
Automatic generation of CUDA code performing tensor

manipulations using C++ expression templates

Adam G.M. Lewisa,b,c,∗, Harald P. Pfeiffera,d

aCanadian Institute for Theoretical Astrophysics, 60 St George St, Toronto, M5S 3H8,
Ontario, Canada

bDepartment of Physics, University of Toronto, 60 St George St, Toronto, M5S 1A7,
Ontario, Canada

cPerimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, N2L 2Y5,
Ontario, Canada

dMax-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),
Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, 14476, Potsdam, Germany

Abstract

We present a C++ library, TLoops, which uses a hierarchy of expression
templates to represent operations upon tensorial quantities in single lines of
C++ code that resemble analytic equations. These expressions may be run
as-is, but may also be used to emit equivalent low-level C or CUDA code,
which either performs the operations more quickly on the CPU, or allows
them to be rapidly ported to run on NVIDIA GPUs. We detail the expression
template and C++-class hierarchy that represents the expressions and which
makes automatic code-generation possible. We then present benchmarks
of the expression-template code, the automatically generated C code, and
the automatically generated CUDA code running on several generations of
NVIDIA GPU.

Keywords:

∗Corresponding author: Tel.: +1-519-569-7600; e-mail: alewis@perimeterinstitute.ca

Preprint submitted to Elsevier April 27, 2018

ar
X

iv
:1

80
4.

10
12

0v
1

 [
cs

.M
S]

 2
4

A
pr

 2
01

8

1. Introduction

Partial differential equations that involve vectorial or tensorial quantities
are very common in science. For example, the vacuum Maxwell’s equations,

∂t ~E = ∇× ~B, (1)

∂t ~B = −∇× ~E, (2)

∇ · ~B = 0, (3)

∇ · ~E = 0, (4)

involve manipulations of the vector fields ~E and ~B. Numerically, these fields
are represented by arrays of three numbers per point on a discretized spatial
grid. Manipulations of the fields using a language such as C or FORTRAN
will involve loops over each component and over the grid-size.

When solving Einstein’s equations of general relativity [?], the neces-
sary tensorial equations can become quite involved. As a moderate example
consider the evolution equation of the spatial metric in certain formulations
of Einstein’s equations,

∂tgij = −2αKij +∇iβj +∇jβi, i, j = 1, 2, 3. (5)

Here, gij and Kij are the spatial metric and the extrinsic curvature; both
these are represented by spatially varying, symmetric 3x3 matrices. The
scalar quantity α denotes the lapse-function and βi the shift-vector, both
of which are also spatially varying. And finally, ∇i denotes the covariant
derivative operator compatible with gij. Equations (1)–(5) depend on one
or two indices, respectively. Intermediate expressions in general relativity
can easily depend on more indices, for instance the Christoffel-symbols are
defined as

Γi
jk =

1

2

∑
l=1,2,3

gil (∂kgjl + ∂jglk − ∂lgjk) , i, j, k = 1, 2, 3. (6)

where ∂i denotes the partial derivative, and the 3x3 symmetric matrix gij is
the inverse of the matrix gij, both of which are spatially varying. Because
of the symmetry in the index-pair jk, Eq. (6) represents 18 independent
equations, each one with nine terms on the right-hand side.

Henceforth, we adopt the Einstein sum-convention that repeating indices
are being summed over (i.e. we will no longer write

∑
l in equations like

2

Eq. (6)). Furthermore, Latin lower-case letters from the middle of the alpha-
bet (i, j, k, . . .) will range over the three spatial dimensions.

Upon spatial discretization, each spatially dependent tensor is represented
on a spatial grid or, for multi-domain methods, on multiple spatial grids. On
each such grid, assumed to have N points, Eq. (5) would then, schematically,
be represented by code such as that in Listing 1.

Listing 1: Schematic implementation of Eq. (5)

Tensor<DataMesh> dtg , K, db ;
DataMesh alpha ;
// i n i t i a l i z e dtg , K, db , a lpha
for (int i =0; i <3; ++i) {

for (int j =0; j<=i ; ++j) {
for (int a=0; a<N; ++a) {

dtg (i , j) [a]=−2∗alpha [a]∗K(i , j) [a]+db(i , j) [a]+db(j , i) [a] ;
}

}
}
The schematic listing 1 indexes tensorial objects with parentheses for the

tensor-indices; the grid-points of the underlying grid are indexed with square
brackets. We furthermore assume in Listing 1 that the covariant derivative
of βi was already precomputed1 into the variable db.

Our focus in this paper is the numerical relativity code SpEC, [1], a mature
code in active use for the computation of gravitational waveforms for ground-
based detectors. Expressions such as that of Listing 1 are ubiquitous in SpEC

and present a major challenge to development, adaptation, and maintenance.
The library presented in this paper, TLoops, removes from SpEC the need
for explicit source-code loops over tensor-indices. Equation (5) can then be
written as a single line, as illustrated in Listing 2.

Listing 2: Implementation of Eq. (5) in SpEC with the implicit tensor-loop functionality
presented in this paper.

Tensor<DataMesh> dtg , K, db ;

1The covariant derivative is given by

∇jβi = ∂jβi − Γk
ijβk,

where the last term in this expression uses the sum-convention.

3

DataMesh alpha ;
// i n i t i a l i z e dtg , K, db , a lpha
dtg (Sym<0 ,1>() , i , j) = −2∗alpha∗K(i , j)+db(i , j)+db(j , i) ;

The variables i_, j_, etc, are pre-defined by TLoops. Overloaded indexing-
operators and assignment-operators are defined such that the single line in
Listing 2 expands to all relevant loops, both over tensor-indices and over
grid-points. TLoops also handles sums. For instance Eq. (6) can be coded as
the single expression in listing 3.

Listing 3: Implementation of Eq. (6) in SpEC with the implicit tensor-loop functionality
presented in this paper.

Tensor<DataMesh> Gamma, Invg ;
Tensor<Tensor<DataMesh>> dg ; // p a r t i a l k g { i j } = dg (i , j) (k)
// i n i t i a l i z e Gamma Invg , dg
Gamma(Sym<1 ,2>() , i , j , k) =

0.5∗Sum(l , Invg (i , l)∗ (dg (j , l) (k)+dg (l , k) (j)−dg (j , k) (l))) ;

There already exist several packages implementing similar functionality
[2, 3, 4, 5, 6, 7]. Consistent with our observations, benchmarks of them show
impaired performance relative to explicitly coded loops [8], presumably due
to compiler optimizations being oriented towards the latter.

The true (and to our knowledge unique) advantage of our package is
its ability to automatically generate equivalent source code to templated
expressions. When a certain compiler flag is defined, TLoops stores each
unique tensor expression it encounters within the linker code of each compiled
library. A packaged executable, CodeWriter, thus has access to the full list
of possible tensor expressions, from which it generates legal non-templated
code performing equivalent operations. We present here two examples, a
(loop based) C-implementation, and a GPU (CUDA) implementation. In
either case, the original C++ template-code does not need any source-code
modifications – the new C- or CUDA-code is incorporated at link-time.

Because of the latter functionality, TLoops can be used to immediately
port large numbers of tensor operations to the GPU without the need to
explicitly write kernels. These tensor operations are normally substantially
faster than CPU code, and allow data to be kept on the GPU between calls
to other GPU kernels, allowing segments of code to be hand-ported without
extraneous CPU-GPU synchronizations.

The remainder of this paper is divided into three parts: First, we intro-
duce SpEC and outline the C++ template techniques that enable the com-

4

pact code in listings 2 and 3. Second, we present our techniques to allow
replacement of the template-generated code with automatically generated
non-templated code. Finally, we show detailed benchmarks of the new re-
sults.

2. Direct evaluation of tensor loops using expression templates

2.1. Spectral Einstein Code

The code presented in this paper is based on the Spectral Einstein Code
(SpEC) [1] written in C++. In SpEC, arrays over grid-points are represented
by the class DataMesh, and tensorial objects are represented by
template<class T> class Tensor. SpEC’s class DataMesh already con-
tains expression-templates that handle loops over grid-points. Therefore, in
SpEC, Listing 1 is coded as displayed in Listing 4.

Listing 4: Implementation of Eq. (5) in SpEC.

Tensor<DataMesh> dtg , K, db ;
DataMesh alpha ;
// i n i t i a l i z e dtg , K, db , a lpha
for (int i =0; i <3; ++i) {

for (int j =0; j<=i ; ++j) {
dtg (i , j) = −2∗alpha∗K(i , j) + db(i , j) + db(j , i) ;

}
}
Indexing a Tensor<T>, e.g. K(i,j), returns a (const or non-const) refer-

ence to T. SpEC’s class Tensor is aware of symmetric indices. For instance,
if K is initialized as symmetric, K(i,j) and K(j,i) both return a reference
to the same element.

SpEC’s class DataMesh implements automatic resizing when assigned to.
Furthermore, when used on the right-hand-side of assignments (as in List-
ing 4), DataMesh checks consistency of the sizes of all DataMesh’es involved.
These consistency checks, combined with the absence of the explicit loop
over grid-points and indexing of grid-points already significantly reduces the
possibility of coding errors. However, two major shortcomings remain:

1. Loops over tensor indices must be coded manually, which is tedious
and error-prone. Specifically, the loops over indices must be consistent
with the symmetries of the respective Tensor (cf. the loop over j in
Listing 4).

5

2. The existing SpEC expression templates operate on class DataMesh’es.
For each combination (i,j), the inner loop thus represents an inde-
pendent expression on DataMesh, triggering a full traversal of all grid-
points. In Listing 4 this requires six traversals of the associated mem-
ory, whereas Eq. (6) would require 18 traversals.

TLoops corrects both these shortcomings by removing the need to write
explicit loops entirely. This is done using a hierarchy of expression templates
to represent tensorial manipulations. In the immediately following sections
we detail the specifics of those templates.

2.2. Tensors and SpEC’s Tensor class

For our purposes, tensors are objects with R indices, each taking D dis-
tinct values. The integer R ≥ 0 is called the rank of the tensor, and D its
dimension. For instance, gij(i, j = 0, 1, 2) indicates a rank R = 2 tensor of
dimension D = 3. If a tensor is symmetric on a pair of indices, then the
ordering of the two indices in the pair is irrelevant. For instance, Γi

jk defined
in Eq. (6) is symmetric on its two lower indices, i.e. Γi

jk = Γi
kj for any values

of i, j, k = 0, . . . , D − 1. The significance of the index-placement (up/down)
is irrelevant for the purposes of this paper. Many tensors in general relativity
are symmetric on some or all indices, including gij and Kij in Eq. (5)2. In
differential geometry tensors must satisfy additional conditions related to co-
ordinate transformations, which are not satisfied by Christoffel symbols Γi

jk.
While Γi

jk are not tensors in the mathematical sense, they are nevertheless
represented in SpEC with class Tensor.

In general relativity one commonly encounters both space-time and spa-
tial tensors. Indices of space-time tensors range over the three spatial dimen-
sions and time. An example is the space-time metric,

ψab, a, b = 0, 1, 2, 3, (7)

where we use letters from the start of the alphabet (a, b, c . . .) to indicate
space-time indices. The zero-th index-value (e.g. a = 0) indicates the time-
dimension, while a = 1, 2, 3 indicate the space dimensions. The spatial metric
gij is a subset of the space-time metric,

gij = ψ(i+1)(j+1), i, j = 0, 1, 2. (8)

2Tensors can also be anti-symmetric, a property not implemented in SpEC and therefore
of no relevance here.

6

Because SpEC always indexes starting with 0, Eq. (8) must add 1 to the
spatial indices to obtain the relevant components of ψab.

SpEC’s Tensor class represents multi-index objects whose indices each
take on the values 0, 1, . . . D− 1. The represented objects may be symmetric
on some of their indices, like gij or Γi

jk. Internally, a Tensor<X> holds an
array of elements, each an object X, of appropriate size given the symmetries
(e.g. the symmetric D = 3 tensor gij has six elements). A Tensor<X> further-
more holds a look-up table to translate indices (i,j) into the actual storage
location inside the array. Symmetries are implemented by the lookup table
for (i,j) and (j,i) pointing to the same element. Tensor is indexed with
parentheses, i.e. Gamma(0,1,2) represents Γ0

12. Listing 5 demonstrates some
indexing-operations performed on Tensor, while Listing 4 already demon-
strated actual computations performed with Tensor.

Listing 5: Some typical Tensor-operations in SpEC.

Tensor<DataMesh> g , ps i , beta ;
// i n i t i a l i z e g and be ta wi th D=3, and p s i wi th D=4.
// Rank and symmetries as in main−t e x t

const int D=g . Dim () ;
for (int i =0; i <3; ++i) {

for (int j =0; j<=i ; ++j) {
g (i , j)= p s i (i +1, j +1); // (∗)

}
}

for (int i =0; i<D; ++i) {
beta (i) = p s i (i +1, 0) ;

}
The listings 4 and 5 use class DataMesh, another SpEC-specific class.

DataMesh represents a multi-dimensional rectangular array, holding one dou-
ble per grid-point, with dimension D ≥ 1, extents (N0, N1, . . . ND−1) and size
N = N0N1 · · ·ND−1. SpEC implements expression templates: arithmetic op-
erators between DataMesh-objects and/or double’s are overloaded to return
recursively defined types encoding the operation and the data type of the
operands (DataMesh or double). The instantiations of the expression tem-
plates furthermore collect references to the memory locations of all involved
data. The assignment operator then recurses through the template to eval-

7

uate the expression.
Certain design choices of SpEC present challenges for the development of

TLoops. Because SpEC is a well-established and intensely used code, these
choices cannot be changed and we have to work within them:

• Dimension, rank and symmetry of a Tensor<X> are assigned dynam-
ically at run-time, and not statically through template-arguments at
compile-time. This gives flexibility when using instances of Tensor,
because dimension/rank/symmetry can be changed as needed. Un-
fortunately, this also implies that dimension/rank/symmetry are not
available to C++’s type-system at compile-time. Part of this paper
therefore deals with injecting compile-time information into the tensor-
expressions (e.g. Listings 2–5) so that the information needed to con-
struct loops over tensor-indices can be deduced at compile-time.

• Tensor<T> is a template class which stores an array of T’s. Because
each DataMesh allocates its own storage independently, this implies
that Tensor<DataMesh> has independent double* arrays of size N
for each tensor-component, rather than one contiguous array of size
Ncomponents×N . While SpEC’s design-choice makes it convenient to use
Tensors, it is not necessarily computationally optimal. Specifically, for
GPU-implementations of tensor-loops, the increased number of mem-
ory locations degrades performance, cf. Section 5.

• Finally, because of SpEC’s age, and the need to run on various super-
computers with varying degree of up-to-date compilers, SpEC restricts
itself to C++03 with only a small set of newer C++11 features, and
no C++17-specific features.

2.3. Capturing a TLoops-expression as a type

2.3.1. Classes for indexing a Tensor

All expression templates begin with capturing the structure of the ex-
pression as a type. Types are available to the compiler and thus enable
meta-programming at compile-time. In this section we detail the classes we
have developed to accomplish this.

Two classes represent indexing with tensor-indices, i.e. the variables
i, j, . . . appearing in tensorial equations like Eqs. (5) and (8): class TIndex

represents an index (e.g. i) across the entire expression, whereas class

TIndexSlot is specific to each occurrence of i.

8

Listing 6: Classes TIndex and TIndexSlot.

template<int dim , int l abe l>
class TIndex {
public :

stat ic int Value () const { return mValue ; }
stat ic bool Done () const { return mValue >= dim ; }
stat ic bool Increment () const { ++mValue ; }
stat ic bool Reset (const int c t r =0) { mValue=c t r ; }

private :
stat ic int mValue ;

} ;

template<int dim , int l abe l , int o f f s e t>
class TIndexSlot : public TIndex<dim , l abe l> {

public :
stat ic int Value () { return TIndex<dim , l abe l > : : Value ()+ o f f s e t ; }
stat ic const int O f f s e t=o f f s e t ;

} ;

// de f i n e v a r i a b l e s f o r use when coding tensor−l oop e xp r e s s i on s

// 3−dimensiona l i n d i c e s
extern TIndexSlot <3,0,0> i ;
extern TIndexSlot <3,1,0> j ;
extern TIndexSlot <3,2,0> k ;
extern TIndexSlot <3,3,0> l ;

// 4−dimensiona l i n d i c e s
extern TIndexSlot <4,0,0> a ;
extern TIndexSlot <4,1,0> b ;
extern TIndexSlot <4,2,0> c ;

Listing 6 defines two classes and a set of variables. class TIndex<dim,

label> serves as a marker to enable type-capture. As such, TIndex is tem-
plated on the dimension of the index. The additional label-argument distin-
guishes indices of the same dimension (e.g. i, j, . . .). TIndex also contains a
counter “mValue” and functionality to iterate this counter over the allowed
index-values of the given TIndex. This functionality will become relevant

9

when we discuss evaluation of a tensor-expression in Section 2.4.
class TIndexSlot<dim, label, offset> tags each individual occurance

of an index in an expression. This is required because different occurrances
can have different offsets (i.e. “i” and “i + 1”), which therefore require dif-
ferent encodings. TIndexSlot inherits from TIndex, in order to allow easy
down-casting, which is convenient for compile-time consistency checks of the
index structure.

Finally, Listing 6 defines variables i , j , etc, that map to specific
TIndexSlots. These enable the user to inject type-information about in-
dexing into source code, conveniently resembling mathematical expressions
in tensor calculus.

2.3.2. Types representing an indexed Tensor

The classes and variables defined in the previous subsection (TIndex,
TIndexSlot, i , ...) are used to index a tensor, e.g. g(i , 1). This is
accomplished with a suitable Tensor::operator(), which will return a type
that carries all information about the indexing. This return-type is built
from helper classes introduced schmatically in Listing 7. The first two helper
classes (TInequality and TSymmetry) handle symmetries of tensors.

The marker-class TInequality<pos1,pos2> indicates a symmetry be-
tween one pair of indices in a tensor, namely the indices at pos1’th and
pos2’th position (where the counting starts from zero). For example, con-
sider the metric gij and its time-derivative ∂tgij both of which are symmetric
in their only two indices. When iterating over all components of these tensors,
this implies a condition j ≤ i, cf. Listing 4. TInequality<0,1> precisely
represents this inequality, in that it indicates that in loops, the value of the
0-th index should be equal or larger than the value of the 1-th index.

A generic tensor with any structure of symmetric indices3 can then be rep-
resented by a set of TInequality’s. For a tensor without symmetries, this set
is empty. For a tensor with one symmetric pair of indices, the set contains one
TInequality, like for gij or for Γi

jk (TInequality<1,2>). More generic sym-
metries are represented by multiple TInequality’s. For instance, a rank-four
tensor A(ij)(kl) separately symmetric on the first two and last two indices is
represented by TSymmetry<TInequality<0,1>, TInequality<2,3>>, and a

3Recall that we do not consider tensors with anti-symmetric pairs of indices, or with
cyclic symmetries like those of the Riemann tensor.

10

completely symmetric rank-three tensorB(ijk) by TSymmetry<TInequality<0,1>,

TInequality<1,2>>.
Such sets of inequalities are represented by class TSymmetry<...>, which

is only defined in specializations for TInequality<.,.>, and which utilizes
compile-time asserts to enforce a monotonically increasing ordering of the
TInequality’s.

Creation of the TSymmetry<...> marker-classes is handled via free tem-
plate functions Sym<i,j>(), Sym<i,j,k>(), Sym<i,j,k,l>() that return
the TSymmetry class representing full symmetrization on the indicated slots.
For the case of several distinct symmetries, e.g. A(ij)(kl), operator && is
suitably overloaded to allow Sym<0,1>() && Sym<2,3>().

Knowledge of the symmetries of a tensor is only important on the left-
hand side of an assignment, as only the indices on the left-hand side are
looped over. Therefore, it is optional to specify symmetries for tensors on
the right-hand side, as in Listing 2. Doing so does not throw an error, but
also has no effect.

Listing 7: Classes representing an indexed Tensor, i.e. its symmetries and how it was
indexed.

template<int pos1 , int pos2>
struct TInequa l i ty {

s t a t i c a s s e r t (pos1<pos2 ,
” TInequa l i ty must s a t i s f y pos1<pos2 ”) ;

} ;

template<class . . . T Inequa l i t i e s> struct TSymmetry ;

template<class TSymmetry t , class . . . i nd i c e s>
struct TIndexStructure ;

With symmetries of a tensor handled by TSymmetry, we now turn to the
indexing of a tensor. This is handled by class TIndexStructure<Tsymmetry<...symm>,

...indices>, where the template-pack indices has a length equal to the
number of indices. Each type in this template-pack is either a TIndexSlot or
an int. The former indicates indexing with an implicit index (as used in List-
ing 2), whereas the latter case indicates the usual indexing by an integer (as
used in Listing 4). Indexing with implicit indices and integers can be mixed.
Consider, for example, a rank 3 tensor symmetric on the last two indices,
which is indexed on the first slow with the integer 1. In mathematical no-

11

tation, this is represented by Γ1
ij, which is mapped by TLoops to Gamma(1,i ,

j) with indexing structure TIndexStructure<TSymmetry<TInequality<1,2>>,
1, TIndexSlot<3,0,0>, TIndexSlot<3,1,0>>.

The classes struct TSymmetry<...TIneq> and TIndexStructure<TStructure t>,

...indices> are recursively defined in the number of TInequality’s and
tensor-indices. The specializations for the empty case are trivial. One then
adds additional inequalities/indices at the front via variadic template ar-
guments. Each specialization defines several member types and member-
variables that will be useful subsequently, and which are shown in Listing 8.

Listing 8: Member types and variables for TSymmetry and TIndexStructure, which will
be used in the automatic generation of the implicit loops.

template<class . . . T Inequa l i t i e s>
struct TSymmetry {

// TSymmetry f o r t ensor wi th f i r s t s l o t removed
typename S h i f t t ;

} ;

template<class TSymmetry t , class . . . i nd i c e s>
struct TIndexStructure {

// ==== ADMINISTRATION ====

// rank o f t ensor (= # of f r e e i n d i c e s + # of indexed i nd i c e s)
stat ic const int Rank ;
// number o f f r e e i n d i c e s
stat ic const int NFree ;
// number o f d i s t i n c t f r e e i n d i c e s
stat ic const int NUniqueFree ;
// s e t o f a l l f r e e i n d i c e s
typename TIndexSet t ;
// TIndexStructure wi th 1 s t s l o t removed
typename BASE;

// ==== ITERATION ====

// increment to next s e t o f f r e e i n d i c e s

12

void operator++()
// i t e r a t i o n over f r e e i n d i c e s complete ?
operator bool () const ;
// r e s e t i t e r a t i o n over a l l f r e e i n d i c e s
void Reset () ;

// ==== ACCESS ====

// r e t r i e v e va lue o f f i r s t index
int GetFirst Index () const ;
// r e t r i e v e va lue o f N−th index (zero−counted)
template<int N>
int GetNthIndex () const ;
// r e t r i e v e va l u e s o f a l l indeces as a s i z e=Rank vec t o r
void GetAl l Ind i c e s (MyVector<int>& idx) const ;

} ;

The member types and variables of TSymmetry and TIndexStructure

are used in subsequent steps to implement functionality. For instance, when
adding two indexed tensors, the suitable operator+ will static assert that
both indexed tensors have the same set of free indices. This mirrors mathe-
matical meaning, where gij + βiβj is correct, whereas gij + βiβk is erroneous.

2.3.3. Expression-tree for implicit tensor loop expressions

TIndexStructure represents the full indexed structure of an indexed ten-
sor, i.e. the information needed to prepare at compile-time (via metapro-
gramming) the necessary loops. In order to execute the operation, in addi-
tion, the memory locations of all Tensor<DataMesh> instances are needed.
The memory locations will be stored in a recursive expression-tree assem-
bled with a template class iBinaryOp<L, Op, R> taking three template-
parameters: The first template-parameters L and R represent the left and
right operands. These operands could be of type iBinaryOp themselves, thus
enabling the recursion to represent nested expressions. The middle template-
parameter Op represents the mathematical operation to be performed.

The ’i’ in iBinaryOp indicates that the relevant expression is indexed by
at least one symbolic tensor-index (i , j , ...). This is important, because
for tensorial expressions, only a small subset of mathematical operations are
permissible: (i) Addition and subtraction, for which the tensor-indices in

13

both operands must agree; (ii) Multiplication; and (iii) negation. In contrast,
SpEC expression-templates operating on DataMesh utilize a much larger set
of mathematical operators, including division, and a greatly enhanced set of
unary operators (like square-root and trigonometric functions).

There are several groups of partial specializations of iBinaryOp, to enable
its full functionality. These specializations are schematically indicated in
Listing 9.

Listing 9: Schematic specializations of iBinaryOp.

// Set (1) : Two indexed exp r e s s i on s
iBinaryOp<iBinaryOp , MultOp , iBinaryOp>
iBinaryOp<iBinaryOp ,AddOp, iBinaryOp>
iBinaryOp<iBinaryOp , SubOp , iBinaryOp>
iBinaryOp<EmptyType , negateOp , iBinaryOp>

// (2a) One indexed expre s s i on and one doub le
// d∗iOp , iOp∗d , IOp/d
iBinaryOp<double , MultOp , iBinaryOp>
iBinaryOp<iBinaryOp , MultOp , double>
iBinaryOp<iBinaryOp , DivOp , double>

// (2 b) One indexed expre s s i on and one DataMesh
// DM∗iOp , iOp∗DM, iOp/DM
iBinaryOp<DataMesh , MultOp , iBinaryOp>
iBinaryOp<iBinaryOp , MultOp , DataMesh>
iBinaryOp<iBinaryOp , DivOp , DataMesh>

// (2 c) One indexed expre s s i on and one sca la r−va lued
// DataMesh expre s s i on
// BOp∗iOp , iOp∗BOp, iOp/BOp
iBinaryOp<BinaryOp , MultOp , iBinaryOp>
iBinaryOp<iBinaryOp , MultOp , BinaryOp>
iBinaryOp<iBinaryOp , DivOp , BinaryOp>

// (3) l e a f−node : one indexed Tensor<DataMesh>
iBinaryOp<TIndexStructure<TSymmetry<Symm. . . > , I n d i c e s . . . > ,

14

EmptyType , DataMesh>

Set (1) contains the recursive operators that combine two indexed expressions
together. As explained above, mathematically there are only four al-
lowed operators wich are represented by the marker-classes AddOp,

SubOp, MultOp and negateOp. For instance the ‘+’ operators in List-
ing 2 are represented by iBinaryOp’s of set (1).

iBinaryOp<EmptyType,negateOp,iBinaryOp> illustrates our conven-
tion to indicate unary operators with the type class EmptyType { }
in lieu of the first template argument L to iBinaryOp.

Sets (2) recursively combine an indexed expression with a scalar expression (ei-
ther a double, or a DataMesh, or a (scalar-valued) expression template
of DataMesh, represented by class BinaryOp. Only multiplication
and division is mathematically permissible, leaving only three cases
each. The multiplication 0.5*... in listing 3 is represented by a spe-
cialization of set (2a), and the term 2*N*K(i , j) is represented by a
specialization of set (2c), combining the DataMesh-expression 2*N with
the indexed expression K(i , j).

Set (3) is the entry point into the recursive iBinaryOp-representations; it rep-
resents one indexed Tensor<DataMesh. Examples of this type include
K(i , j) in listing 2 as well as psi(i +1, 0) which arises when rewrit-
ing the last loop of listing 5 in implicit tensor notation.

The construction of recursive iBinaryOps is handled by the relevant over-
loaded operators. The recursive types of set (1) and (2) are returned by
suitably defined operator+, operator-, and operator*. Leaf-nodes of set
(3) are returned by suitably templated Tensor<DataMesh>::operator(),
which are provided in two versions: with and without a first argument of
type TSymmetry. Such a TSymmetry argument must be provided on the left-
hand-side of assignments, like dg(Sym<0,1>(), i , j) in Listing 2, be-
cause the symmetry is required to determine the loop-bounds. The instance
of TSymmetry passed into Tensor<DataMesh>::operator() is encoded in
the templated return-type of this operator within the TIndexStructure-
parameter inside the set (3) type in listing 9. On the right-hand-side, compile-
time information about the symmetry of the tensors is not needed and there-

15

fore, presently, it is optional to specify the symmetry through an extra first
argument to Tensor<DataMesh>::operator()4.

All iBinaryOp specializations have certain member-types and member-
variables which are useful when assembling the types recursively, and when
evaluating the implicit tensor-loop expression. These members are indicated
in Listing 10.

Listing 10: Member types and variables of iBinaryOp.

class iBinaryOp<L , Op, R> {

// member t ype s
using TIndexSet t = . . . ;
using ExpandIndices t = . . . ;

// member v a r i a b l e s : r e f e r en c e s to sub−e xp r e s s i on s
const L& l h s ; // (absent f o r unary opera tor s)
const R& rhs ;

}

TIndexSet t is a template-type that represents the set of all free indices;
this set is used in operator+ and operator- to verify that both operands
have the same free indices. ExpandIndices t is the DataMesh-expression
type that results when all implicit tensor-indices are replaced by concrete
values, i.e. when each Tensor<DataMesh> is replaced by the DataMesh of
one of its components. This type will be used when evaluating the tensor-
loop expression, cf. Sec. 2.4. Finally, the references lhs and rhs are also
needed during evaluation of the tensor-loop expression, as they contain the
concrete memory locations of all relevant data.

2.4. Evaluation of TLoops-template

The preceding sections describe the individual elements that make up
an implicit-tensor loop assignment, as in Listing 2: The left-hand-side of
this expression expands to a iBinaryOp of Set(3), whereas the right-hand-
side expands to a iBinaryOp of arbitrary complexity. These two elements
are combined via the member-assignment operator operator=() of the left-
hand-side’s type.

4All examples in this paper omit the symmetry specifiers on the right-hand-side.

16

Listing 11: Assignment operators for implicit tensor loops.

template<class . . . Symm, class . . . Ind i c e s>
class iBinaryOp<TSymmetry<Symm. . . > , I n d i c e s . . . > ,

EmptyType , DataMesh> {

// iBinaryOp on r i gh t−hand−s i d e
template<class L , class O, class R>
void operator=(const iBinaryOp<L ,O,R>& op) {

CheckIndexEquality (op) ;
CheckExtentsAndResizeToMatch (op) ;
TLoopApply (∗ this , TSetEqualOp () , op) ;

}

// j u s t a doub le on r i gh t−hand−s i d e (e . g . to s e t to zero)
void operator=(const double d) {

TLoopApply (∗ this , TSetEqualOp () , d) ;
}

// DataMesh on r i gh t−hand−s i d e
void operator=(const DataMesh& dm) {

CheckExtentsAndResizeToMatch (dm) ;
TLoopApply (∗ this , TSetEqualOp () , dm) ;

}

// repea t f o r +=, −=
template<class L , class O, class R>
void operator+=(const iBinaryOp<L ,O,R>& op) {

CheckIndexEquality (op) ;
CheckExtentsAndResizeToMatch (op) ;
TLoopApply (∗ this , TAddEqualOp () , op) ;

}
// . . .

}

Listing 11 indicates the structure of these assignment operators. There
are several such assignment operators depending on the type of operation (=,
+=, -=, *=, /=) and depending on the right-hand-side type (iBinaryOp,
DataMesh, double). Only some combination of these are mathematically

17

permissible, and only those are defined. As appropriate, these operators
check that free tensor-indices on the left-hand-side and the right-hand-side
match, and they resize the data on the left-hand-side. Then all these opera-
tors call a templated free function TLoopApply for the actual computations.
This allows us to handle the different types of assignment (=, +=, -=, ...)
without code-duplication.

Listing 12: Assignment of implicit tensor loops.

template<class L , class O, class ApplyOp , class RHS>
void TLoopApply (iBinaryOp<L ,O, DataMesh>& lhs ,

const ApplyOp&,
const RHS& rhs) {

l h s . CheckUniqueIndices () ;
l h s . CheckSymmetries () ;
for (l h s . Reset () ; l h s ; ++l h s) {

BinaryOpHolder<RHS> ho lder (rhs) ;
ApplyOp : : modify (l h s . ExpandIndices () , ho lder . op) ;

}
}

Listing 12 executes the actual calculations, and as such this listing re-
quires detailed explanations:

1. TLoopApply() starts with safety checks: CheckUniqueIndices is a
compile-time check that there are no repeated tensor-indices on the left-
hand-side. This test catches, for instance, the typo “dg(Sym<0,1>(),
i , i)” in the left-hand-side of Listing 2, which is mathematically
forbidden. CheckSymmetries() verifies that the stated symmetries in
the assignment —e.g. Sym<0,1>() in Listing 2— agree with the run-
time symmetry-state of the respective tensor. Because of SpEC’s design
decision that symmetries of Tensor<X> are set at run-time, this test
necessarily can only trigger run-time errors.

2. The loop for(lhs.Reset(); lhs; ++lhs) forwards directly to the
corresponding member-functions of TIndexStructure shown in List-
ing 8. TIndexStructure uses recursive template-pack expansion to
recurse through all tensor-indices. The loop will modify the static
member-variables int TIndex<dim, label>::mValue of the TIndex-
types occuring on the left-hand-side, cf. Listing 6. During the ++lhs

18

increment, these variables will be reset whenever they reach this upper
bound. In this case, the TInequality parameters indicate the position
of a potential other index with which an inequality (arising from a ten-
sorial symmetry) must be satisfied. If so, int TIndexStructure::GetNthIndex<int>()

retrieves the current value of this other index, which is used in re-setting
the index under consideration. Overall, the assignment dg(Sym<0,1>(),
i , j)=... in Listing 2, results in loops
for(j=0; j<3; ++j) { for(i=j; i<3; ++i) { ... } }
where ‘i’ represents TIndex<3,0>::mValue and ‘j’ represents TIndex<3,1>::mValue.

3. Inside the loop in Listing 12, we must now index each Tensor<DataMesh>

on the right-hand-side ‘rhs’ with the current set of index-values as
stored inside the respective TIndex<dim,label>::mValue. Upon such
indexing, each Tensor<DataMesh> in the right-hand-side expression be-
comes a standard SpEC DataMesh, and the expression-tree becomes a
regular DataMesh-expression template tree of type RHS::ExpandIndices t

(cf. Listing 10). The helper-class BinaryOpHolder recursively descends
through ‘rhs’s structure, and builds an instance of the DataMesh-
expression with all data-references pointing to the appropriate elements
of each Tensor<DataMesh>.

4. Finally, the actual assignment happens in ApplyOp::modify(). This
member-function of the marker-classes SetEqualOp, PlusEqualOp, MinusEqualOp

takes its second argument (i.e. the DataMesh expression template rep-
resentation), and assigns/adds/subtracts it from its first argument (the
DataMesh returned by indexing the left-hand-side with the current set
of tensor-indices), thus triggering execution of SpEC DataMesh expres-
sion template code.

2.5. Sum-operations

Let us now turn to an exposition of contractions as in Listing 3.
The goal is to transform the expression Sum(k , op[k]) (schematically)

into the expression op[0]+op[1]+op[2]. Here ‘op’ indicates a tensor-loops
expression which may have an arbitrary number of free indices. These should
remain intact in the output expression. In our code, this is implemented
with a template-class PartialSum<curr dim, TIndex t, iBinaryOp>. An
instance of this class is responsible for handling the index-value curr dim

of the tensor-index TIndex t. This class recursively decrements curr dim

via inheritance of PartialSum<curr dim-1, TIndex t, iBinaryOp>, and

19

during recursion assembles the full sum. The corresponding code is shown
schematically in Listing 13.

Listing 13: class PartialSum which forms the core of the implementation of Sum.

// Recursion :
template<int curr dim , class TIndex t , class iBinaryOp t>
struct PartialSum :

public PartialSum<curr dim −1, TIndex t , iBinaryOp t> {

using BASE=PartialSum<curr dim −1, TIndex t , iBinaryOp t >;

// (a) type o f un ro l l e d sum
using ExpandIndices t

=BinaryOp<typename BASE : : ExpandIndices t ,
AddOp,
typename iBinaryOp t : : ExpandIndices t >;

// (b) cons t ruc t o r c r ea t i n g the sum−expanded BinaryOpHolder
PartialSum (const iBinaryOp t& summand) :

BASE(summand) ,
th i s t e rm ((TIndex t : : Reset (curr dim) , summand)) ,
pa r t i a l sum (BASE : : part ia l sum , th i s t e rm . op)

{ } ;

const BinaryOpHolder<iBinaryOp t> th i s t e rm ;
const ExpandIndices t par t i a l sum ;

} ;

// Break recur s ion (curr dim=0)
template<class TIndex t , class iBinaryOp t>
struct PartialSum<0, TIndex t , iBinaryOp t> {

using ExpandIndices t=typename iBinaryOp t : : ExpandIndices t ;

PartialSum (const iBinaryOp t& summand) :
th i s t e rm ((TIndex t : : Reset (0) , summand)) ,
pa r t i a l sum (th i s t e rm . op)

20

{ } ;

const BinaryOpHolder<iBinaryOp t> th i s t e rm ;
const ExpandIndices t& par t i a l sum ;

} ;

In principle, the framework presented here could detect implicit sums
even without the explicit Sum(...), by watching via meta-programming for
duplicate TIndex<.,.> in operator*. Walter Landry’s FTensor behaves in
this way and presents the choice as a design feature [2]. We choose not to
implement such implicit loop functionality for two reasons: First it would
leave evaluation order according to C++ operator precedence, and it is not
guaranteed that C++ precedence rules will result in optimal evaluation. The
requirement to explicitly place Sum(...) in the code will force the user
to make an explicit choice of how terms will be grouped, thus exhibiting
the FLOPS implications more clearly. Second, sums exponentially increase
the amount of FLOPs in an expression. The explicit occurrence of Sum,
especially when repeated multiple times in the same expression, acts as signal
for potentially very expensive operations.

3. Automatic code generation

In this section we describe TLoops’ automatic code generation function-
ality, which represents TLoops expressions with equivalent C or CUDA code.
First, SpEC is compiled with certain options what encode each TLoops ex-
pression it uses. Next, an executable called CodeWriter iterates through the
encoded expressions and outputs new code for each. SpEC is then recompiled
with this new code, which replaces the expression-templates described in Sec-
tion 4.2 at link-time. This gives in total four different SpEC compilation vari-
ants: NonAccel, as always; CodeWriter, to output the new equivalent code;
AccelCPU, to link in the automatically-generated C code; and AccelCUDA, to
link in the automatically-generated CUDA code.

Let us first give a high-level overview of the tools which generate this
code. As described in Section 4.2, TLoops expressions are represented as
trees. Each node in the tree represents either an operator, in which case it
has either one or two subnodes, or actual data (of type double, DataMesh,
or indexed Tensor<DataMesh>), in which case it has no subnodes and we call
it a “leaf”. The root node represents the type of assignment (=, + =, − =,

21

or ∗ =). In Section 4.2 this expression tree is built at compile-time with
recursive templates, with the one goal of executing the encoded calculation.

In Figure 1 we illustrate the tree structure appropriate to the operation
∂igij = −2αKij +∇iβj +∇jβi. The top panel shows the TLoops source-code
expression. The second and third illustrate the expression tree. In the second
panel that tree is illustrated by a shorthand representation of the expression
template. BOp, in particular, stands in for the iBinaryOp introduced in
Listing 9 and the surrounding text.

The third panel illustrates the tree recursion performing automatic C
code generation. First, we generate an appropriate set of for loops from
the index structure of the LHS tensor. We next iterate through the tree
nodes representing operators, outputting variables that represent concrete
data (such as d0 for double) from the child leafs of each node.

We now turn to equivalent code output in multiple languages (C and
CUDA) illustrated in Figure 1. Performing this output using compile-time
templates proved cumbersome, since such template-based code is difficult to
write and debug, and is too inflexible for our diverse goals. We therefore
have developed a secondary run-time representation of the expression tree
as concretely-instantiated C++ classes, which works as follows:

• The abstract class TExpressionLeafBase represents a leaf in the ex-
pression tree, with concrete derived classes for each type of leaf, such
as double, DataMesh, or indexed Tensor<DataMesh>.

• The abstract class TExpressionOperatorBase represents operators,
with one concrete derived class for each (+, −, sqrt, etc).

• class TExpressionNode represents a node in the expression, which
may be a leaf or an operator. This is the class which forms the actual
tree structure, and which handles recursion. It holds pointers to any
child TExpressionNodes, as well as a pointer to the
TExpressionLeafBase*, if a leaf, or TExpressionOperatorBase*, if
an operator.

With the above class-reprentation of an expression in hand, we are now
ready to output actual code. Conceptually, each class will trigger output of
whatever code-fragment it represents:

• A TExpressionOperatorBase will have member functions to output
the string representation (‘+’, ‘sqrt’, etc.). These member functions

22

∂tgij = −2αKij +∇iβj +∇jβi

dg(Sym<0,1>(), i_, j_) = -2.*alpha*K(i_,j_) + beta(j_)(i_) + beta(i_)(j_);

BOp<TIndStr<Sym<0, 1>, Ind<0>, Ind<1>>, EqualsOp,

BOp<double, MultOp,

BOp<DataMesh, MultOp,

BOp<TIndStr<Ind<0>, Ind<1>>, PlusOp,

BOp<std::pair<TIndStr<Ind<1>>, TIndStr<Ind<0>>>, PlusOp,

std::pair<TIndStr<Ind<0>>, TIndStr<Ind<1>>>>>>>>;

for(int i=0; i<3; ++i){

for(int j=i; j<3; ++j){

for(int x=0; x<GRIDSIZE; ++x){

=

*

*

+

+

TTDm1[i][j][x];

TTDm0[j][i][x]

TDm1[i][j][x]

DM0[x]

d0

TDm0[i][j][x]

}

}

}

Figure 1: Various representations of the ∂tgij operation: in mathematical notation (top),
as a TLoops expression (second), as a nested series of TLoops expression templates (third),
and as the automatically output code diagrammed with each fragment in the appropriate
part of the semantic tree used to represent expressions at runtime (bottom). We use
shorthands for the class types in the expression template: BOp for iBinaryOp, TIndSt

for TIndexStructure, and Ind for TIndexSlot. Within the tree, DM represents DataMesh
(i.e. a single component array), TDm represents Tensor<DataMesh>, and TTDm represents
Tensor<Tensor<DataMesh>>.

23

will place the operants in the right places, e.g. on either side of binary
operators like ‘+’, or within the parentheses of unary operators like
‘sqrt()’.

• A TExpressionLeafBase has member functions to output any code
fragments directly involving the operand. For example, the mem-
ber function std::string VarDeclaration();, which outputs vari-
able declarations for the C-style code, outputs const double d0;, in
the case of the first double on the right hand side, or const double*

TDm1[3];, in the case of the second Tensor on the right hand side,
with a rank of 1 and dimension of 3.

• A TExpressionNode will have member functions PrintExpression

and PrintCUDAExpression. In the case of a leaf, these call the ap-
propriate code output frunction from TExpressionLeafBase. In the
case of an operator, they call the output functions of the associated
TExpressionOperatorBase along with those of the next child TExpressionNode,
with parentheses formatted appropriately depending on whether the
operator is unary or binary. class TExpressionLeafBase or

So far, we have described the structure and operation of a fully initialized
TExpressionTree, and how such a tree yields the desired output code. We
now turn to the construction of these TExpressionTrees. First, we must
interface the templated representation of an expression (iBinaryOp<L, Op,

R>) with this new C++ class-based representation. To do so, we proceed as
follows:

• We define a set of C++ functions that are templated on the expression-
template representation. These functions call one another recursively,
and in this way they recurse through the expression-template represen-
tation in the appropriate order, returning at each stage the relevant part
of the class-based representation, i.e. the correct TExpressionNodes.

• We further define a templated wrapper class ConcreteTExpressionTreeHouse
which constructs the class-representation and which provides conve-
nient functions to interact with it. This class is derived from an abstract
base-class TExpressionTreeHouse, which hides the type of the con-
crete expression-template. Thus, having a pointer to TExpressionTreeHouse,
surrounding code can interact with the expression in a type-agnostic

24

way, making it possible to loop over different expressions and output
code.

At this stage, we are faced with the task of constructing one ConcreteTExpressionTreeHouse
for each distinct expression-type in SpEC, and collecting pointers to the
TExpressionTreeHouseBase in one large list, so that we can iterate over
the tree. For this, we utilize the existing code in SpEC named Factory,
which implements the factory design pattern [9].

Conceptually, for each abstract base-class in SpEC, there is a database
called Factory within which each concrete derived class registers itself, pro-
viding an ID-string along with a pointer to a function that creates the con-
crete derived class. After registration, Factory can then be passed ID-strings,
causing it to call the relevant create-function and to return a pointer to the
newly created instance of the polymorphic class.

We use the SpEC-Factory as follows. When SpEC is compiled with the flag
−DCODEWRITER, each TLoopApply-template function - the function which trig-
gers evaluation of the expression template, and which is thus itself uniquely
templated on the expression - activates extra code that defines a static vari-
able

stat ic bool r e g i s t e r e d . . . = Factory : : Reg i s t e r (opt ions) ;

In the above, ... represents a unique string constructed from the com-
plete template type by recursive calls to a function TNameHelper mapping
expression-template types to string fragments.

During standard execution, these extra variables have no effect. They in-
stead become important when linked into the CodeWriter executable. Upon
initialization of the static variables at the start of CodeWriter execution,
each registered variable causes the relevant call to Factory::Register, thus
building a database containing all expression-templates occuring within the
object files. Each entry in this database will now be represented by a con-
crete derived class of the CodeWriter base-class, making the list of expression
templates available at runtime to the executable. At that point CodeWriter
iterates through all these concrete derived classes, creates one instance of the
expression tree class-representation from each, and calls the relevant member
functions to output C and CUDA code.

Listing 14: Illustration of main CodeWriter loop.

void CodeWriter : : Write (){
int fnumber=0;

25

const std : : l i s t <std : : s t r i ng> Exps
= Factory : : Reg i s teredClass IDs<TExpressionTreeHouseBase >() ; //∗

for (auto ExpTag : Exps){
++fnumber ;
TExpressionTreeHouseBase∗ TreeHouse ptr =

TExpressionTreeHouseBase : : CreateDer ivedClass (ExpTag) ; //∗∗
WriteEntry (TreeHouse ptr , fnumber) ;
delete TreeHouse ptr ;

}
}

Listing 14 illustrates the iteration-through-templates procedure performed
by CodeWriter. In that Listing, the line marked //* retrieves from the
Factory a list of all possible ID-strings which represent derived classes from
TExpressionTreeHouseBase, and thus which represent expression templates.
CodeWriter then iterates through that list and, in the line marked //**,
constructs a concrete instance of ConcreteTExpressionTreeHouse for each
expression.

CodeWriter outputs into three files. The first contains functions whose
arguments are templated on the appropriate TLoops expression template.
These functions route to either the CUDA or the CPU code depending on
which of AccelCPU or AccelCUDA are defined. The second extracts the actual
arrays of pointers from the iBinaryOp’s passed to the function and passes
these on. In the CUDA case this array of pointers must be copied to the
GPU via an API call, which can be a significant extra expense. To avoid this
we make the copy only once, repeating only if the structure of the Tensor

changes. The third file contains the actual functions and, in the CUDA
case, tuning arguments for the kernels, which are chosen based on the tensor
structure of the left-hand side (see Section 5 for details).

4. Design Considerations of Automatically Generated CUDA Code

Section 3 detailed the tools we have developed to output automatically
generated C and CUDA code to perform TLoops operations. In this section
we describe the structure of that code with an eye to its performance.

First, let us give some examples of C-style code generation. Consider, for
example, the TLoops expression

Listing 15: TLoops rank 2 contraction.

26

C(Sym<0 ,1>() , a , b) = Sum(c , A(a , c) ∗ B(c , b)) ;

which symmetrically contracts the rank-2 tensors A and B over their shared
index c . CodeWriter generates the following C-style code from Listing 15:

Listing 16: , C-style code corresponding to Listing 15.

for (int b=0; b<4; ++j) {
for (int a=b ; a<4; ++a) { \\∗

for (int x=0; x<N; ++x){
double sum=0;
for (int c=0; c<4; ++c){

sum+=A[a] [c] [x]∗B[c] [b] [x] ;
}
C[a] [b] [x] = sum ;

}
}

}
Recall N is the spatial gridsize. In Listing 16, a in the for loop marked

is initialized to b rather than to 0, due to the Sym<0,1>() flag in Listing 15.
The for loops run up to 4 due to the use of a , b . . . rather than i , j . . .
indices, which would generate loops running to 3. Indexing may be further
controlled by ‘fixing’ indices (e.g. by specifying an integer value, such as 1,
instead of an index such as i), or by specifying index “offsets” such as i +1.
Thus, the expression

Listing 17: TLoops rank 2 contraction demonstrating fixed and offset indices.

D(Sym<0 ,1>() , i , 0) = Sum(c , E(i +1, c) ∗ F(c , 0)) ;

generates the following C-style code

Listing 18: C-style code corresponding to Listing 17.

for (int i =0; i <3; ++i){
for (int x=0; x<N; ++x){

double sum=0;
for (int c=0; c<4; ++c){

sum+=E[i +1] [c] [x]∗F[c] [0] [x] ;
}
D[i] [0] [x] = sum ;

}
}

27

note that in this case the Sym<0,1>() flag has no effect.
Let us now demonstrate our automated CUDA code, starting with a

simplified sample generated from the expression

Listing 19: TLoops rank 2 contraction.

C(a , b) = Sum(c , A(a , c) ∗ B(c , b)) ;

This differs from Listing 15 only in that the symmetry flag has been removed.
In CUDA, instructions to the GPU are collected into function-like entities
called kernels. The kernel generated from Listing 19 closely resembles the
following:

Listing 20: CUDA kernel corresponding to Listing 19.

g l o b a l void g 0001 (const int N, double∗∗ TDm00,
const double∗∗ TDm01, const double∗∗ TDm02){

const int a = threadIdx . y ;
const int b = blockIdx . y ;
const int x = blockIdx . x∗blockDim . x + threadIdx . x ;
i f ((x<N)&&(a<4)&&(b<4))

TDm00[a+4∗b] [x]=TDm01[a +4∗0] [x]∗TDm02[0+4∗b] [x] +
TDm01[a +4∗1] [x]∗TDm02[1+4∗b] [x] +
TDm01[a +4∗2] [x]∗TDm02[2+4∗b] [x] +
TDm01[a +4∗3] [x]∗TDm02[3+4∗b] [x] ;

}

In the real code we use restrict flags on the pointer arguments for
performance reasons. On the GPU, it is advantageous to store the tensor
indices in a single, flattened array, since pointer indirections are relatively
expensive. Similarly, unrolling expressions which on the CPU would have
appeared as for loops prevents unnecessary serialization.

The variables threadIdx.y, blockIdx.y, etc, are used by CUDA to man-
age parallel data access. In CUDA, computations are abstracted as a three-
dimensional grid of blocks, in turn composed of threads. Each thread repre-
sents a discrete computational process that will execute the instructions in
the kernel. While differing threads issue the same instructions, they will nor-
mally do so upon differing data, since they may address memory using their
unique block and thread indices (threadIdx.y, etc.). for loops are generally
replaced with if statements such as that in Listing 20, which ensures that
no thread make an out-of-bounds array access.

28

Physically, GPU resources are divided into streaming multiprocessors (SMs)
composed of tightly coupled processing cores. Cores in a given SM exe-
cute instructions in lockstep, and share certain memory resources with one
another besides the global memory accessible to the entire GPU. Dividing
threads into blocks, which are always local to a particular SM, enables such
resources to be safely utilized. Although we make no use of such resources,
the blocksize is nevertheless important for us, since a single SM may operate
upon only a certain number of blocks at one time. The SM hides latency
by switching between those blocks when one stalls (for example because of
a data dependency). A poor blocksize choice can result in low “occupancy”,
which impairs this ability, since there are insufficient blocks to switch to.

For this and other reasons, it is important to appropriately “tune” the
kernel launch, via choice of the number of blocks in the grid (nblocks), and
the number of threads in each block (blocksize). Those arguments are in
the case of Listing 19 fixed by the corresponding “wrapper” code:

Listing 21: CUDA wrapper corresponding to Listing 19.

void CUDAWrapper g 0001 (const int N, double∗∗ TDm00,
const double∗∗ TDm01, const double∗∗ TDm02){

const int b l o c k s i z e x = 64 ;
const int nb locks x = sz / b l o c k s i z e x + (sz%b l o c k s i z e x == 0 ? 0 : 1) ;
const int b l o c k s i z e y = 4 ;
const int nb locks y = 4 ;
const int b l o c k s i z e z = 1 ;
const int nb lock s z = 1 ;
const dim3 b l o c k s i z e (b l o c k s i z e x , b l o c k s i z e y , b l o c k s i z e z) ;
const dim3 nblocks (nblocks x , nblocks y , nb l o ck s z) ;
g 0001<<<nblocks , b l o c k s i z e >>>(sz , TDm00, TDm01, TDm02) ;

}
We expose the parallelism of the N data-independent spatial gridpoints

by devoting the entire logical x dimension of the CUDA grid to them. We
then use the four remaining thread addresses to parallelize over the indices
of the left-hand side tensor, since the corresponding arrays are also data-
independent. In principle, we could implement the Sum operator as a par-
allel reduction as well, since this dramatically complicates automatic code
generation and offers no advantage at dimensions 3 or 4, we instead perform
them in serial, as demonstrated in Listing 20.

There are two cases in which we cannot parallelize over all the LHS com-

29

ponents. The first is that of a symmetry. For example, Listing 15, which has
a symmetry between the a and b indices, generates the following kernel:

Listing 22: CUDA kernel corresponding to Listing 15.

g l o b a l void g 0001 (const int N, double∗∗ TDm00,
const double∗∗ TDm01, const double∗∗ TDm02){

const int b = threadIdx . y ;
const int x = blockIdx . x∗blockDim . x + threadIdx . x ;
i f ((x<N)&&(b<4)){

for (int a=b ; a<4; ++a){ //∗
TDm00[a+4∗b] [x]=TDm01[a +4∗0] [x]∗TDm02[0+4∗b] [x] +

TDm01[a +4∗1] [x]∗TDm02[1+4∗b] [x] +
TDm01[a +4∗2] [x]∗TDm02[2+4∗b] [x] +
TDm01[a +4∗3] [x]∗TDm02[3+4∗b] [x] ;

}
}

}
Because the number of passes through the for loop in marked by //* in
Listing 22 depends on the value of b, parallelization of that loop would re-
quire different CUDA threads within a block to execute different instructions.
Since all the threads in a particular SM share the same control circuitry,
however, this is not possible. CUDA deals with this by having SMs that
encounter so-called “divergent execution paths” run each one in serial. We
avoid this by serializing explicitly.

The second case we cannot parallize is the unusual one of an LHS tensor
of rank greater than four. This exhausts the number of independent CUDA
thread addresses, and so we must serialize the extra indices.

We tune our kernels using the following simple rules, designed to achieve
maximum or high occupancy on all the GPUs in Table 1. We use (compare
Listing 21) blocksize_x and nblocks_x to parallelize across the spatial grid,
which leaves us four independent parameters with which to parallelize across
LHS tensor indices. Each one will be used to parallelize a different index,
and will thus be set to either 1, 3, or 4 (either no index, or the dimension of
the relevant index). Therefore, blocksize y ∗ blocksize z will be either
1, 3, 4, 9, 12, or 16.

We now must set blocksize x in order to control the total blocksize. This
must be a multiple of 32, or else cores will be left idle, since GPU instructions
are issued to groups of 32 in lockstep. An optimal total blocksize, allowing

30

Bandwidth Processing Power
Device theoretical, GB/s measured, GB/s GFLOP/s

CPU 42.7 - 8.0
M2090 177.6 123 665.5

K80 (one card) 280 170 932–1456
P100 720 449 4036-4670

Table 1: Performance specifications for our benchmarked processors. “CPU” refers to
a single core of an Intel Xeon (Sandy Bridge) E5-2620. The K80 actually contains two
separate GPUs (which share memory) on the same card. Using both requires similar extra
effort as multi-GPU programming generally, so we profile only one throughout. The K80
and P100 are also potentially capable of “GPU Boost”, which dynamically adjusts the core
clock frequency if it is possible to do so without exceeding thermal and power limits (the
CPU has similar capabilities). The “measured” bandwidths were obtained by running the
CUDA sample program bandwidthTest.

each SM to fully utilize its compute resources, will be one of a few values that
depend on the particular GPU in question. On the M2090, for example, these
are 192, 256, 384, 512, and 768. 256 and 512, in particular, achieve maximum
occupancy across all three cards. These values can be achieved exactly when
blocksize y*blocksize z is 1, 4 or 16, in which cases we respectively set
blocksize x to 256, 64, or 32. Otherwise, we set blocksize x to 64 (for
blocksize y ∗ blocksize z = 3) or 16 (for 12), which are near-optimal.
Note that this algorithm limits the maximum N that our code can handle
to 65355 ∗ blocksize x, which is always in the millions. This limit could be
easily removed by for example serializing over extremely large grids, but this
has not been necessary for our purposes.

Each SM has a single “register file” of extremely fast RAM used to store
variables allocated within a kernel. During kernel launch, those registers are
logically allocated to individual threads as necessary. If a kernel’s register
demands are such that running all possible threads would exhaust the reg-
ister file, CUDA will restrict the number of blocks assigned to each SM to
compensate, thus lowering occupancy and possibly affecting the above cal-
culations. In the above calculations we assume this does not happen. Our
benchmarks (c.f. Table 2) show this assumption is usually, but not always,
borne out.

The synchronization of Tensors presents an additional complication for
CUDA which is not present on the CPU. Recall that the individual arrays

31

representing components of a Tensor are not contiguous on the CPU, since
that class does not assume those components have identical memory foot-
prints, and in fact permits modification of those footprints after construction,
for example by reshaping the component DataMeshes. The CPU Tensors in-
stead maintains an array of pointers, each addressing a particular tensor
element.

This design choice is sufficiently inextricable from SpEC that we must work
around it. But the obvious solution of maintaining an equivalent array of
pointers on the GPU has a significant performance impact if handled naiively.
The pointer array can change after construction, so we cannot simply create
a GPU equivalent once and assume it will be always correct. On the other
hand, the high latency of GPU array allocation and synchronization makes
copying a fresh array with each kernel launch unacceptable.

Instead, each Tensor is paired with a set of “GPUPointers” that store a
copy of the CPU pointer array, the GPU pointer array, and a reference to the
relevant Tensor. When the GPU pointer array is retrieved, we first ensure
that the copies CPU array is identical with that actually present in the
Tensor, synchronizing only if it is not. This keeps the number of necessary
synchronizations to their bare minimum. If the GPU array is never retrieved
we do not create it at all, so that extra overhead is not incurred if a Tensor

never encounters a TLoops kernel.

5. Benchmarks

5.1. Methodology

We now turn to benchmarks of both the automatically-generated code and
the expression-template implementation. Due to the wide range of potential
expressions, hardware, compilers, and compiler options, it is not possible to
do this fully comprehensively, but we aim here to give a broad picture of our
code’s behaviour.

Our kernels make no explicit attempt to reuse data once loaded, and we
therefore expect them to be bandwidth-bound or latency-bound (i.e. the
limiting factor to their performance is either the memory bandwidth of the
device or the latency between successive instructions). A useful performance
metric in this case is the “effective bandwidth” BWeff , which is the ratio
between the amount of information which must be read and written by an
operation with the time t taken to execute that operation in practice. We
measure BWeff in GB/s. BWeff will be maximal for a kernel which simply

32

copies data, and decrease as operations spend significant time on computa-
tions or extraneous memory operations. Calling N the spatial gridsize, Ne

the total number of tensor elements involved in the operation and Nd the
number of doubles occuring outside of a DataMesh array, we have

BWeff = 8bytes
NeN +Nd

t
. (9)

For example, the expression in Listing 15 has Nd = 0 and Ne = 42 (16
elements each from A and B, but only 10 from C due to the symmetry), while
the one in Listing 17 has Nd = 0 and Ne = 19 (3 from D, 4 from F, and 12
from E).

We begin with basic operations typical in relativity. We benchmark each
such operation using three-dimensional tensor indices, at three levels of com-
plexity. These operations are assignments

Ai = Bi, (10)

Aij = Bij, (11)

Aijk = Bijk, (12)

additions,

Ai = Bi + Ci, (13)

Ai = Bi + Ci +Di, (14)

Ai = Bi + Ci +Di + Ei, (15)

outer products,

Aij = BiCj, (16)

Aijk = BiCjDk, (17)

Aijkl = BiCjDkEl, (18)

and contractions

Aijkl = B m
i Emjkl, (19)

Aijkl = C n
j B

m
i Emnkl, (20)

Aijkl = D o
k C

n
j B

m
i Emnol. (21)

33

We furthermore benchmark two practical expressions that actually occur in
numerical relativity. The first mixes scalars, tensors, and outer products,

Kij = 2αgij + βiβj, (22)

and the second (Eq. (6)) computes the spatial Christoffel symbols of the
second kind Γi

jk, thus also including contractions.
Finally, we will present under the label “GH” our TLoops port of the

actual SpEC module which solves the generalized harmonic equations in the
eponymous formulation of relativity theory. Roughly speaking, this code
computes the second time-derivative of the spacetime metric ψab, as a func-
tion of first and second spatial derivatives. As such, the input data is pri-
marily the ψab, its spatial derivatives ∂iψab and ∂i∂jψab, and its first time-
derivative ∂tψab. In total there are 22 input arrays. The equations involved
consist of 25 separate TLoops expressions, with as many as four LHS in-
dices, and as many as two contractions on the RHS. Overall, we estimate
381 spatial-gridsize arrays in the numerator of Eq. (9) for the GH oper-
ation, so that GH is about 4-100 times more bandwidth-intensive than the
other benchmarked expressions. This reflects in the raw execution times: GH
takes about 10 times longer to execute than the other benchmarks, though
the overall execution time is normalized away by plotting BWeff .

TLoops can also handle transcendental functions and many other unary
functions. Such functions occur often enough that automatic code-generation
is warranted. But they only use a marginal fraction of overall runtime, and
so we do not benchmark such functions at present.

We benchmark each expression on the following combination of hardware
and code-path:

1. Automatically generated CUDA code executing on the three NVIDIA
GPUs in Table 1, namely M2090, K80, and P100.

2. Automatically generated C code executing on the host processor (la-
beled ‘AccelCPU’).

3. The TLoops expression templates executing on the host processor (la-
beled ‘NonAccel’).

4. The original SpEC code without TLoops code-simplifications, as an over-
all baseline (labeled SpEC.

The CPU code was compiled using gcc 4.8.1 using the -O3, -fPIC, and
-std=c++11 compiler flags. We also took benchmarks using intel 15.0.2

34

and the compiler flags -O3 -xHost -fPIC -fp-model precise -std=c++11.
The Intel code usually gives comparable or worse results to gcc (c.f. Figure
4), and so for visual simplicity only the gcc results are displayed in Figures
2, 3, and 5. The CPU timings were performed on a single core of an Intel
Xeon E5-2620 CPU, which has a clock frequency of 2.0 GHz, a theoretical
bandwidth of 42.7 GB/s, and a theoretical double-precision processing power
of 8.0 GFLOP/s. We sampled gridsizes at multiples of 32 with decreasing
resolution at increasing gridsize.

We have not made a systematic study of CPUs and compiler options, and
do not intend for these results to reflect the potential CPU performance of
our code. Improved results could almost certainly be achieved using a CPU
with a higher clock frequency and e.g. vectorized instructions over multiple
cores. This machine and these compiler options are, however, representative
of realistic conditions under which SpEC might presently run. In particular,
limitations to parallelism imposed by SpEC’s implementation of multidomain
pseudospectral methods restrict it to a single CPU core per expression.

The M2090’s host processor is the same as used for the CPU test. We
compiled the CPU code in this case using the Intel compiler with the same op-
tions as above. The K80 and P100 are hosted by somewhat faster POWER8
processors, and the code in these cases was compiled using xlc 13.1.4 with
the flags -fPIC, -O3, -std=c++11. The CPU’s performance should not be
relevant to the GPU tests. We compiled the GPU code with CUDA 6.5
on the M2090 using -arch=sm 20. On the K80 (-arch=sm 37) and P100
(-arch=sm 60) we used CUDA 8.0.

5.2. Benchmarks of simple expressions

We are now ready to present benchmarks for the expressions correspond-
ing to Eqs. (10)-(18) on each of the various hardware and code-path com-
binations. We execute each benchmark 21 times, discard the first, and take
the median.

The results are summarized in Figure 2. Each panel of that figure cor-
repondes to one particular expression, with the x-axis indicated grid-size,
and the y-axis indicating performance. We express performances in terms of
effective bandwidth BWeff , c.f. discussion in Section 5.1 above.

Let us now discuss and interpret Figure 2. Focusing first on the GPUs,
‘M2090’, ‘K80’, and ‘P100’ all show the same overall trends. Execution
time is roughly constant in the gridsize until occupancy is saturated, after
which point it increases linearly. Since the number of memory transactions

35

10-1

100

101

102

103

B
W

ef
f (

G
B

/s
)

Ai =Bi Aij=Bij Aijk=Bijk

M2090

K80

P100

AccelCPU

NonAccel

SpEC

10-1

100

101

102

103

B
W

ef
f (

G
B

/s
)

Ai =Bi +Ci Ai =Bi +Ci +Di Ai =Bi +Ci +Di +Ei

102 103 104 105

N

10-1

100

101

102

103

B
W

ef
f (

G
B

/s
)

Aij=BiCj

102 103 104 105

N

Aijk=BiCjDk

102 103 104 105

N

Aijkl=BiCjDkEl

Figure 2: TLoops performance benchmarks of assignment (top row), addition (middle),
and outer products (bottom). Operations increase in complexity as panels move from left
to right. Each panel shows the effective bandwidth of the automatically generated GPU
code (labelled by the GPU used for the benchmarks), automatically generated CPU code
(AccelCPU), and expression templates without automatic code generation (NonAccel).
The black line (SpEC) shows the performance of SpEC without the use of the TLoops
package.

36

increases linearly in gridsize throughout, BWeff shows linear increase up to
the point of saturation, after which point it is constant. Since all the GPUs
have essentially the same single-thread performance, they perform essentially
identically until their respective points of saturation. However, newer cards
(especially the P100) can support more parallel threads, resulting in a later
point of saturation with a higher BWeff .

The saturation gridsize is most importantly determined by the left-hand
side tensor rank: higher rank tensors saturate earlier. For example, in Fig-
ure 2 the saturation gridsizes are almost identical for Aij = Bij compared
with Aij = BiCj, for Aijk = Bijk compared with Aijk = BiCjDk, and for
Ai = Bj compared with any of the addition operations Eqs. (13)-(15). This
reflects our code’s parallelism over tensor indices, which is crucial for achiev-
ing good performance at gridsizes on the order of 104. The pattern would
not persist past rank 4 or for symmetric indices, since we serialize in these
cases. Post-saturation performance is mostly independent of the operation
and usually quite close - slightly beneath a factor of 2 in the worst case of
Aijkl = BiCjDkEl - to the measured bandwidths from bandwidthTest.

In contrast, the three CPU execution-paths do not suffer from high la-
tency, and so the BWeff curves are generally quite flat with respect to gridsize.
Nevertheless, several patterns are visible in the relative exeuction speed of
the three CPU execution paths. Except sometimes for assignments (Eqs.
(10)-(12)) at very large gridsize, the expression-template code (NonAccel)
usually gives worse performance than either the automatically-generated C
code (AccelCPU) or that SpEC without any TLoops simplifications (SpEC) by
a factor of between about 3-10. These results are roughly in line with those
obtained from Walter Landry’s FTensor [2, 8], which is similar to TLoops

running in NonAccel mode, and is presumably due to the compiler being less
able to optimize the various templated expression templates.

More unexpectedly, SpEC and AccelCPU do not perform identically. While
performance is usually comparable, SpEC is sometimes noticeably superior,
especially for less complex operations at small gridsizes. AccelCPU differs
from SpEC in two ways. First, the for loops over tensor indices appear di-
rectly in source code using SpEC, whereas AccelCPU routes through a few
extra classes before reaching them. While we consider it unlikely, the im-
paired performance for less complex operations may be due to some extra
overhead from this routing. Second, SpEC handles the loop over gridpoints
using expression templates, while AccelCPU uses an additional for loop. This
may result in differing behaviour regarding e.g. the creation of temporaries

37

and the use of cached memory in the machine code.
Now comparing the performance of the GPUs with the CPU executions

paths, we note that the CPU generally gives better performance at small
gridsize, but is eventually surpassed by the GPU. This is the expected be-
haviour: the CPU has superior single-thread performance, but the GPU has
more capacity for paralellism. Compiler optimizations available to the CPU
will likely also result in more efficient reuse of memory than on the GPU. This
will make operations on the CPU less complex, but also make the floating-
point performance of the hardware more relevant. Thus, the CPU has less of
an advantage at small gridsize for more computationally intensive operations.

5.3. Benchmarks of more complex expressions

Let us now turn to the more complex operations corresponding to Eqs.
(19)-(22), Eq. (6), and the GH equations, each described in Section 5.1.
We proceed here as in Section 5.2, benchmarking six hardware and code-
execution-path combinations as a function of gridsize, with results presented
in Figure 3.

Figure 3 shows broadly similar features throughout: GPU performance
increases linearly up to a saturation point and then is constant, while CPU
performance is nearly flat. In particular, the Kij operation (Eq. (22), lower
left panel of Figure 3) behaves essentially identically to Eq. (17) (lower left
panel of Figure 2), to which it is indeed very similar in form.

The contraction operations (Eqs. (19), (20), and (21)) in the top row
of Figure 3 show some new behaviour. On the CPU, we first of all notice
that performance, while still independent of gridsize, worsens sharply as we
move from left to right between panels. These operations are more strongly
compute-bound than those discussed until now, although the form of our
automatically generated code does not expose this. Since the CPU performs
memory operations relatively better than floating-point computations, its
performance degrades for operations involving more of the latter.

We also notice that AccelCPU gives better performance than does SpEC

for these operations, which is the opposite behaviour as observed previously.
We can only guess at the reason for this. Perhaps there is more opportu-
nity for compiler optimizations for operations involving more floating-point
operations, but the expression-templates over gridsize used by SpEC prevent
those optimizations from being made.

Turning attention to the GPU curves, we see that the low-gridsize perfor-
mance is almost exactly identical between panels. Due to the massive par-

38

allelism it must support, the CUDA compiler cannot make nearly so aggres-
sive optimizations as can a modern C++ compiler, and so the automatically-
generated code presumably behaves in the bandwidth-bound manner in which
it is written. The saturation gridsize, however, does change, even though the
number of LHS indices remains constant. Similarly, the post-saturation per-
formance gets lower as we move from left to right.

This stems from the fact that the SpEC class Tensor is a list of arrays (one
array over the spatial grid per tensor index), rather than a single contigu-
ous one. Since the tensors are not contiguous each memory access actually
involves two pointer indirections, one each to retrieve the appropriate com-
ponent array and spatial gridpoint. For example an instruction such as d =

A[i][j][x] must first load A[i] from global memory, then A[i][j], then fi-
nally A[i][j][x]. Since the first two loads are not in principle necessary, we
do not include them in the numerator of BWeff . Since that numerator there-
fore underestimates the true number of memory transactions our computed
BWeff will be correspondingly lower.

The extra indirections also result in additional thread latency, since the
thread must stall between the successive loads, and since the large number
of loads may exhaust the SMs memory pipeline. This last effect could in
principle be alleviated by staggering loads to avoid memory dependency,
but this would complicate automatic code generation considerably. Future
improvements will instead focus on making tensors contiguous.

The extra pointers finally result in extra thread-local memory allocations,
increasing the kernel’s per-thread register count. Each streaming multipro-
cessor (SM) in a GPU has physically a single register file that is logically
allocated to threads as needed. Each SM is also theoretically capable of
simultaneously executing a certain number of warps, each consisting of 32
threads, but only if the per-thread register count is small enough that these
warps do not collectively exhuast the register file.

On the M2090, K80, and P100 respectively, this occurs when the per-
thread register count exceeds 21, 64, and 32. The SMs on the K80 and P100
have equally sized register files (of 256kb, compared to 128kb on the M2090),
but the P100 SMs can also potentially execute more warps, resulting in a
lower register threshold for maximum occupancy. If the limit is saturated
by a large threshold, occupancy will significantly decrease, resulting in an
earlier point of saturation with worse asymptotic performance. We never
exceed this threshold on the K80 (Table 2) but it does sometimes become
relevant for operations involving contractions.

39

M2090 K80 P100
Operation Regs % Occ Regs % Occ Regs % Occ

(10) 10 100 10 93.8 12 93.8
(11) 10 100 10 93.8 12 93.8
(12) 10 83.3 10 93.8 12 93.3
(13) 14 100 14 93.8 14 93.8
(14) 18 100 16 93.8 15 93.8
(15) 20 100 21 93.8 18 93.8
(16) 14 100 14 93.8 14 93.8
(17) 18 83.3 16 93.8 16 93.8
(18) 21 83.3 21 93.8 18 93.8
(19) 28 72.9 29 93.8 24 93.8
(20) 38 41.7 42 93.8 32 93.8
(21) 50 41.7 56 93.8 48 62.5
(22) 21 87.5 42 93.8 32 93.8
(6) 34 62.5 32 93.8 32 93.8

Table 2: Per-thread register count (Regs) and theoretical occupancy (% Occ) for bench-
marked TLoops operations on each GPU as measured by the NVIDIA visual profiler. On
the M2090, K80, and P100, register use begins to impair occupancy respectively at counts
exceeding 21, 64, and 32. The GH operation is not profiled here since it does not consist
of a single kernel.

40

Finally, let us turn attention to the GH operation, in the lower right panel
of Figure 3. On the GPU, the transition from linear to constant performance
growth is not nearly so sharp as for the single-expression operations. This
presumably reflects an averaging out between the many saturation points of
the differing expressions within GH. GH also displays (in all cases) noticeably
worse performance compared to its predecessors in this discussion. The GH
operation consists of many succcessive individual kernels, many of which are
complex contractions; thus, the above discussion of contractions applies here
as well. On top of this, the many individual kernel launches add latency to
the GPU execution time.

5.4. Impact of CPU compiler

In Figure 4, we show some benchmarks illustrating the relative perfor-
mance of gcc vs. Intel compilers operating upon our code. Generically, but
not always, gcc gives better performance. The difference is most stark for
the C++11 expression templates of NonAccel, which work over an order of
magnitude faster using gcc throughout. gcc also gets uniformly better per-
formance out of the AccelCPU code, though the difference is less dramatic.
Without TLoops (“SpEC”), the compilers do behave differently, but their rel-
ative performance varies between operations.

5.5. Impact of templating over Tensor-indices

From the perspective of automatic GPU-porting, an alternative approach
to TLoops would be to automatically generate code from SpEC’s existing
spatial-gridpoint expression templates. For example, in Listing 4, one might
automatically generate code only for the interior operation, and not for the
full expression including the for loops over i and j. This would be much
simpler to write, and would require no source code modifications at all.

Chronologically, this approach was the first we tried. TLoops was moti-
vated by its strongly negative performance impact on the SpEC code proper.
The performance decrease accounting for this is illustrated in Figure 5. Here,
we benchmark various expressions using the P100 GPU and the two TLoops

CPU execution pathways. For the lines marked Tensors, TLoops is used to
represent the full expression, as in Listing 2. For those marked Arrays, it
is used only to represent operations over individual Tensor elements, which
therefore are surrounded by explicit for loops in source code, as in Listing
1. While the respective performance of the two strategies is comparable on

41

the CPU, on the GPU TLoops expressions are vastly superior, particularly
at realistic gridsizes between about 1000 and 60000.

Templating over tensor indices is advantageous on the GPU for three
reasons. First, launching a GPU kernel carries an overhead of about 20 µ
s. In the array loop approach this overhead needs to be paid once per every
free and contracted index in the operation. Automatically ported operations
will usually be small, and in practice launch overhead is very often the dom-
inant expense. A TLoops operation, on the other hand, launches only one
kernel. Second, TLoops operations are paralellized over the left-hand side
tensor indices as well as the spatial grid, whereas the array loop approach
can parallelize only over the spatial grid. In principle the array loop ap-
proach could achieve some index-level parallelism via concurrent execution
of GPU kernels. However, the aforementioned launch overhead synchronizes
the device, preventing concurrent execution in practice.

6. Conclusion

We have presented a software package, TLoops, which allows tensor-
algebraic expressions to compile and execute in C++ code. TLoops can
also automatically generate equivalent C++ or CUDA code to these expres-
sions, which can be linked back to a second compilation. We have shown this
automatically generated code to give identical or comparable performance
compared to the code SpEC uses by default, and that the CUDA code often
outperforms the CPU. Even at only moderate gridsizes of a few 1000, the
CUDA code often comes close to the peak (memory-bound) performance of
the GPU.

Significant opportunity remains for improvement. The code at present is
intertwined with the rest of SpEC. We hope to separate it from the latter into
an independent open-source library. Opportunity for performance improve-
ments also exists. In particular, we are working on adopting a contiguous
Tensor class within SpEC. This will allow for simpler, faster automatic code.

We hope the simplifications to coding effort made possible by TLoops

may speed the development of future code, inside and outside of numerical
relativity.

7. Conflicts of Interest

The authors have no conflicts of interest to report.

42

8. Acknowledgments

We thank Nils Deppe and Mark Scheel for helpful discussions. Calcu-
lations were performed with the SpEC-code [1]. We gratefully acknowledge
support from NSERC of Canada, form the Canada Research Chairs Program,
and from the Canadian Institute for Advanced Research. Some calculations
were performed at the SciNet HPC Consortium [10]. SciNet is funded by:
the Canada Foundation for Innovation (CF) under the auspices of Compute
Canada; the Government of Ontario; Ontario Research Fund (ORF) – Re-
search Excellence; and the University of Toronto.

References

[1] http://www.black-holes.org/SpEC.html, .

[2] W. Landry, Implementing a high performance tensor library, http://
www.wlandry.net/Presentations/FTensor.pdf, 2012.

[3] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kron-
bichler, M. Maier, J.-P. Pelteret, B. Turcksin, D. Wells, The deal.II

library, version 8.5, Journal of Numerical Mathematics (2017).

[4] Tensor objects in finite element programming, International Journal for
Numerical Methods in Engineering 41 (1998) 113–126.

[5] J. V. Reynders, III, J. C. Cummings, The pooma framework, Comput.
Phys. 12 (1998) 453–459.

[6] R. Tisdale, Svmt, http://www.netwood.net/~edwin/svmt/, 1999.

[7] T. Veldhuizen, Blitz++, http://www.oonumerics.org/blitz, 1996.

[8] http://www.wlandry.net/Projects/FTensor#Benchmarks, 2012.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: El-
ements of Reusable Object-Oriented Software, Addison-Wesley Pro-
fessional Computing Series, Pearson Education, 1994. URL: https:

//books.google.ca/books?id=6oHuKQe3TjQC.

43

[10] C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig,
T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L. J. Dursi, J. Chong,
S. Northrup, J. Pinto, N. Knecht, R. V. Zon, SciNet: Lessons Learned
from Building a Power-efficient Top-20 System and Data Centre, J.
Phys.: Conf. Ser. 256 (2010) 012026.

44

10-2

10-1

100

101

102

103

B
W

ef
f (

G
B

/s
)

Aijkl=B
m
i Emjkl

M2090

K80

P100

AccelCPU

NonAccel

SpEC

Aijkl=C
n
j B

m
i Emnkl Aijkl=D

o
k C

n
j B

m
i Emnol

102 103 104 105

N

10-2

10-1

100

101

102

103

B
W

ef
f (

G
B

/s
)

Kij

102 103 104 105

N

Christoffel

102 103 104 105

N

GH

Figure 3: TLoops performance benchmarks of contraction (top row) and of practical
numerical relativity operations (bottom). Each panel is formatted in the same way as in
Figure 2. The leftmost and central operations in the bottom panel correspond respectively
to Equations 22 and 6. The rightmost operation, “GH”, shows the performance of the
entire SpEC module that advances the Einstein equations (in their generalized harmonic
formulation) by a timestep.

45

102 103 104 105

N

10-1

100

101

102

B
W

ef
f (

G
B

/s
)

Ai =Bi +Ci

102 103 104 105

N

10-1

100

101

102 Ai =Bi +Ci +Di +Ei

102 103 104 105

N

10-3

10-2

10-1

100

GH

AccelCPU

NonAccel

SpEC

gcc

Intel

Figure 4: TLoops performance of selected operations illustrating the respective perfor-
mance of the CPU code when compiled using gcc (solid lines) vs Intel (dashed) compilers.
The detailed version and compiler arguments are given in Section 5 of the text. Formatting
is otherwise identical to Figures 2 and 3.

46

10-2

10-1

100

101

102

103

B
W

ef
f (

G
B

/s
)

Aij=BiCj Aijk=BiCjDk Aijkl=BiCjDkEl

10-3

10-2

10-1

100

101

102

B
W

ef
f (

G
B

/s
)

Aijkl=B
m
i Emjkl Aijkl=C

n
j B

m
i Emnkl Aijkl=D

o
k C

n
j B

m
i Emnol

102 103 104 105

N

10-3

10-2

10-1

100

101

102

103

B
W

ef
f (

G
B

/s
)

tgij

P100

AccelCPU

NonAccel

Tensors

Arrays

102 103 104 105

N

Christoffel

102 103 104 105

N

GH

Figure 5: TLoops performance of selected operations showing the performance advantage
attained by templating over entire tensors (solid lines, “Tensors” in the legend) rather
than individual component arrays (dashed lines, “Arrays”). These plots are otherwise
formatted in the same way as in Figures 2 and 3. To avoid visual confusion we display
results from only one GPU (the P100), but the qualitative behaviour is the same for each.

47

