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Solving Einstein’s equations precisely for strong-field gravitational systems is essential to deter-
mining the full physics content of gravitational wave detections. Without these solutions it is not
possible to extract precise values for initial and final-state system parameters. Obtaining these
solutions requires extensive numerical simulations, as Einstein’s equations governing these systems
are much too difficult to solve analytically. These difficulties arise principally from the curved,
non-linear nature of spacetime in general relativity. Developing the numerical capabilities needed
to produce reliable, efficient calculations has required a Herculean 50-year effort involving hundreds
of researchers using sophisticated physical insight, algorithm development, computational technique
and computers that are a billion times more capable than they were in 1964 when computations
were first attempted. My purpose is to give an accessible overview for non-experts of the major
developments that have made such dramatic progress possible.

I. OVERVIEW OF A BLACK-HOLE
BLACK-HOLE COALESCENCE

On September 14, 2015, at 09:50:45 UTC the
two detectors of the advanced Laser Interferometer
Gravitational-Wave Observatory (aLIGO)1 simultane-
ously observed2 the binary black hole merger known as
GW150914. The binary pair merged at a luminosity dis-
tance of 410+160

−180 Mpc. Analysis revealed3 that the two
BH masses involved in the coalescence were, in the source
frame, 35.8+5.3

−3.9 and 29.1+3.8
−4.3 M�, while the mass of the

final-state BH was 62.0+4.1
−3.7 M�. The difference in mass

between the initial and final state, 3.0+0.5
−0.4 M�, was ra-

diated away as gravitational radiation. No associated
electromagnetic radiation or other cosmic rays were ob-
served. Astonishingly, the coalescence and ringdown to a
final stable BH took less than 0.2 second (within LIGO’s
frequency band), coming after an orbital dance lasting
billions of years. This observation, coming 100 years af-
ter Einstein’s publication of general relativity, is yet an-
other confirmation of its validity. It also is the first direct
confirmation that BHs can come in pairs.

Figure 1 is a comparison of the observed strains at the
Hanford and Livingston LIGO sites after shifting and in-
verting the Hanford data to account for the difference in
arrival time and the relative orientation of the detectors.
The event was identified nearly in real time using detec-
tion techniques that made minimal assumptions4 about
the nature of the incoming wave. Subsequent analysis
used matched-filter techniques5 to establish the statisti-
cal significance of the observation. Detailed statistical
analyses using Bayesian methods were used to estimate
the parameters of the coalescing BH–BH system.3

Long before coalescence occurs, the two orbiting BHs
can be represented as point masses co-rotating in an orbit
of very large size. This “inspiral” is indicated on the
left side of Fig. 2. As the inspiral progresses, the orbit
becomes circularized due to energy loss. The spacetime
is basically flat except near each BH. Even so, Newtonian
physics cannot accurately describe what is happening.

FIG. 1. GW strains within a 35–350 Hz passband measured
at the Hanford and Livingston LIGO observatories during
the detection of GW150914. Time is measured relative to
09:50:45 UTC. The event arrived 6.9+0.5

−0.4 ms later at Hanford
than at Livingston (see text). (From Ref. 2)

Instead, “Post-Newtonian” (PN)6 and “Effective One-
Body” (EOB)7 methods must be employed.

As the BH’s near each other (center, Fig. 2), space-
time begins to warp significantly and the BH horizons are
distorted. The EOB approach provides a good descrip-
tion (better than one might expect) until the beginning
of coalescence, when the spacetime becomes significantly
curved and highly non-linear. In fact, the inspiraling
waveform depends strongly on several aspects of the BH–
BH interaction, e.g. their masses, spins, polarizations and
orbit eccentricity. This dependence plays a key role in
the extraction of those parameters, but requires fits to
numerical relativity simulations to reproduce the correct
result as the binary system approaches merger. Recently,
parameter estimation methods have directly used numer-
ical relativity simulations8–10 to do this.

Soon after the BH’s reach their “innermost stable cir-
cular orbit” (ISCO) they “plunge” together, coalescing
into a single highly vibrating, spinning (Kerr)11 BH. Nu-
merical relativity is needed to describe this. The final BH
rings down via the emission of gravitational radiation to
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FIG. 2. Top: A schematic drawing of the inspiral, plunge,
merger and ringdown of two coalescing BHs (see text). Bot-
tom: Comparison of a best-fit template of the measured strain
data to the predicted unfiltered theoretical waveform, calcu-
lated using the extracted physical parameters. (From Ref. 2)

a stable, spinning, non-radiating BH. The ringdown can
be described using a perturbative quasi-normal modes
model.12 An overview of the basic physics of the entire
BH–BH merger is available in Ref. 13.

II. EINSTEIN’S EQUATIONS

Einstein’s equations,14,15 written in final form in
November, 1915, are expressed in terms of the four gen-
eralized coordinates of spacetime, which is represented
as a geometrical Riemann manifold 16 M that extends
to infinity in all directions.17 Three of the coordinates
(labeled 1-3) are spatial and one (labeled 0) represents
time. At this stage, they are not represented by a specific
coordinate system. The manifold shape is determined by
the real 4-by-4 metric tensor gµν , which in Einstein’s the-
ory is determined by the mass densities and energy fluxes
present at every point in spacetime. These relationships
are summarized by Einstein’s equations written in tensor
form:18,19

Gµν := Rµν −
1

2
gµνR = 8πTµν (1)

The quantity Gµν , Einstein’s tensor,20 is defined in terms
of the metric tensor gµν , the Ricci curvature tensor21

Rµν and the Ricci scalar22 R. The energy-momentum, or
stress-energy, tensor is represented by Tµν .

A remarkable feature of Einstein’s equations is that the
geometry of spacetime appears only on the left-hand side,
imbedded in Gµν , while the physical momentum-energy

content appears only on the right, imbedded in Tµν .
Thus, as John Wheeler memorably remarked: “Matter
tells spacetime how to curve, and spacetime tells matter
how to move.”

The metric tensor gµν plays the same role in gen-
eral relativity as it does in special relativity. In each
case it provides the link between the generalized coordi-
nates xµ and the invariant spacetime interval ds: ds2 =
gµνdx

µdxν , summing as usual over repeated indices. In
special relativity it defines a flat (Minkowski)23 space.
In general relativity it defines the curved (Riemannian)16

manifoldM. The curvature, due to gravitational sources,
enters via the Ricci tensor Rµν and the Ricci scalar R.
Thus in both special and general relativity, the metric
tensor elements determine all the physical observables
we can calculate.

The subscripts (µ, ν) range over the integers 0 to 3,
implying the need to solve a system of 16 coupled equa-
tions. However, the symmetries of the metric limit the
actual number to 10. The simple appearance of Ein-
stein’s equations in tensor notation masks a very great
deal of complexity. When written out in full they can
contain thousands of terms. These will have significant
non-linearities due to the spacetime curvature that oc-
curs when the gravitational fields are very strong.

III. SOLVING EINSTEIN’S EQUATIONS

Due to the complexities mentioned above, there are
very few analytical solutions of Einstein’s equations of
physical relevance. The ones we know of arise in situ-
ations involving a high degree of symmetry. Most im-
portant for the present discussion are the Schwarzschild
solution24 (for a spherically-symmetric mass M with spin
0) and the Kerr solution11 (for a spherically-symmetric
mass M with spin J). Exact solutions that include a
charge Q on the BH (an unlikely prospect) have also been
found but will not be discussed here.

Schwarzschild’s 1916 discovery led to one of the most
important predictions of general relativity: the existence
of BH’s. A valuable simplification comes in the form
of the “no-hair” conjecture,25 which states that in four
dimensions the BH solutions to Einstein’s equations can
only depend on the mass, spin and charge of the BH.

Einstein predicted the existence of gravitational
waves26–28 moving at the speed of light29 in 1916. Rea-
soning by analogy to electromagnetism (i.e. accelerating
masses should radiate gravitational waves as accelerating
charges radiate electromagnetic ones),30 he found them
by linearizing Einstein equations for the case of nearly flat
spacetime (i.e. weak gravitation). For many years there
was considerable uncertainty as to their existence, even
from Einstein himself, but the issue was put to rest31 in
the mid-1950’s. Gravitational waves exist in the strong
field case also, but the equations describing them are not
linear. It is those equations we must solve numerically
in order to observe and quantify the nature of BH–BH,
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BH–Neutron Star (NS) or NS–NS coalescences.
As if BHs and gravitational waves were not enough,

Einstein’s equations also predict that the structure of the
Universe is not static: as time goes on, it will either ex-
pand or contract. Since there was no evidence in 1916 for
either of these prospects, Einstein introduced a “cosmo-
logical constant” to force his equations to predict a static
Universe. When the expansion of the Universe32 was es-
tablished in 1926, he later called this decision “my great-
est blunder.” Ironically, with the discovery33 in 1998 that
the Universe is accelerating as it expands, the cosmologi-
cal constant plays an important role in accounting for (if
not understanding) the cosmic acceleration.

IV. NUMERICAL RELATIVITY AND BH–BH
COALESCENCE34–38

It is worth pointing out that even though these cal-
culations are prodigiously difficult, the BH–BH system is
very likely the simplest strongly–interacting gravitational
problem we will ever encounter. If the study of strong-
field general relativity is to have a future, it is imperative
to solve it.

The long road to stable, convergent numerical solutions
began in 1952, when Yvonne Fourès-Brouhat39 showed
that Einstein’s equations were well-posed. Simply put,
this means: (1) that solutions of the equations exist; and
(2) that small changes to initial conditions produce only
stable, continuous (i.e. non-chaotic) changes in the out-
put. Given the difficulty of Einstein’s equations, these
seemingly reasonable expectations are far from obvious.

A. The ADM Procedure

During the next several decades, many substantial
difficulties40 had to be overcome to obtain stable, ac-
curate solutions. The first was to recast Einstein’s equa-
tions in the form of a computable, time-step iteration
process (i.e. an initial value problem) that would evolve
from initial conditions (i.e. an initial spacetime), through
BH–BH coalescence, to the boundary conditions for the
final state. In the world of partial differential equations
(PDE’s) this is called a Cauchy problem. In general rel-
ativity, this recipe is referred to as a “3+1” approach
because space and time are separated. This formulation
comes at a price: giving up overall covariance. It was
first proposed by Arnowitt, Deser and Misner41 (ADM)
in 1962.

In 1979, York rewrote42 the original ADM prescription
to emphasize its role in evolving the Einstein equations43

rather than as a basis for a theory of quantum gravity
(the original intent of the ADM work). His treatment
is now ubiquitously referred to as the “ADM” prescrip-
tion. It has spawned many close cousins, all of which are
referred to as “3+1” algorithms (see Sec. IV B).

The basic ADM idea is to decompose the spacetime by
creating a stack of 3-dimensional, spacelike “foliations”,

or slices, each characterized by a fixed coordinate time
(see Fig. 3). These we label Σt. The system evolves by
moving with time from one foliation to the next. The
invariant spacetime interval, formerly written as ds2 =
gµνdx

µdxν , becomes in the “3+1” description:

ds2 = (−α2 + βiβi)dt
2 + 2βidtdxi + γijdx

idxj (2)

Here the γij are the 3-dimensional metric tensors for
these surfaces. The indices i and j run from 1 to 3.
Note that time appears explicitly. The quantity α (the

lapse) and the three βi (the shift vector ~β) are gauge vari-
ables44 that may be freely specified but must be chosen
with care. The lapse determines the rate at which one
progresses perpendicularly from one slice to the next; it
can be varied as the problem evolves. A lot of thought
goes into choosing α because it determines the distance
between the foliations; good choices avoid singularities.
The shift vector basically measures how much the spatial
coordinates change between foliations.

Because the foliations Σt are embedded in the overall
spacetime manifoldM, they are characterized by the real
Extrinsic Curvature Tensor Kij that describes the nature
of the embedding:45

Kij =
1

2α
(∂tγij −Diβj −Djβi) (3)

Here the symbol ∂t is an ordinary partial derivative with
respect to time, and Di is a spatial covariant derivative.

Evolving Einstein’s equations using a “3+1” method
requires that initial values of gµν and Kij , 12 numbers in
all, must be fixed. But they cannot be chosen arbitrarily
because of the constraints discussed in the next Section.

FIG. 3. A schematic 3+1 ADM decomposition. Σt1 and Σt2

are spacelike 3-dimensional foliations separated by coordinate
time t2 − t1. The quantity αdt, with α the lapse, is the time
step between Σt2 and Σt1. The shift βi measures the change
in coordinate xi in moving from the earlier foliation.

Despite the promise of the ADM method, evolving a
BH–BH system through coalescence remained elusive.
The reason was that its equations are only weakly hy-
perbolic (see Sec. IV B and Ref. 46) and so are ill-posed.
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B. ADM Evolution and Constraints

As mentioned in Sec. II, the symmetries of the metric
tensor reduce Einstein’s set of 16 equations for the gµν
to 10 coupled, non-linear PDE’s.

Evolution equations. Of the 10, six contain space
and time derivatives up to second order. These equa-
tions provide the evolution of the initial spacetime. They
contain mixtures of hyperbolic and parabolic (i.e. time-
dependent) behavior. Hyperbolic equations are basically
wave equations that describe wave propagation at finite
speed. Solutions to wave equations are generally very
stable and converge rapidly. Real parabolic equations
(e.g. the heat equation) do not exhibit wave-like behav-
ior. On the other hand, a parabolic equation with an
imaginary component (e.g. the Schrödinger equation),
exhibits both a wave speed and dispersion.47

Constraint equations. The remaining four equa-
tions have no time derivatives and serve as constraints
on the time development. They are elliptic (i.e. time-
independent) equations. These are often used to describe
time-independent boundary-value problems. Because of
the non-linearity of strong-field general relativity, they
are harder than usual to solve numerically.

In theory, once the constraints are satisfied initially
they should remain so. But for numerical solutions that
is often not the case, especially when significant non-
linearities are present. Small numerical errors can expo-
nentially grow. Keeping the constraints satisfied at all
times has proven essential to reaching stable, convergent
solutions of the BH–BH coalescence problem.

An instructive parallel appears with Maxwell’s equa-
tions. There, the laws of Ampère and Faraday, both con-
taining time derivatives of the electric and magnetic fields
E and B, are the evolution equations, while Gauss’s Laws
for E and B serve as constraints. Since these equations
are linear the constraints are usually well-behaved. When
they aren’t, the results are not solutions to Maxwell’s
equations. The analogue is true in numerical relativity.

For most rapid convergence the evolution equations
should be as wave-like (hyperbolic) as possible. Gauge
freedom is useful for this purpose, keeping in mind that
poor gauge choices can adversely affect well-posedness.
The constraint equations have proven very useful here.
Since they can always be written in the form C(x, y, z) =
0 (e.g. ∇ ·E – 4πρ = 0), one can add them (or multiples
of them) to the evolution equations wherever that might
be useful. Picking coordinates (a gauge choice) is also
crucially important.

There are many other ways48,49 to use gauge free-
dom to control problems arising from convergence issues,
physical or coordinate singularities, numerical round-off
error, and issues associated with boundary problems at
BH horizons (among others). Perhaps the most impor-
tant lesson in the development of numerical relativity is
that gauge choices (including the choice of coordinates50)
are every bit as important as computing power.

Especially important is the 1987 work of Nakamura,

Oohara and Kajima, which presented51 a version of ADM
that showed much better stability. Later, Shibata and
Nakamura52 (1995) and Baumgarte and Shapiro53 (1998)
confirmed and extended those results. These efforts are
commonly known as the BSSNOK approach.54 It was es-
sential to achieving full 3-dimensional simulations of BH–
BH coalescences and is in wide use today. It confirms the
importance of selecting carefully the best formulation of
Einstein’s equations for the problem at hand.

C. Harmonic Coordinates and Constraint Damping

Beginning with Einstein, harmonic coordinates have
played a major role in general relativity.55 As noted in
Sec. IV, they were used by Fourès-Brouhat39 to show the
well-posedness of Einstein’s vacuum equations. Today,
in a generalized form,55,56 they are important in solv-
ing numerically the BBH coalescence problem.57 They
work well because they convert Einstein’s equations
into second-order strongly hyperbolic form. The ADM
formulation, with redefinitions of the lapse and shift,
can accommodate them as well. The same cautions
about constraint damping apply. We refer to this over-
all approach,57 Generalized Harmonics with Constraint
Damping, as GHCD.

D. Initial Conditions

In the BSSNOK approach, the initial data consist of
values for the γij metric and the extrinsic curvature ma-
trix Kij . These depend on the initial parameters of
the BH’s or NS’s, and on the gauge variables α and
~β. As mentioned earlier, these cannot all be chosen in-
dependently because of the constraint equations, which
in addition are hard to solve numerically. This difficult
problem has been studied extensively.58–61 In the GCHD
treatment, initial values for the four spacetime coordi-
nates and their first derivatives are specified. In both
approaches the initial constraints are imposed and then
enforced throughout the calculation.

E. Excisions and Moving Punctures

We are dealing with simple Schwarzschild or Kerr BHs
having event horizons behind which the singularites are
hidden from view (an idea known as cosmic censor-
ship62). It led William Unruh63 to suggest in 1984 that
BH singularities could be excised from the calculation
so that their influence is never felt outside the horizon.
Thus information can flow into, but not out of, a BH.
Fig. 4 shows the imminent coalescence of two non-equal
BH’s viewed from this perspective. Note the numerical
boundary just below the BH horizon.

However, excision comes at the expense of very de-
manding boundary conditions. The BH horizons are con-
tinuously moving and spurious numerical artifacts can
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arise (including the unphysical emission of gravitational
radiation), making fine-tuning the calculation and en-
forcement of the constraints a continuous necessity.

FIG. 4. A body-shaped, two-center coordinate system for
unequal mass BHs. “H” labels a BH horizon while “NB” is its
numerical boundary. No mesh is needed beneath that surface.
“CAH” is the common apparent horizon. At far distances the
coordinate lines are close to spherically symmetric. (From M.
Scheel, used with permission)

Another approach is to view BHs as Einstein-Rosen
bridges64 (See Fig. 5). This was done first by Hahn and
Lindquist65 in their seminal 1964 calculations of BH–BH
coalescence that founded numerical relativity.66 The sin-
gularity lies on the wormhole axis perpendicular to the
spacetimes that are above and below. Note that the co-
ordinate lines can approach the singularity but cannot
reach it. In further developments the wormholes were
compactified into punctures in the spacetime manifold,
and then finally into moving punctures67,68 and trum-
pets69,70 that could be identified71 as moving BHs. The
calculations are done so that the grid points avoid punc-
ture singularities. Allowing the punctures to move was
the key step in making this method work.

FIG. 5. Wormhole(left) and trumpet (right) representation
of a BH. (From Refs. 69 and 70).

F. Meshes, Coordinates, Numerical Integration

The spatial extension of a BH–BH coalescence is huge.
At the beginning, the BHs are widely separated and
spacetime is essentially flat except near the BH horizons.
Post-Newtonian physics holds sway. Just before coales-
cence, the BH’s are only tens to hundreds of kilometers

apart, spacetime is highly curved and general relativity is
dominant. Clearly, solving this problem involves wildly
different length scales as it moves toward coalescence,
with corresponding changes required in the numerical
meshes. Adaptive Mesh Refinement schemes72 have been
developed to handle this issue.

The same consideration applies to the choice of coordi-
nate system. For a BH–BH system, it is natural to choose
one that has two spherical-polar centers in close, evolving
into nearly spherical symmetry far away (see Fig. 4). In
addition, much better numerical accuracy in satisfying
the boundary conditions at the BH horizons will result if
the coordinate lines are perpendicular to the BH horizon
surface. We must also account for the motion of the BHs
and the distortion of their horizons as the coalescence
evolves. As Fig. 4 shows, this can lead to great numerical
complexity and the clear need to use curvilinear coordi-
nates and non-rectangular mesh schemes.

The numerical integration procedures in most common
use are finite difference (FD)73 or spectral interpolation
(Spec)74–76 methods. Both have long, well-known histo-
ries. FD methods yield approximate solutions to PDEs
at specific points on the mesh. Spectral methods utilize
smooth functions fitted to several mesh points that can
provide highly accurate values at any location.

G. Numerical calculations of BH–BH coalescence

The pioneering Hahn–Lindquist computation treated
two equal-mass BHs that were represented by a manifold
containing co-joined wormholes described by Einstein–
Rosen bridges. A dozen years later, Smarr and
collaborators77 used a similar model to study the head-on
collision of non-rotating BH’s with emission of gravita-
tional radiation.

While neither of these calculations converged to a fi-
nite result, at the time there appeared to be no funda-
mental obstacle to achieving realistic results once enough
computational power could be brought to bear. The sta-
bility issues mentioned in Sec. IV B, especially regarding
hyperbolicity, maintaining constraints, and how best to
handle the physical BH singularities were not yet fully ap-
preciated. Dealing with these issues awaited the arrival
of BSSNOK (ca. 1998), GCHD (2005) and the “moving
punctures” (2005) algorithms.

In 2005, great breakthroughs were achieved by
Pretorius57 and the Brownsville67 and Goddard68

groups. Working independently and using quite differ-
ent methods, they performed stable, accurate simula-
tions of BH–BH coalescence that agreed very well with
each other. 78 Fig. 6 compares their calculated polariza-
tions for a head-on collision of equal-mass BHs result-
ing in the formation of a Kerr BH. Pretorius57 used the
GHCD formulation and BH excision. The Brownsville67

and Goddard68 groups used the BSSNOK formulation
with the BHs represented by moving punctures. These
early calculations all employed FD integration methods.

It’s not possible to overstate the importance of these
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results. With reliable, highly accurate numerical meth-
ods in hand, not only is the full scientific content of the
gravity-wave detections revealed, but more realistic cal-
culations are possible (e.g. including unequal BH masses,
spin effects and eccentric orbits). Detailed calculations
of more complicated gravitational systems, such as NS
binaries79 or NS–BH systems, as well as detailed tests of
strong-field general relativity,80 have begun. Many codes
are available; most use a BSSNOK+FD framework, the
others a GHCD+Spec treatment.81

FIG. 6. Comparison of calculations from Pretorius57 (red),
Campanelli et al.67 (blue) and Centrella et al.68 (black). The
abscissa shows time (in units of the final BH mass) and the
ordinate is the + polarization of the outgoing gravitational
radiation. (From Ref. 78)

H. Inspiral – Merger – Ringdown (IMR) models

To identify possible BH–BH mergers and obtain es-
timates of their physical parameters, the data analyses
use “template banks” of strain waveforms that can be
matched in real time with incoming strain data.

However, assembling a template bank is a major chal-
lenge. Because templates can depend on as many as 17
parameters, thousands to millions of them are needed.
Since each fully-NR calculation takes weeks to months
to do, this is a totally impractical goal. Existing fully
relativistic waveform catalogs82 contain at most a few
thousand templates.

Instead, since most of the strain waveform (inspi-
ral to just before merger and the ringdown afterwards)
can be accurately modeled using highly efficient post-
Newtonian,6 EOB7 and quasi-normal mode12 methods
(i.e. without the numerical relativity portion), we can
normalize the EOB or PN parts against existing numeri-
cal relativity catalogs to obtain a robust, highly efficient
surrogate for the full calculation. These approaches83–85

are called IMR models and are in wide use. For parame-
ter extraction this works very well because many of them
(e.g. BH spins, polarizations and orbit eccentricity) are
largely determined by the inspiral part of the waveform,
before numerical relativity is necessary. This would not
be true for tests of strong-field general relativity.

I. You can try this at home

Should you wish to do calculations on your own, there
are very helpful resources available: consult the Simulat-
ing Extreme Spacetimes (SXS),86 Einstein Toolkit87 and
Super Efficient Numerical Relativity (SENR)76,88 web-
sites for more information. Refs. 35–37 also offer numeri-
cal examples. The LIGO Open Science Center89 provides
data from gravitational-wave observations along with ac-
cess to tutorials and software tools. You can also par-
ticipate in the LIGO search for gravitational waves by
signing up with Einstein@Home.90

V. FINAL COMMENT

GW150914 was a supernova in the history of physics
and cosmology. It, and the LIGO/VIRGO discover-
ies since then, have amazed even the most optimistic
among us. GW170817, the first-ever sighting of a NS–NS
merger and its subsequent electromagnetic counterparts,
has provided a remarkable glimpse of the power of multi-
messenger astronomy. The last three years have revealed
just how much the “gravitational Universe” has to teach
us now that we can see it.

It has taken 100 years to reach this point. Because of
the genius of Albert Einstein, who saw that the geometry
of the Universe was more subtle than realized by Isaac
Newton, and the incredible ingenuity of the engineers
and scientists of the gravitational science community, we
can now use gravitational waves as a tool to decode the
Universe. But without the generosity and patience of our
fellow citizen-scientists the world over, these discoveries
would not have been possible.
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