 # define the projection operator

9

10 hab:=h^{a}_{b} -> g^{a}_{b} - n^{a} n_{b}.

11

12 # 3-covariant derivative obtained by projection on 4-covariant derivative

13

14 vpq:=v_{p q} -> h^{a}_{p} h^{b}_{q} \nabla_{b}{v_{a}}.

15

16 # compute 3-curvature by commutation of covariant derivatives

17

18 vpqr:= h^{a}_{p} h^{b}_{q} h^{c}_{r} ( \nabla_{c}{v_{a b}}

19 - \nabla_{b}{v_{a c}} ).

20

21 substitute (vpq,hab)

22 substitute (vpqr,vpq)

23

24 distribute (vpqr)

25 product_rule (vpqr)

26 distribute (vpqr)

27 eliminate_kronecker (vpqr)

28

29 # standard substitutions

30

31 substitute (vpqr,$h^{a}_{b} n^{b} -> 0$)

32 substitute (vpqr,$h^{a}_{b} n_{a} -> 0$)

33 substitute (vpqr,$\nabla_{a}{g^{b}_{c}} -> 0$)

34 substitute (vpqr,$n^{a} \nabla_{b}{v_{a}} -> -v_{a} \nabla_{b}{n^{a}}$)
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35 substitute (vpqr,$v_{a} \nabla_{b}{n^{a}} -> v_{p} h^{p}_{a}\nabla_{b}{n^{a}}$)

36 substitute (vpqr,$h^{p}_{a} h^{q}_{b} \nabla_{p}{n_{q}} -> K_{a b}$)

37 substitute (vpqr,$h^{p}_{a} h^{q}_{b} \nabla_{p}{n^{b}} -> K_{a}^{q}$)

38

39 # tidy up

40

41 {h^{a}_{b},\nabla_{a}{v_{b}}}::SortOrder.

42

43 sort_product (vpqr)

44 rename_dummies (vpqr)

45 canonicalise (vpqr)

46 factor_out (vpqr,$h^{a?}_{b?}$)

47 factor_out (vpqr,$v_{a?}$)

At this stage Cadabra’s output is

(DrDq −DqDr)vp = haph
b
qh

c
r (∇c (∇bva)−∇b (∇cva)) + va (Kq

aKpr −Kr
aKpq) /47/

which, although correct, is not in the familiar textbook form. This minor quibble is easily
addressed by making good use of the results from the previous example. Thus, the respective
Riemann tensors for the metrics g and h can be written as

(DrDq −DqDr)vp =
h
Ra

pqrva

(∇r∇q −∇q∇r)vp =
g
Ra

pqrva

These relations, along with the simple observations that va = hbavb and Ka
b = hbcKa

c, can be
used to massage Cadabra’s output into the familiar textbook form. The Cadabra code for this
final stage is

48 R{#}::LaTeXForm("{{\strut}^g R}").

49

50 gRabcd := \nabla_{c}{\nabla_{b}{v_{a}}}

51 -\nabla_{b}{\nabla_{c}{v_{a}}} -> R^{d}_{a b c} v_{d}.

52

53 substitute (vpqr,gRabcd)

54 distribute (vpqr)

55 substitute (vpqr,$v_{a} -> h^{b}_{a} v_{b}$)

56 substitute (vpqr,$h^{b}_{a} K_{c}^{a} -> K_{c}^{b}$)

57 sort_product (vpqr)

58 rename_dummies (vpqr)

59 canonicalise (vpqr)

60 factor_out (vpqr,$v_{a?}$)

61 substitute (vpqr,$v_{a}->1$)

62 sort_product (vpqr)

The final output is now

h
Ra

pqr = haeh
b
ph

c
qh

d
r
g
R
e
bcd +Kq

aKpr −Kr
aKpq /62/

which is the standard textbook form for the Gauss equation.
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10 The metric determinant in Riemann normal coordi-

nates

This and the following two examples are based on the standard leading order expansion of a
metric in Riemann normal coordinates, namely

gab(x) = gab −
1

3
xcxdRacbd −

1

6
xcxdxe∇cRadbe

+
1

180
xcxdxexf

(
8gghRacdgRbefh − 9∇cdRaebf

)
+ · · · (10.1)

and

gab(x) = gab +
1

3
xcxdgaegbfRcedf +

1

6
xcxdxegafgbg∇cRdfeg

+
1

60
xcxdxexfgaggbh

(
4gijRcgdiRehfj + 3∇cdRegfh

)
+ · · · (10.2)

where gab, g
ab, Rabcd and its derivatives are evaluated at the origin. The expansions are

valid inside a suitably chosen neighbourhood of the origin. Note that it is customary to
choose gab = diag(−1, 1, 1, 1) for Lorentzian spacetimes. For more details on Riemann nor-
mal coordinates, their derivation and use, see [13], [14], [15], [16], [17]. See also the website
https://github.com/leo-brewin/riemann-normal-coords/ for an extensive set of Cadabra
programs for developing Riemann normal expansions (this includes the code used to generate
the above expressions for the metric and its inverse).

The above expansions includes terms up-to fourth order in the coordinates. Thus when forming
other quantities based on this metric, such as the metric determinant (in this example) and the
connection (the next two examples), care must be taken to truncate the computed expression
to fourth order (at most).

The metric determinant can be easily computed using a basic result from linear algebra. For
the 4× 4 matrices N and M built from Nab and Mab then

detN detM =
1

4!
εabcdpqrsMiaMjbMkcMldN

ipN jqNkrN ls

where detN = det(Nab) and detM = det(Mij).

Choosing Mab = gab(x) and Nab = gab = diag(−1, 1, 1, 1) leads to the following simple expres-
sion for the metric determinant

det g(x) = − 1

4!
εabcdpqrs gia(x) gjb(x) gkc(x) gld(x)gipgjqgkrgls

Implementing the above in Cadabra is straightforward though there a two minor points worth
noting. First, Cadabra provides an algorithm, asym, that can be used to impose antisymmetry
on chosen objects. This can be used to create εabcdpqrs using code similar to

1 d{#}::KroneckerDelta.

2 eps := d^{a}_{p} d^{b}_{q} d^{c}_{r} d^{d}_{s}.

3 asym (eps, $^{a}, ^{b}, ^{c}, ^{d}$)
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The first line declares d to be a Kronecker delta while the second creates a seed for ε. The call
to asym uses this seed to create a new object that is antisymmetric in the nominated indices
(i.e., the upper indices (abcd)). The bonus in using asym is that it will include the 1/4! factor,
that is, asym returns (1/4! )εabcdpqrs.

The second point concerns the truncation of det g to be consistent with that of the metric (in
this case to fourth order). The question is – at what stage in the computation should the
truncation be imposed? The answer will have a significant impact on the computational cost
(particularly for higher order expansions). The lazy approach is to defer the truncation until
the very end. For a fourth order expansion in four dimensions this would produce a polynomial
of order 44 = 256 and yet only the first four terms would be retained. This is a huge waste
of resources. A better approach would be to compute the terms in det g in successive orders,
starting from zeroth order. One way to do so would be to first decompose gab(x) into successive
orders,

gab(x) =
0

gab +
2

gab +
3

gab +
4

gab + · · ·

where
n

g denotes the n-th order term of gab(x). A similar expansion can be proposed for det g,
namely,

det g =
0

det g +
2

det g +
3

det g +
4

det g + · · ·

A standard procedure of substitution, expansion and matching can then be applied. The result

would be a series of equations that would allow, for example,
0

det g to be computed from
0

gab,
1

det g to be computed form
0

gab and
1

gab etc.

Despite the clear advantage of this second scheme the code given in the source/cadabra/example-10
uses the previous lazy method. Why? For the simple reason that it was easy to write and it gave
results in a reasonable time (similar to most of the other codes in this tutorial). It is certain
that this lazy code will be too expensive for higher order expansions (or in higher dimensions).

The actual computation of det g requires only a few lines of Cadabra code

1 # compute Ndetg = negative det g

2 Ndetg := @(eps) gx_{p a} gx_{q b} gx_{r c} g^{i p} g^{j q} g^{k r}.

3 substitute (Ndetg,gxab)

4 distribute (Ndetg)

5 Ndetg = truncate (Ndetg,4)

6 substitute (Ndetg,$g^{a b} g_{b c} -> d^{a}_{c}$,repeat=True)

7 eliminate_kronecker (Ndetg)

where gx_{a b} represents the metric gab(x) given above and gxab is a rule that substitutes
gab(x) for gx_{a b}.

The remainder of the code is just housekeeping in particular the introduction of the Ricci
tensor

1 substitute (Ndetg,$R_{a b c d} g^{a c} -> R_{b d}$,repeat=True)

2 substitute (Ndetg,$\nabla_{a}{R_{b c d e}} g^{b d} -> \nabla_{a}{R_{c e}}$,repeat=True)

3 substitute (Ndetg,$\nabla_{a b}{R_{c d e f}} g^{c e} -> \nabla_{a b}{R_{d f}}$,repeat=True)
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The final result for det g, to fourth order in xa, is

− det g(x) = 1− 1

3
xaxbRab −

1

6
xaxbxc∇aRbc

+
1

180
xaxbxcxd

(
−9∇abRcd + 10RabRcd − 2gefgghRaebgRcfdh

)
+ · · ·

58



11 The metric connection in Riemann normal coordi-

nates

Though the subject of this example will be the computation of the connection for the metric
in Riemann normal form most of the discussion will concern the computational costs. These
costs will increase with higher order expansions. The surprising thing is just how easy it is to
hit the computational wall. Fortunately (for this example) there are simple ways to manage
this problem.

The starting point is the familiar equation for the connection

Γabc(x) =
1

2
gad (∂bgdc + ∂cgbd − ∂dgbc)

where gab(x) and gab(x) are given by (10.1) and (10.2) respectively. A proliferation of terms
will arise first through the product rule acting on the individual terms and second through the
expansion of gab(x) and its coupling with the derivative terms. It is also clear that at some
point the result will need to be truncated to an order consistent with that of the metric.

An obvious strategy (to minimise computational cost) is to avoid introducing unnecessary terms.
One clear case of this occurs when computing the derivatives of terms such as ∂a(Rbcdex

xxe).
Since the Rabcd are constants (evaluated at the origin of the RNC) it follows that

∂a(Rbcdex
xxe) = Rbcde∂a(x

xxe) (11.1)

How is this simple step implemented in Cadabra? One (naive) option is to invoke a product
rule then set the derivatives of Rabcd to zero. A better option is to inform Cadabra ahead of
time which objects are non-constant. Here is a short fragment that does the job.

1 \partial{#}::PartialDerivative.

2 x{#}::Depends{\partial{#}}.

3

4 term := \partial_{a}{R_{bcde} x^{x} x^{e}}.

5

6 unwrap (term)

The idea is to identify the objects that will survive under the action of a derivative operator.
This can be seen in line 2 where xa is explicitly declared to depend on \partial. This infor-
mation is used by unwrap to pull out factors that do not depend on the derivative operators.
Thus in line 6 the Rabcd will be pulled out as a common factor since they were not declared
to depend upon \partial. Consequently, the value of term, after the call to unwrap, will equal
that of the right hand side of equation (11.1). At this point the computation can proceed by
invoking a product rule to reduce ∂a(x

xxe) to Kronecker deltas.

The other bits of Cadabra required to complete the computation include rules to define the
metric, the connection and, after the main body of the code, some basic housekeeping. The
main body of the code (excluding the rules for the metric and its inverse) is

ChrSym := \Gamma^{a}_{b c} -> 1/2 g^{a d} ( D_{b}{g_{d c}}

+ D_{c}{g_{b d}}

- D_{d}{g_{b c}} ).

Gamma := \Gamma^{a}_{b c}.
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substitute (Gamma,ChrSym) # the connection

substitute (Gamma,gab) # the metric

substitute (Gamma,iab) # the metric inverse

distribute (Gamma)

unwrap (Gamma) # pull out constants

product_rule (Gamma)

distribute (Gamma)

substitute (Gamma,Dx) # rule for partial derivs of x

eliminate_kronecker (Gamma)

At this point the expression for Γabc(x) will contain terms beyond 3rd-orderh in xa. This is a
good time to revisit the question of truncation. A good choice is to truncate before applying
the housekeeping as in the following code

Gamma = truncate (Gamma,3)

sort_product (Gamma)

rename_dummies (Gamma)

canonicalise (Gamma)

The code for truncate is similar to that used in Example 4. This works well and produces the
following result

Γabc(x) =
1

3
gadxe (Rbdce +Rbecd)

+
1

12
gadxexf (−∇cRbedf +∇dRbecf + 2∇eRbdcf + 2∇eRbfcd −∇bRcedf )

+
1

40
gadxexfxg (−∇ceRbfdg −∇ecRbfdg +∇deRbfcg +∇edRbfcg + 2∇efRbdcg

+ 2∇efRbgcd −∇beRcfdg −∇ebRcfdg) +
1

45
gadgefxgxhxi (4RbecgRdhfi + 4RbgceRdhfi

− 2RbdegRchfi −RbedgRchfi +RbgdeRchfi − 2RbgehRcdfi −RbgehRcfdi +RbgehRcidf )

It was previously noted that it is rather easy to hit the computational wall. Here is a slightly
changes that does just that – truncate the result after the housekeeping, that is

sort_product (Gamma)

rename_dummies (Gamma)

canonicalise (Gamma)

Gamma = truncate (Gamma,3)

This code was terminated (by hand) with no results after running for over 20 minutes and using
over 500 Mbytes of memory. In contrast the previous code completed in around 33 seconds and
required 60 Mbytes of memory.

By conducting a few experiments it was found that the slow code stalled on the call to
canonicalise. The problem here is that canonicalise is being asked to do its magic across
all of the terms in Gamma which for a 4th-order metric is approximately 200 terms. And since

hWhy focus on 3rd order? Because the metric and its inverse are known only to 4th-order and the Γa
bc(x)

requires one derivative in xa.
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Gamma is a polynomial in xa the housekeeping (sort, rename, canonicalise) will naturally target
each power of xa. Thus a better approach would be to decompose Gamma into separate powers
of xa, do the housekeeping on each power then rebuild Gamma. That will work but it is a silly
solution as there is no point in doing any housekeeping on the higher order terms as they will be
discarded in the later call to truncate. The main point in this variation is to show how simple
changes (without thought) can dramatically blow out the computational cost. The advice given
earlier, to keep as few terms as needed, is well worth remembering.
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12 The third order terms of Calzetta etal.

The metric connection Γabc(x) is symmetric in its lower indices. Thus there is no loss of
information in forming a product like zbzcΓabc(x). The za have no real meaning, they are just
to help with the bookkeeping. Now define Γa by

Γa := zbzcΓabc(x)

then using the results from the previous example it is easy to show that

Γa = zbzcΓabc(x)

=
2

3
xbzczdRacbd +

1

12
xbxczdze (4∇bRadce + 2∇dRabce +∇aRbdce)

+
1

40
xbxcxdzezf (4∇bcRaedf + 2∇beRacdf + 2∇ebRacdf +∇abRcedf +∇baRcedf )

+
2

45
gbcxdxexfzgzh (4RadbeRcgfh − 2RagbdRcefh −RadbgRcefh +RabdgRcefh)

Calzetta etal.[18] have also computed an expression for the connection in Riemann normal
coordinates. Their result, denoted by Γ̄,

Γ̄µ = zνzρΓ̄µνρ(x)

= zνzρ
{2

3
Rµ

νρσx
σ +

1

12
(5∇λR

µ
νρσ +∇ρR

µ
σνλ)x

σxλ

+
1

6

[ 9

10
∇τλR

µ
ρνσ +

3

20
(∇τρR

µ
σνλ +∇ρτR

µ
σνλ)

+
1

60
(21Rµ

λξρR
ξ
σντ + 48Rµ

ξρλR
ξ
σντ − 37Rµ

σξλR
ξ
νρτ )
]
xσxλxτ

}
appears (at first sight) to differ significantly from Γ. The purpose of this example is to show
that both expressions agree. The basic approach will be to compute the difference ∆Γ := Γ− Γ̄
and to then use the known symmetries of the Riemann tensor to show that all terms cancel.

Note that the convention for the Riemann tensor used by Calzetta etal. is opposite to that
used in this tutorial. This is easily accounted for (in the Cadabra code) by replacing their Rabcd

with −Rabcd.

Other simple changes will also be made to Γ and Γ̄ before attempting to show that Γ− Γ̄ = 0.
One obvious change is that a single index set should be used for both Γ and Γ̄. Further
changes include lowering indices so that each Riemann term is of the form Rabcd and sorting
all products into a consistent order g, x, z, R,∇R,∇∇R. The goal in making these changes is
simply to maximise the opportunity to use known Riemann symmetries and to spot the terms
that cancel. These basic preconditioning steps are implemented in Cadabra as follows.

Converting the Greek indices on Γ̄ to Latin indices can be done in Cadabra by first declaring
a named pair of index sets

{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,u,v#}::Indices("latin",position=independent).

{\mu,\nu,\rho,\sigma,\tau,\lambda,\xi#}::Indices("greek",position=independent).

and then passing this pair to rename_dummies as in
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rename_dummies (\GammaBar,"greek","latin")

The call to rename_dummies only renames the dummy indices (now that was a surprise). This
leaves the free index µ on Γ̄µ unchanged. This little problem can be dealt with by lowering the
index using δaµΓ̄µ and then eliminating the Kronecker deltas

\delta{#}::KroneckerDelta.

GammaBar := \delta_{a \mu} @(GammaBar).

distribute (GammaBar)

eliminate_kronecker (GammaBar)

Note that a small liberty has been take here – the index lowering should be done using gaµ
rather than δaµ. But the nett outcome is the same and it saves having to include extra code to
implement the action of gaµ on each term (the call to eliminate_kronecker does the same for
δaµ).

Lowering the upper index on Γa is slightly more involved as shown is this Cadabra frag-
ment

# lower free index ^{a} to _{v}

Gamma := g_{v a} @(Gamma).

distribute (Gamma)

substitute (Gamma, $g_{a d} g^{d b} -> \delta_{a}^{b}$)

eliminate_kronecker (Gamma)

# change free index _{v} to _{a}

foo := tmp_{v} -> @(Gamma).

bah := tmp_{a}.

substitute (bah, foo)

Gamma := @(bah).

This involves two steps. First, lower the index a and covert it to v. Second, convert the index
v back to a. Note that this second step could also be implemented in Cadabra using

Gamma := \delta^{v}_{a} @(Gamma).

distribute (Gamma)

eliminate_kronecker (Gamma)

Recall that Cadabra will do the necessary index juggling to avoid any clash that might arise in
the above computation (see the results of Exercise 1.9).

At this point the difference ∆Γa := Γa − Γ̄a is given by

∆Γa =
1

12
xbxczdze (∇dRabce −∇bRadce +∇aRbdce)

+
1

40
xbxcxdzezf (∇beRacdf +∇ebRacdf − 2∇bcRaedf +∇abRcedf +∇baRcedf )

+
1

360
gbcxdxexfzgzh (−32RabdgRcefh + 27RadbeRcgfh + 5RadbgRcefh − 32RagbdRcefh)
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Now the fun begins (cancelling terms). First notice that ∆Γ consists of second and third order
terms in x. It is easy to see that the second order terms will vanish when the second Bianchi
identity is applied. The third order terms require a little more work. The first step is to
commute the order of the second covariant derivatives on the ∇eb and ∇ab terms. This of
course will introduce new RR terms which couple with the existing RR terms.

Each of these steps can be implemented in Cadabra by applying suitable substitution rules
on a zoom’ed and tagged expression (along the lines shown in Example 5). For example, the
following code applies the second Bianchi identity to the second order terms

1 diff2 = get_xterm (diff,2)

2 diff3 = get_xterm (diff,3)

3

4 diff2 = add_tags (diff2,’\\mu’)

5

6 # swap indices on middle term, then apply 2nd Bianchi identity

7

8 zoom (diff2, $\mu_{1} Q??$)

9 substitute (diff2, $\nabla_{b}{R_{a d c e}} -> - \nabla_{b}{R_{d a c e}}$)

10 unzoom (diff2)

11

12 substitute (diff2, $\mu_{1} -> \mu_{0}, \mu_{2} -> \mu_{0}$)

13 substitute (diff2, $\mu_{0} -> 0$)

14

15 diff2 = clear_tags (diff2,’\\mu’)

16

17 diff := @(diff2) + @(diff3).

The code is rather easy to understand. The first pair of lines extracts the second and third
order terms. The second order terms are then tagged in line 4. Lines 8 to 10 isolates the target
(the middle term) and applies the substitution (swapping indices ad on ∇bRadce). The three
terms are united (in line 12) by setting µ0 = µ1 = µ2 and then eliminated (in line 13) by setting
µ0 = 0. Finally, the tags are cleared in line 15. This last step is not really needed since diff2

is zero. The last line of the code rebuilds diff for later processing of the third order terms.

Similar code can be used to commute the second covariant derivatives leading to

∆Γa =
1

40
xbxcxdzezf (2∇beRacdf − 2∇bcRaedf + 2∇baRcedf )

+
1

360
gbcxdxexfzgzh (−32RabdgRcefh + 32RadbgRcefh − 32RagbdRcefh)

The final steps are now rather obvious – apply the second Bianchi identity to the first term
and the first Bianchi identity to the second term. These steps are (once again) implemented
using code very similar to that given above. The result is that ∆Γa = 0, that is Γ = Γ̄.
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13 The Weyl tensor vanishes in 3-dimensions

The Weyl tensor in an N -dimensional space is given by

Cabcd = Rabcd +
1

N − 2
(Radgbc −Racgbd + gadRbc − gacRbd) +

R

(N − 1)(N − 2)
(gacgbd − gadgbc)

The Ca
bcd shares not only all of the symmetries of the Riemann tensor but it also satisfies

Ca
bad = 0. Thus the number M(N) of algebraically independent components of Ca

bcd at a
point in an N dimensional space is given by

M(N) =
N2(N2 − 1)

12
− N(N + 1)

2

A common argument is that sinceM(3) = 0 it follows that the Weyl tensor has zero algebraically
independent components and thus must vanish in 3 dimensions. It should also be possible
to establish the same result by direct computation, that is, show that Ca

bad = 0 for any
Riemannian metric in a 3 dimensional space. That is the aim of this example. Two methods
will be presented. The first uses a brute force method where the Weyl tensor is evaluated on a
generic 3-metric. The second method uses only the known symmetries of the Riemann tensor
to show that all frame components of the Weyl tensor are zero (and thus that the Weyl tensor
must also be zero).

13.1 Proof by brute force

The computational steps are straightforward. First start with basic definitions for the connec-
tion and the Riemann, Ricci and Weyl tensors.

1 GammaU := \Gamma^{a}_{b c} -> 1/2 g^{a d} ( \partial_{b}{g_{d c}}

2 + \partial_{c}{g_{b d}}

3 - \partial_{d}{g_{b c}}).

4

5 GammaD := \Gamma_{a b c} -> 1/2 ( \partial_{b}{g_{a c}}

6 + \partial_{c}{g_{b a}}

7 - \partial_{a}{g_{b c}}).

8

9 Rabcd := R_{a b c d} -> \partial_{c}{\Gamma_{a b d}}

10 - \partial_{d}{\Gamma_{a b c}}

11 + \Gamma_{e a d} \Gamma^{e}_{b c}

12 - \Gamma_{e a c} \Gamma^{e}_{b d}.

13

14 Rab := R_{a b} -> g^{c d} R_{a c b d}.

15

16 Rscalar := R -> g^{a b} R_{a b}.

17

18 # Weyl in 3-dimensions

19

20 Cabcd := R_{a b c d} - (R_{a c} g_{b d} - R_{a d} g_{b c})

21 - (g_{a c} R_{b d} - g_{a d} R_{b c})

22 + 1/2 R (g_{a c} g_{b d} - g_{a d} g_{b c}).

Then combine these into a single expression for the Weyl tensor expressed solely in terms of
the metric.
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23 substitute (Cabcd,Rscalar)

24 substitute (Cabcd,Rab)

25 substitute (Cabcd,Rabcd)

26 substitute (Cabcd,GammaU)

27 substitute (Cabcd,GammaD)

28

29 distribute (Cabcd)

30

31 sort_product (Cabcd)

32 rename_dummies (Cabcd)

33 canonicalise (Cabcd)

The final step is to evaluate this expression on a generic metric in 3-dimensions.

34 gab := {g_{x x} = gxx, g_{x y} = gxy, g_{x z} = gxz,

35 g_{y x} = gxy, g_{y y} = gyy, g_{y z} = gyz,

36 g_{z x} = gxz, g_{z y} = gyz, g_{z z} = gzz}.

37

38 complete (gab, $g^{a b}$)

39 evaluate (Cabcd,gab)
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The result is that the Weyl tensor is zero (as expected).

8Cabcd = 8Rabcd − 8Racgbd + 8Radgbc − 8gacRbd + 8gadRbc + 4R (gacgbd − gadgbc) /22/

= 4∂bcgad − 4∂acgbd − 4∂bdgac + 4∂adgbc + 2∂agde∂bgcfg
ef + 2∂agde∂cgbfg

ef

− 2∂agde∂fgbcg
ef + 2∂bgce∂dgafg

ef + 2∂cgbe∂dgafg
ef − 2∂dgae∂fgbcg

ef − 2∂bgce∂fgadg
ef

− 2∂cgbe∂fgadg
ef + 2∂egad∂fgbcg

ef − 2∂agce∂bgdfg
ef − 2∂agce∂dgbfg

ef + 2∂agce∂fgbdg
ef

− 2∂bgde∂cgafg
ef − 2∂cgae∂dgbfg

ef + 2∂cgae∂fgbdg
ef + 2∂bgde∂fgacg

ef + 2∂dgbe∂fgacg
ef

− 2∂egac∂fgbdg
ef − 4∂cegafgbdg

ef + 4∂acgefgbdg
ef + 4∂efgacgbdg

ef − 4∂aegcfgbdg
ef

− 2∂agef∂cgghgbdg
eggfh − 4∂egaf∂ggchgbdg

eggfh + 4∂egaf∂ggchgbdg
ehgfg

+ 4∂agce∂fgghgbdg
eggfh − 2∂agce∂fgghgbdg

efggh + 4∂cgae∂fgghgbdg
eggfh

− 2∂cgae∂fgghgbdg
efggh − 4∂egac∂fgghgbdg

eggfh + 2∂egac∂fgghgbdg
efggh + 4∂degafgbcg

ef

− 4∂adgefgbcg
ef − 4∂efgadgbcg

ef + 4∂aegdfgbcg
ef + 2∂agef∂dgghgbcg

eggfh

+ 4∂egaf∂ggdhgbcg
eggfh − 4∂egaf∂ggdhgbcg

ehgfg − 4∂agde∂fgghgbcg
eggfh

+ 2∂agde∂fgghgbcg
efggh − 4∂dgae∂fgghgbcg

eggfh + 2∂dgae∂fgghgbcg
efggh

+ 4∂egad∂fgghgbcg
eggfh − 2∂egad∂fgghgbcg

efggh − 4∂degbfgacg
ef + 4∂bdgefgacg

ef

+ 4∂efgbdgacg
ef − 4∂begdfgacg

ef − 2∂bgef∂dgghgacg
eggfh − 4∂egbf∂ggdhgacg

eggfh

+ 4∂egbf∂ggdhgacg
ehgfg + 4∂bgde∂fgghgacg

eggfh − 2∂bgde∂fgghgacg
efggh

+ 4∂dgbe∂fgghgacg
eggfh − 2∂dgbe∂fgghgacg

efggh − 4∂egbd∂fgghgacg
eggfh

+ 2∂egbd∂fgghgacg
efggh + 4∂cegbfgadg

ef − 4∂bcgefgadg
ef − 4∂efgbcgadg

ef + 4∂begcfgadg
ef

+ 2∂bgef∂cgghgadg
eggfh + 4∂egbf∂ggchgadg

eggfh − 4∂egbf∂ggchgadg
ehgfg

− 4∂bgce∂fgghgadg
eggfh + 2∂bgce∂fgghgadg

efggh − 4∂cgbe∂fgghgadg
eggfh

+ 2∂cgbe∂fgghgadg
efggh + 4∂egbc∂fgghgadg

eggfh − 2∂egbc∂fgghgadg
efggh

+ 4∂efgghgacgbdg
eggfh − 4∂efgghgadgbcg

eggfh − 4∂efgghgacgbdg
efggh

+ 4∂efgghgadgbcg
efggh − 2∂egfg∂hgijgacgbdg

eigfhggj + 2∂egfg∂hgijgadgbcg
eigfhggj

+ 3∂egfg∂hgijgacgbdg
ehgfiggj − 3∂egfg∂hgijgadgbcg

ehgfiggj − 4∂egfg∂hgijgacgbdg
efggighj

+ 4∂egfg∂hgijgadgbcg
efggighj + 4∂egfg∂hgijgacgbdg

efgghgij − 4∂egfg∂hgijgadgbcg
efgghgij

− ∂egfg∂hgijgacgbdgehgfggij + ∂egfg∂hgijgadgbcg
ehgfggij /33/

= 0 /39/

13.2 Proof using an orthonormal basis

This method is entirely local, that is, it only requires values of the metric and Riemann tensors
at some arbitrarily chosen point. In contrast, the previous method required knowledge of the
metric in a neighbourhood of a point (in order to compute its various derivatives).

One of the keys steps in this method is to use the basic definitionsRab = gcdRacbd andR = gabRab

to express the Weyl tensor entirely in terms of Rabcd, gab and gab. This leads to

Cabcd = Rabcd − gefRaecfgbd + gfeRafdegbc − gacgfeRbfde

+ gadg
efRbecf +

1

2
gefgghRegfh (gacgbd − gadgbc)

Consider now three vectors eai , i = x, y, z, that form an orthonormal basis at the chosen point.
Then the metric gab and its inverse gab can be written as

gab = exae
x
b + eyae

y
b + ezae

z
b (13.1)

gab = eaxe
b
x + eaye

b
y + eaze

b
z (13.2)
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where eia are dual to eai , that is

eai e
j
a = δi

j (13.3)

eai e
i
b = δab (13.4)

The main part of the calculation is to show that the frame components

Ĉijkl = Cabdee
a
i e
b
je
c
ke
d
l (13.5)

of the Weyl tensor vanish (and hence, using (13.4), that the Weyl tensor must also vanish). It is
sufficient to compute just two frame components, Ĉxyxy and Ĉxyxz as all other frame components
can be found by simply permuting x, y and z.

The scene is now set for Cadabra. The key elements in the Cadabra code include a declaration
of a Riemann tensor

R_{a b c d}::RiemannTensor.

together with rules for the Weyl tensor and friends

Rab := R_{a b} -> g^{c d} R_{a c b d}.

Rscalar := R -> g^{a b} R_{a b}.

# Weyl tensor in 3-dimensions

Cabcd := R_{a b c d} - (R_{a c} g_{b d} - R_{a d} g_{b c})

- (g_{a c} R_{b d} - g_{a d} R_{b c})

+ 1/2 R (g_{a c} g_{b d} - g_{a d} g_{b c}).

substitute (Cabcd, Rscalar)

substitute (Cabcd, Rab)

Cabcd := C_{a b c d} -> @(Cabcd).

and rules that define the metric inverse and the orthonormal basis

gab := g^{a b} -> ex^{a} ex^{b} + ey^{a} ey^{b} + ez^{a} ez^{b}.

ortho := {ex^{a} ex^{b} g_{a b} -> 1,

ey^{a} ey^{b} g_{a b} -> 1,

ez^{a} ez^{b} g_{a b} -> 1,

ex^{a} ey^{b} g_{a b} -> 0, ex^{a} ez^{b} g_{a b} -> 0,

ey^{a} ex^{b} g_{a b} -> 0, ey^{a} ez^{b} g_{a b} -> 0,

ez^{a} ex^{b} g_{a b} -> 0, ez^{a} ey^{b} g_{a b} -> 0}.

The last part of the calculation is to apply these rules to the frame components Ĉxyxy and

Ĉxyxz. For Ĉxyxy the code is

1 Cxyxy := C_{a b c d} ex^{a} ey^{b} ex^{c} ey^{d}.

2

3 substitute (Cxyxy,Cabcd)

4 distribute (Cxyxy)

5 substitute (Cxyxy, ortho, repeat=True)

6 substitute (Cxyxy, gab)
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7 distribute (Cxyxy)

8

9 sort_product (Cxyxy)

10 rename_dummies (Cxyxy)

11 canonicalise (Cxyxy)

which leads to the following output

Cabcde
a
xe
b
ye
c
xe
d
y =

(
Rabcd − gefRaecfgbd + gfeRafdegbc − gacgfeRbfde + gadg

efRbecf

+
1

2
gefgghRegfhgacgbd −

1

2
gefgghRegfhgadgbc

)
eaxe

b
ye
c
xe
d
y /3/

= Rabcde
a
xe
b
ye
c
xe
d
y − gefRaecfgbde

a
xe
b
ye
c
xe
d
y + gfeRafdegbce

a
xe
b
ye
c
xe
d
y

− gacgfeRbfdee
a
xe
b
ye
c
xe
d
y + gadg

efRbecfe
a
xe
b
ye
c
xe
d
y +

1

2
gefgghRegfhgacgbde

a
xe
b
ye
c
xe
d
y

− 1

2
gefgghRegfhgadgbce

a
xe
b
ye
c
xe
d
y /4/

= Rabcde
a
xe
b
ye
c
xe
d
y − gefRaecfe

a
xe
c
x − gfeRbfdee

b
ye
d
y +

1

2
gefgghRegfh /5/

= Rabcde
a
xe
b
ye
c
xe
d
y −
(
eexe

f
x + eeye

f
y + eeze

f
z

)
Raecfe

a
xe
c
x −

(
efxe

e
x + efye

e
y + efze

e
z

)
Rbfdee

b
ye
d
y

+
1

2

(
eexe

f
x + eeye

f
y + eeze

f
z

) (
egxe

h
x + egye

h
y + egze

h
z

)
Regfh /6/

=
1

2
Rabcde

a
xe
c
xe
b
ye
d
y −

1

2
Rabcde

a
xe
c
xe
b
xe
d
x −

1

2
Rabcde

a
xe
c
xe
b
ze
d
z −Rabcde

d
xe
b
xe
a
ye
c
y

−Rabcde
a
ye
c
ye
d
ye
b
y −Rabcde

a
ye
c
ye
d
ze
b
z +

1

2
Rabcde

b
xe
d
xe
a
ye
c
y +

1

2
Rabcde

a
ye
c
ye
b
ye
d
y

+
1

2
Rabcde

a
ye
c
ye
b
ze
d
z +

1

2
Rabcde

b
xe
d
xe
a
ze
c
z +

1

2
Rabcde

b
ye
d
ye
a
ze
c
z +

1

2
Rabcde

a
ze
c
ze
b
ze
d
z /10/

= 0 /11/

showing clearly (in the last line) that Ĉxyxz = 0. Similar code can be used to show that

Ĉxyxz = 0.
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14 Conformal invariance of the Weyl tensor

The Weyl tensor has the property that it is conformally invariant under conformal transfor-
mations of the metric. That is, if two metrics, g and g, are related by a conformal transfor-
mation, g = φg for some scalar function φ, then their corresponding Weyl tensors are equal,
C
a
bcd = Ca

bcd. This simple result can be shown by direct computation. Though this result
is true in any number of dimensions, the specific case of four dimensions (in this example) is
sufficient to demonstrate the ideas behind a general proof. Note that the following computation
is based on the related expression Cabcd = φCabcd.

The computation is similar to the previous example and begins by first computing a general
expression for Cabcd by forming an appropriate combination of rules. Then a copy of the result
is made (this is the Weyl tensor on the base metric g),

baseC := @(Cabcd).

followed by a rule defining the conformal transformation

conformal := {g_{a b} -> \phi g_{a b}, g^{a b} -> (1/phi) g^{a b}}.

The rule is applied to the current version of C_{a b c d} followed by some basic housekeep-
ing

substitute (Cabcd, conformal)

product_rule (Cabcd)

distribute (Cabcd)

product_rule (Cabcd)

distribute (Cabcd)

map_sympy (Cabcd, "simplify")

Note that two rounds of the product rule are required because the conformal factor is buried
inside a set of second order partial derivatives. The result is the Weyl tensor for the conformal
metric. This is copied to a new object and then the difference between the two Weyl tensors is
computed

confC := @(Cabcd).

diff := @(confC) - \phi @(baseC).

The game now is to show that diff is zero. The code then make uses of the basic identities (in
4 dimensions)

gabg
ab = 4, gacg

cb = δba, δaa = 4

to simplify the expression diff. The result is zero (as expected).
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15 The BSSN equations

Einstein’s equation of General Relativity are most simply described in the full 4-dimensional
form as

Rab −
1

2
gabR = κTab (15.1)

They can also be recast in the form of a Cauchy initial value problem in which a 3-dimensional
metric is evolved forward in time from a given set of initial conditions. One such formulation
is due to Arnowitt, Deser and Misner, widely known as the ADM 3+1 formulation (see [10]).
In one of its simplest formsi, the ADM 3+1 evolution equations can be written as

∂gij
∂t

= −2NKij (15.2)

∂Kij

∂t
= −DijN +N(Rij +KKij − 2KimKjng

mn) (15.3)

where gij is the 3-metric, Kij is the extrinsic curvature, Rij is the Ricci tensor, D is the metric
compatible covariant derivative and finally, N is the lapse function (which can be freely specified
though subject to N > 0).

For many years the ADM 3+1 equations were the cornerstone of computational general rel-
ativity. Unfortunately, they proved to be less than ideal for long term evolutions of one or
more black holes (the evolutions were highly unstable). In recent times an alternative set of
equations, first proposed by Shibata and Nakamura [19] and later popularised by Baumgarte
and Shapiro [20], now known as the BSSN equations, have come to dominate the field (as they
do allow stable long term evolutions of black hole systems).

The BSSN evolution equations, for vacuum spacetimes and a zero shift vector, are given by

∂φ

∂t
= −1

6
NK (15.4)

∂ḡij
∂t

= −2NĀij (15.5)

∂K

∂t
= −gijDijN +N(ĀijĀ

ij +
1

3
K2) (15.6)

∂Āij
∂t

= N(KĀij − 2ĀikĀ
k
j) + exp(−4φ)(NRij −DijN −

1

3
gij(NRkl −DklN)gkl) (15.7)

∂Γ̄i

∂t
= −2∂j

(
NĀij

)
(15.8)

= −2Āij∂jN + 2N(Γ̄ijkĀ
kj − 2

3
ḡij∂jK + 6Āij∂jφ) (15.9)

The Ricci tensor could be computed directly from the 3-metric but part of the black magic of
the BSSN formulation is to use

Rij = −2D̄ijφ− 2ḡij ḡ
mnD̄mnφ+ 4D̄iφD̄jφ− 4ḡij ḡ

mnD̄mφD̄nφ

− 1

2
ḡlm∂lmḡij + ḡk(i∂j)Γ̄

k + Γ̄kΓ̄(ij)k + ḡlmḡkp(Γ̄pl(iΓ̄j)km + Γ̄kimΓ̄plj) (15.10)

iThat is, for vacuum spacetimes using coordinates with a zero shift vector.
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The dynamical variables of the ADM formulation, gij, Kij are related to the those of the BSSN
formulation, K,φ, ḡij, Āij, Γ̄

i by the equations

K = gijKij (15.11)

e4φ = g1/3 = (det(gij))
1/3 (15.12)

ḡij = e−4φgij (15.13)

Āij = e−4φ

(
Kij −

1

3
gijK

)
(15.14)

Γ̄i = ḡjkΓ̄ijk = −ḡij ,j (15.15)

These equations can be used to derive the BSSN equations from the ADM equations.

After a drawn out preamble here is the point of this example – to show how Cadabra can
be used to derive the BSSN equations from the ADM equations. The calculations are non-
trivial so only the first two of the five evolution equations will be derived here. The derivation
of the full set of equations (including the constraint equations) can be found on the website
https://github.com/leo-brewin/adm-bssn-equations

It should be noted that the equations given above (15.4-15.15) are a subset of the full set of
BSSN equations. For full details see [21, 22]

15.1 Evolution equation for φ

The key elements in the Cadabra code for the first BSSN equation (15.4) are the four rules

phi := \phi -> (1/12) \log(detg).

gdotK := g^{i j} K_{i j} -> trK.

DdetgDt := \partial_{t}{detg} -> detg g^{i j} \partial_{t}{g_{i j}}.

DgijDt := \partial_{t}{g_{i j}} -> -2 N K_{i j}.

The first three rules follow from the definitions of φ, det g and K while the final rule is the
original ADM equation for ∂gij/∂t. Two other rules are also included as they help train Cadabra
to do basic calculus

dlog := \partial_{a?}{\log(A?)} -> (1/A?)\partial_{a?}{A?}.

dexp := \partial_{a?}{\exp(A?)} -> \exp(A?)\partial_{a?}{A?}.

The main body of the code begins with a single line

1 dotphi := \partial_{t}{\phi}.

followed be a series of substitutions

2 substitute (dotphi, phi)

3 substitute (dotphi, dlog)

4 substitute (dotphi, DdetgDt)

5 substitute (dotphi, DgijDt)

6 substitute (dotphi, gdotK)

7 map_sympy (dotphi, "simplify")
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The step-by-step results are as follows

∂φ

∂t
=

1

12
∂t (log (g)) /2/

=
1

12
g−1∂tg /3/

=
1

12
g−1ggij∂tgij /4/

= −1

6
g−1ggijNKij /5/

= −1

6
g−1gKN /6/

= −1

6
KN /7/

15.2 Evolution equation for ḡij

A similar set of rules and substitutions can be used to obtain the second BSSN equation (15.5).
In this case the essential rules are

DphiDt := \partial_{t}{\phi} -> @(dotphi).

gBarij := gBar_{i j} -> \exp(-4\phi) g_{i j}.

Kij := K_{i j} -> A_{i j} + (1/3) g_{i j} trK.

A2ABar := \exp(-4\phi) A_{i j} -> ABar_{i j}.

Note that the first rule is built using the result of the computation for ∂φ/∂t. This construction
(of building rules to record key results) is used frequently in the full BSSN codej. It avoids
having to copy-paste results for later use and thus also avoids any transcription errors. The
other rules are again built directly from the basic definitions of the BSSN variables.

The starting point for the main calculation is

1 dotgBarij := \partial_{t}{gBar_{i j}}.

followed by some substitutions, a product rule and dab of housekeeping

2 substitute (dotgBarij, gBarij)

3 product_rule (dotgBarij)

4 substitute (dotgBarij, dexp)

5 substitute (dotgBarij, DgijDt)

6 substitute (dotgBarij, DphiDt)

7 substitute (dotgBarij, Kij)

8 distribute (dotgBarij)

9 map_sympy (dotgBarij, "simplify")

10 substitute (dotgBarij, A2ABar)

jOn the website https://github.com/leo-brewin/adm-bssn-equations
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The corresponding output is

∂ḡij
∂t

= ∂t (exp (−4φ) gij) /2/

= ∂t (exp (−4φ)) gij + exp (−4φ) ∂tgij /3/

= −4 exp (−4φ) ∂tφgij + exp (−4φ) ∂tgij /4/

= −4 exp (−4φ) ∂tφgij − 2 exp (−4φ)NKij /5/

=
2

3
exp (−4φ)KNgij − 2 exp (−4φ)NKij /6/

=
2

3
exp (−4φ)KNgij − 2 exp (−4φ)N

(
Aij +

1

3
gijK

)
/7/

=
2

3
exp (−4φ)KNgij − 2 exp (−4φ)NAij −

2

3
exp (−4φ)NgijK /8/

= −2N exp (−4φ)Aij /9/

= −2NĀij /10/

15.3 A numerical code

The website https://github.com/leo-brewin/adm-bssn-equations contains all of the Cadabra
code for a complete derivation of the BSSN equations (with zero shift) from the ADM equations.
A companion website, https://github.com/leo-brewin/adm-bssn-numerical, contains fur-
ther Cadabra code that converts the BSSN equations into a working numerical code.

All of the tools in that second website are based on material already covered in this tutorial
(in particular, Example 7 for exporting tensor expressions as C-code).

Using a symbolic package (in this case Cadabra) to turn a set of partial differential equations
(the BSSN equations) into a numerical code has great advantages. It frees the researcher from
the tedium of writing extensive code (try writing a code for Rab from the metric by hand), it
minimises the risk of coding errors and it allows for much quicker development of new codes
as changes are made in the underlying mathematics (e.g., shifting from the ADM to the BSSN
equations). This approach is quite common in the computational general relativity community,
see for example the papers by Husa etal. [11] and Ruchlin etal. [12].
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Part 3 Common traps and errors.

Despite our best efforts, bugs do creep in from time to time. Often the errors are immediately
obvious but on other occasions a great deal of head scratching and scouring of web pages fills in
the time before the light-bulb moment arrives. Here are some examples of what can go wrong,
how to spot the errors and tips on how to avoid them in the first place.
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Problems with indices

If you have never encountered the Cadabra runtime error

RuntimeError: Free indices in different terms in a sum do not match.

consider yourself lucky. For those who have (author included) here are some examples demon-
strating various ways to encounter this error.

1. Inconsistent free indices

This is trivial – the free indices on A and B do not match.

foo := A_{a} + B_{b};

2. Incorrect number of free indices

Another trivial example. Maybe a typo (one too many indices) on B_{a b}?

foo := A_{a} + B_{a b};

3. Missing spaces

The intention in the following line is to create an expression with two free indices

foo := A_{ab} + B_{a b};

The problem here is that Cadabra will take _{ab} to be a single index. Always include a
space between indices (unless the indices have a natural separator like the slash in LaTeX
names, e.g., _{\alpha\beta} would be accepted as a pair of indices).

4. Forgetting to declare the derivative operator

Here is a simple and apparently correct use of indices.

foo := A_{a b} + \partial_{a}{A_{b}};

So why would Cadabra complain? The answer is that by forgetting to declare \partial

as a derivative operator, Cadabra will interpret \partial_{a}{A_{b}} as a function call
with argument A_{b}. Thus it thinks that this term has just one free index, namely, _{a}.
Hence the error.

5. Cavalier use of @(...)

The @(...) construct is extremely useful but it also requires the user to take great care
less the dreaded index problem pops up. Here is a simple example

foo := A_{a};

bah := B_{b};

meh := @(A) + @(B);

The problem here is obvious – the free indices on @(foo) and @(bah) clearly do not match.
Though this error is startlingly obvious in this example it may be much harder to detect in
codes where the computation of A and B are buried deep in parts of the code far removed
from each other and their use in @(A)+@(B). One way to avoid this problem is to use rules
that define A and B. Here is a short example.
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foo := A_{a};

ruleA := TmpA_{a} -> @(foo);

...

bah := B_{b};

ruleB := TmpB_{b} -> @(bah);

...

meh := TmpA_{c} + TmpB_{c};

substitute (meh, ruleA)

substitute (meh, ruleB)

The ellipses in the above denote some intervening code. The rules are created as soon as
the expressions foo and bah have been created. In most cases the right hand side of foo
and bah will be substantially more complicated than that given above.

6. Upstairs/downstairs index clash

The free indices in an expression must be consistent with regards to being upstairs or
downstairs when using either Indices(position=fixed) or Indices(position=independent).
Thus the following code snippet will cause grief for Cadabra.

foo := A_{a} + B^{a}.

Problems with derivatives

7. Forgetting to declare the derivative operator

This has already been noted (see see item 4 above) – but a reminder can not hurt.

8. Forgetting to enclose the derivative argument in {...}
The printed output for the following

foo := A_{a b} + \partial_{a} A_{b};

will look like

Aab + ∂aAb

which seems fine. But without the {...} enclosing the A_{b} term, Cadabra will interpret
\partial_{a} A_{b} as a product of \partial_{a} with A_{b}. You can see that this is
so by calling sort_product on foo. The output will be

Aab + Ab∂a

9. Avoid applying canonicalise to partial derivatives

Calling canonicalise on an expression like

foo := A_{a} \partial_{b}{B^{a}};

might result in index raising/lowering of the dummy index a. In general relativity this
would not be allowed (except for the trivial case where the metric components are con-
stants). One way to avoid this problem is to use Indices(position=independent). This
will force canonicalise to leave the indices as is. Another option (if possible) is to only
use metric compatible derivative operators.
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Problems with substitution rules

10. Rules using $...$ must be confined to a single line

Rules built using $...$ must be defined on a single line. The following example

substitute (foo, $A_{a}->B_{a},

C_{a}->D_{a}$);

will raise a syntax error

SyntaxError: invalid syntax.

You can fix this either by collapsing the $...$ to a single line or by creating a named
substitution rule (these can be split over multiple lines) as in the following code

myRule := {A_{a}->B_{a},

C_{a}->D_{a}}.

substitute (foo, myRule);

11. Only use -> to change index structure

There are occasions where indices need to added or deleted from expressions. Doing so
using an equality rule like A_{a b} = A_{a} will raise a runtime error. For example, the
following code

foo := A_{a b};

substitute (foo, $A_{a b} = A_{a}$)

causes Cadabra great grief, reporting that

RuntimeError: Free indices on lhs and rhs do not match.

The correct code is

foo := A_{a b};

substitute (foo, $A_{a b} -> A_{a}$);

with output Aa as expected.

12. Use care when using -> to change index structure

Changing the index structure of an expression can cause runtime errors. Here is a simple
example.

foo := A_{a} x^{a} + B_{b} x^{b}.

substitute (foo, $x^{a} -> 1$)

The problem here is that the result for foo is A_{a} + B_{b} and though Cadabra does
not report an index mis-match error at this point it will do so later (most likely at the
point when foo is coupled to some other expression). The solution to this problem is to
ensure that the each term in the expression uses the same index on x. Here is a corrected
version of the code.

foo := A_{a} x^{a} + B_{b} x^{b}.

rename_dummies (foo)
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substitute (foo, $x^{a} -> 1$);

This works because the result after renaming the dummy indices is

foo := A_{a} x^{a} + B_{a} x^{a}

But had the initial expression for foo been

foo := A_{b} B^{b} C_{a} x^{a} + D_{d} x^{d};

then this simple trick of renaming the dummies would not be sufficient to avoid the
later problem when applying x^{a} -> 1. In this case the call to rename_dummies will
return

foo := A_{a} B^{a} C_{b} x^{b} + D_{a} x^{a};

The problem here is that once again the x terms do not share a common index. This
occurs because the renaming of dummy indices occurs left to right. As the first term
requires two dummy indices while the second requires one the first x will be given a
different dummy to that assigned to the second x.

This minor problem can solved by first using sort_product to bring the x factors to the
left of all other terms. Here is a code that does the job.

{x^{a},A_{a},B^{a},D_{a}}::SortOrder.

foo := A_{a} B^{a} C_{b} x^{b} + D_{a} x^{a};

sort_product (foo)

rename_dummies (foo)

canonicalise (foo)

substitute (foo, $x^{a} -> 1$);

The corresponding output is

AbB
bCa +Da

This is one of the reasons why numerous exercises on sorting were included in the collection
at the end of Example 1. Note that in this case rename_dummies did not align the x indices.
That job fell to canonicalise. The combination of sort_product, rename_dummies and
canoniclaise appears throughout this tutorial in the examples and exercises. It is a very
standard combination.

The take home point here is that careful inspection of the expression is required before
operations that alter the index structure are applied.

Miscellaneous

13. Syntax error

This covers a whole raft of errors and in most cases the fix will be obvious. Here are a
few things to look for.

• Check the termination character – a dot, a semi-colon or the closing parenthesis of
a function call.

• Check the assignment operator, use := for Cadabra and = for Python.
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• Do not use underscores in symbol names.

• Use standard LaTeX names such as \alpha,\beta,\mu etc.

• Do not use return @(foo). The correct return is return foo.

14. Problems with LaTeXForm

If you want to specify the LaTeX form for an object that carries indices you must use
{#}, otherwise do not use {#}. Here are two simple example.

foo{#}::LaTeXForm{"{\bar\alpha}"}. # matches objects foo with indices

bah::LaTeXForm{"{\hat\beta}"}. # matches objects bah without indices

15. Correct form of exponential function

Be aware that Cadabra will treat e^{a} as a tensor with one upstairs index. If you wanted
the exponential function then you should write \exp{a} or e**{a}.

16. Do not use underscore in expression names

This has been mentioned before – underscores denote subscripts and thus should not be
used as part of an expression name (though their use in function names is perfectly okay).

17. Horizontal alignment of indices

Using braces {} around indices, even single indices, ensures that the printed version of
the tensor will have its indices in sequential columns. Thus R^{a}_{b c d} will be printed
as Ra

bcd while R^a_{b c d} will be printed as Ra
bcd.

18. Excessively long lines

Each statement in the following fragment will raise a Cadabra syntax error.

{\alpha,\beta,\gamma,\delta,

\mu,\nu,\sigma,\rho,\tau,\theta}::Indices.

{R_{\alpha\beta\gamma\delta},

\partial_{\mu}{R_{\alpha\beta\gamma\delta}}}::SortOrder.

substitute (foo, $R -> R_{\mu\nu} g^{\mu\nu},

R_{\mu\nu} -> R_{\alpha\mu\beta\nu} g^{\alpha\beta}$)

One solution is to condense each statement to a single line (one for each statement). That
will work but may lead to excessively long lines. There is an alternative – convert the
(single-line) statements into pure Python (using the command line tool cadabra2python)
and then add suitable line breaks. Suppose that the (single-line) statements are in the
file foo.cdb. You can then create the Python equivalent foo.py using (on the command
line)

cadabra2python foo.cdb foo.py

The file foo.py will contain the following lines

__cdbtmp__ = Indices(Ex(r’’’{\alpha,\beta,\gamma,\delta,\mu,\nu,\sigma,\rho,\tau,\theta}’’’), Ex(r’’))

__cdbtmp__ = SortOrder(Ex(r’’’{R_{\alpha\beta\gamma\delta},\partial_{\mu}{R_{\alpha\beta\gamma\delta}}}’’’), Ex(r’’))

substitute (foo, Ex(r’’’R -> R_{\mu\nu} g^{\mu\nu}, R_{\mu\nu} -> R_{\alpha\mu\beta\nu} g^{\alpha\beta}’’’, False))
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This does not seem like much of an improvement but the good news is that as most of
the text is written as strings the issue of line breaking is now trivial – strings are easily
split across lines. This is also a good time to do a bit tidying up (replacing triple quotes
with single quotes and __cdbtmp__ with tmp). The tidied version of foo.py is now

tmp = Indices(Ex(r’{\alpha,\beta,\gamma,\delta,’+

r’\mu,\nu,\sigma,\rho,\tau,\theta}’), Ex(r’’) )

tmp = SortOrder(Ex(r’{R_{\alpha\beta\gamma\delta},’+

r’\partial_{\mu}{R_{\alpha\beta\gamma\delta}}}’), Ex(r’’) )

substitute (foo, Ex(r’R -> R_{\mu\nu} g^{\mu\nu},’+

r’R_{\mu\nu} -> R_{\alpha\mu\beta\nu} g^{\alpha\beta}’, False))

This code fragment can be cut-and-pasted into an existing Cadabra code (or to replace
the original code in foo.cdb). The new code will be happily accepted by Cadabra (though
it is a matter of opinion whether the aesthetics of this version are an improvement over
the original single-line statements).

After running a few experiments you should be able to infer the basic actions of cadabra2python.
For a typical property like

{list of things}::PropertyName(arguments).

the conversion will produce (after a bit of tidying up)

tmp = PropertyName ( Ex(r’list of things’), Ex(r’arguments’) )

while for a typical algorithm like

Algorithm (foo, $a substitution rule$)

the result will be (again after manual tidying up)

Algorithm (foo, Ex(r’a substitution rule’, False))

Note that the False argument in the substitute (foo,Ex(...,False)) call appears to
serve no purpose and can be deleted (though, if in doubt, just leave it as it stands).
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Part 4 Further reading.

The content of this tutorial reflects mainly the author’s own interests. It is thus a highly
selective sample of topics in Cadabra. There is vastly more to Cadabra than has been conveyed
in this tutorial. The following few pages contain links to a wide variety of (mostly) on-line
resources for Cadabra.
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Webpages

https://github.com/kpeeters/cadabra2.git

This is the GitHub repository for Cadabra2. You can clone the site using

git clone https://github.com/kpeeters/cadabra2.git

This will create a cadabra2 directory containing the complete source code. It also contains full
instructions on how to compile and install the code (see cadabra2/README.rst).

https://cadabra.science/help.html

This is the main online reference for Cadabra. It is written as series of short tutorials each
covering a key aspect of Cadabra. Topics covered include basic syntax for writing expres-
sions, properties and algorithms, basic input/output, how to manipulate expressions and an
introduction to programming in Cadabra.

https://cadabra.science/man.html

This site describes every property and algorithm supported by Cadabra. It is the first place to
go when looking for information about a property or an algorithm.

https://cadabra.science/qa/questions

This is a popular site for posting Cadabra questions and answers. Anyone can read the questions
and answers but to post to the site you will need to register.

https://cadabra.science/notebooks/ref_patterns.html

This topic in the reference guide provides full details on how use the ? and ?? patterns. It also
discusses more powerful pattern matching using conditional patterns and regular expressions
(neither of which are described in this tutorial).

https://cadabra.science/notebooks/ref_programming.html

This topic contains a good discussion on how expressions are stored in Cadabra. It also describes
how you can access and manipulate the elements of an expression (such as its indices and the
individual terms). The topic contains a nice function that will return the covariant derivative
for any tensor.

https://cadabra.science/tutorials.html

This is a collection of tutorials showcasing the main features of Cadabra. The tutorials can be
viewed online or they can be downloaded as Cadabra notebooks (and thus allowing experiments
to be run in the Cadabra gui).

https://cadabra.science/user_notebooks.html

This is set of user contributed notebooks. One notebook (by Mattia Scomparin) shows how
Cadabra can be used to derive the non-vacuum Einstein equations from Hilbert action inte-
gral. Another notebook (by Oscar Castillo-Felisola) uses differential forms to derive the second
Bianchi identities.

https://github.com/leo-brewin/cadabra-tutorial

This is the GitHub repository for this tutorial. It contains all of the Cadabra and LaTeX
sources as well the pdf files generated from those sources. The source files are written in a
hybrid syntax that has the Cadabra code embedded within the LaTeX source. These hybrid
sources can be compiled using a small set of tools (Python scripts and LaTeX style files) all of
which can be obtained from the authors GitHub site (i.e., the very next web page).

https://github.com/leo-brewin/hybrid-latex

This site contains all the tools needed to process the hybrid LaTeX/Cadabra files used in this
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tutorial. It also contains similar tools for LaTeX sources with embedded Maple, Mathematica,
Matlab and Python code. Some readers may find these tools useful beyond their use in this
tutorial.

https://github.com/leo-brewin/riemann-normal-coords

This site contains all of the Cadabra code used in the authors’ paper on Riemann Normal
Coordinates [3].

https://github.com/leo-brewin/adm-bssn-equations

This site contains the full derivation of the BSSN equations from the ADM equations (for
vacuum spacetimes and a zero shift vector). This extends the limited discussion given in
Example 15 (where only two equations were derived).

https://github.com/leo-brewin/adm-bssn-numerical

This site contains a full 3+1 evolution code (written in Ada) for a Kasner T 3 cosmology. This
includes the Cadabra code used to convert the BSSN equations into computer code suitable
for use in the numerical integrators. Two codes are provided, one for the ADM system and
another for the BSSN system.

https://docs.python.org/3/

https://docs.python.org/3/reference/index.html

https://docs.python.org/3/tutorial/index.html

These are the official sites for Python. They provide excellent information on all matters
Python.

https://www.sympy.org/en/index.html

https://docs.sympy.org/latest/tutorial/index.html

This is a great place to start when learning how to use SymPy.

Notebooks

The Cadabra2 source code includes a wealth of sample notebook in the directory cadabra2/examples.
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