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Abstract

We study three computer algebra systems, namely SageMath (with SageManfolds package), Max-
ima (with ctensor package) and Python language (with GraviPy module), which allow tensor
manipulation for general relativity calculations. We present simple examples and give a bench-
mark of these systems. After the general analysis, we focus on the SageMath+SageManifolds
system to analyze and visualize the solutions of the massless Klein–Gordon equation and geodesic
motion with Hamilton–Jacobi formalism.

1 Introduction

Computer algebra systems are essential tools for theoretical physics for some decades. They are mainly
important in general relativity (GR) where lengthy tensorial and differential geometry calculations are
inevitable. Many of these programs have special internal or external packages for tensor manipulation
and differential geometry calculations. For comprehensive reviews, see [1,2]. The review of early works
can be found in [3]. These packages can also be extended for more specialized calculations [4].

Even though commercial programs dominate the area, codes written on commercial programs cannot
be distributed easily since those programs may not be available for scientists with lack of resources for
purchasing such software. Besides, many of the manipulations treated in calculations do not need a
sophisticated computation engine.

Open source computer algebra systems such as SageMath (also known as “Sage”) [5] and Maxima [6]
provide a complete toolkit for general relativity and quantum field theory applications with their
particular packages. Some freely available programming languages such as Python [7] also offer special
tools for abovementioned manipulations.

We choose to study general systems rather than specialized tensor manipulation or general relativity
packages (e.g. Cadabra [8], Redberry [9], etc.). The reason for this choice is that tensor manipulation
is generally an auxiliary step in GR calculations. A general program which can deal with symbolic
and numerical analysis of the results constitute a complete calculation toolkit. In most cases, com-
puter algebra systems (or programming languages) are supported with particular packages for tensor
manipulation. We also exclude specialized tools like GYOTO [10] in our analysis.

In this work, we will employ SageMath (with SageManifolds package [11]), Maxima (with ctensor pack-
age [12]), and Python language (with Sympy and GraviPy modules [13]) for some essential calculations
in general relativity and present benchmark results for these systems.

∗E-mail address: birkandant@itu.edu.tr
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The ever-developing open source SageMath program has gathered many utilities such as Maxima,
GAP, R, and the power of Python language with well-known Python modules like NumPy, SymPy
and matplotlib. SageMath can be installed on personal computers and moreover it has a powerful
cloud computing server on which the user can work on projects anywhere and share them with other
users easily [5]. The recent package SageManifolds for tensor and differential geometry calculations
is also installed on the cloud server. These properties make the Sage+SageManifolds system the best
open source choice for general relativity and quantum field theory.

Analysis of the Klein–Gordon equation, mainly its radial part is the first step in most quantum gravity
problems involving black holes [14]. We will study its solution using SageMath.

Computationally, it is easier to define and solve the first order differential equations rather than the
second order equations. Hamilton–Jacobi formalism yields first order differential equations for the
geodesic motion [15]. We will use this formalism to derive the equations and solve them as a numerical
initial value problem with SageMath routines. Numerical results need to be presented in a graphical
way to see their structure efficiently. SageMath system is equipped with comprehensive visualization
tools and we will use these tools to present our results.

In the next section, we define the spacetimes to be used. In the third section we review three compu-
tation systems and give simple examples. We also give a benchmark of these systems as a subsection.
In the fourth section we focus on the SageMath+SageManifolds system to analyze the massless Klein–
Gordon equation and geodesic motion.

2 Schwarzschild and Kerr solutions

We will be working for Schwarzschild and Kerr spacetimes. In general, a line element is defined by

ds2 = gµνdx
µdxν . (1)

If one takes G4 = c = 1 (where G4 is Newton’s gravitational constant in four dimensions and c is the
speed of light in vacuum), the Schwarzschild metric can be written as [15]

gµν =


(

1− 2M
r

)
0 0 0

0 −
(

1− 2M
r

)−1

0 0

0 0 −r2 0
0 0 0 −r2sin2θ

 . (2)

We will take the order of coordinates as {t, r, θ, φ} and M is the mass of the black hole. The coefficient
of the radial part is singular at r = 2M which describes the “event horizon”.

The Kerr black hole has the metric [15]

gµν =


(

1− 2M
ρ2

)
0 0 2aMrsin2θ

ρ2

0 −ρ
2

∆ 0 0
0 0 −ρ2 0

2aMrsin2θ
ρ2 0 0 −sin2θ

[
(r2 + a2) + 2a2Mrsin2θ

ρ2

]
 . (3)

Here, M is the mass and a = J/M where J is the angular momentum. Two functions are defined as

ρ2 = r2 + a2cos2θ, (4)

∆ = r2 − 2Mr + a2. (5)

The roots of ∆ = 0 correspond to the locations of the Cauchy horizon (the smaller root) and the event
horizon (the larger root) of the black hole.
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3 Open source computer algebra systems for basic GR

We will only focus on the procedures of

• Defining a spacetime

• Calculating Christoffel symbols (Γµνρ)

• Calculating Ricci tensor (Rµν)

• Calculating Einstein tensor (Gµν)

• Displaying components

in our examples. The examples will be studied using three computation systems, namely

• SageMath+SageManifolds

• Maxima+ctensor

• Python+GraviPy

The codes are enhanced with comment lines which can be helpful for analyzing the procedures step
by step. Details on the procedures and further examples can be found in related references.

3.1 SageMath+SageManifolds

SageMath is an open source computer algebra system which collects many powerful open source pack-
ages and modules with a Python-like language [5]. SageManifolds was first started as an independent
tensor analysis and differential geometry package to be installed on SageMath [11]. Now, SageManifolds
is an internal package for SageMath and does not require an additional installation.

We start our program by reseting the SageMath environment. Then we define the four-dimensional
manifold, the black hole mass and the coordinates. The coordinates are defined along with their
ranges. We define the Lorentzian metric by giving its components as a matrix. Finally, we calculate
and display Christoffel symbols, Ricci tensor and Einstein tensor elements.� �

1 reset();

2 # Define 4-dim. the manifold "Man":

3 Man = Manifold(4, 'Man ', r'\ mathcal{M}');
4

5 # Define the parameter "M" (mass):

6 M = var('M');
7

8 # Define the coordinates {t=0, r=1, theta(=th)=2, phi=3} with ranges

9 # (BL = Boyer -Lidquist)

10 BL.<t,r,th,ph> = Man.chart(r't r:(0,+oo) th:(0,pi):\ theta ph:(0,2*pi):\phi ');
11

12 # Define the metric "g" on manifold "Man":

13 g = Man.lorentzian_metric('g');
14

15 # Enter the Schwarzschild metric components:

16 g[0,0] = (1-(2*M)/r);

17 g[1,1] = -1/(1-(2*M)/r);

18 g[2,2] = -r^2;

19 g[3,3] = -(r*sin(th))^2;

20

21 # Display the metric
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22 show('The Schwarzschild metric:');
23 show(g.display ());

24 #####################

25 # Christoffel symbols

26 nab = g.connection ()

27 # Display all components

28 show(nab.display ())

29 # Display a single component

30 show(nab[1,1,1])

31 #####################

32 # Ricci tensor

33 Ric = g.ricci();

34 # Display all components

35 show(Ric.display ())

36 # Display a single component

37 show(Ric [1 ,1])

38 #####################

39 # Einstein tensor

40 ET=g.ricci () -(1/2)*g*g.ricci_scalar ()

41 # Display all components

42 ET.set_name('E')
43 show(ET.display ())

44 # Display a single component

45 show(ET[1 ,2])� �
The lines between 16-19 defines the Schwarzschild metric. In order to define the Kerr metric, we need
to change this part with� �

16 a = var('a');
17 rhosq=r^2+(a^2)*cos(th)^2;

18 Delta=r^2-2*M*r+a^2;

19

20 g[0,0] = (1-(2*M*r)/rhosq);

21 g[1,1] = -rhosq/Delta;

22 g[2,2] = -rhosq;

23 g[3,3] = -(sin(th)^2)*((r^2+a^2) +(2*(a^2)*M*r*sin(th)^2)/rhosq);

24 g[0,3] = (2*a*M*r*sin(th)^2)/rhosq;� �
It should be noted that, we defined the functions ρ2 and ∆, and the rotation parameter a. The Kerr
black hole has non-diagonal, symmetric components unlike the Schwarzschild metric which is diagonal.

3.2 Maxima+ctensor

Maxima computer algebra system is the new and freely available version of Macsyma [6]. Macsyma is
known as the first general, multipurpose computer algebra system which inspired many other systems
for years. V. Toth reviews tensor packages in Maxima in his article [12]. Here, we will use the ctensor
package which provides component tensor manipulation.

We first kill all environmental variables, then load the ctensor package. We set ratwtlvl:false for
no truncation and ratfac:true to factorize the tensor components automatically. We then define
the dimension of the spacetime and the coordinates. We enter the metric as a matrix. Before the
calculation of Christoffel symbols, Ricci tensor and Einstein tensor elements, we find the inverse tensor
with invert.� �

1 kill(all);

2 if get('ctensor ,'version)=false then load(ctensor);

3 (ratwtlvl:false ,ratfac:true);
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4 (" Specify the dimension of the manifold and the coordinate labels .")$
5 (dim:4, ct_coords :[t,r,theta ,phi]);

6 ("Enter the metric .")$
7 lg:matrix ([(1 -2*M/r) ,0,0,0],[0,-1/(1-2*M/r) ,0,0],[0,0,-r^2,0],[0,0,0,-(r^2)*

sin(theta)^2]);

8 ug:invert(lg)$
9 (" Compute the Christoffel symbols and display all components ")$

10 christof(mcs)$
11 (" Compute the Ricci tensor and display all components ")$
12 uricci(true)

13 (" Compute the Einstein tensor and display all components ")$
14 einstein(true);

15 (" Display single components ")$
16 mcs[1,1,2];

17 ric[1,2];

18 ein[2,2];� �
The lines 6-7 should be changed as� �

6 rhosq:r^2+(a^2)*cos(theta)^2$
7 Delta:r^2-2*M*r+a^2$
8 ("Enter the general static spherically symmetric metric .")$
9 lg:matrix ([(1 -(2*M*r)/rhosq) ,0,0,(2*a*M*r*sin(theta)^2)/rhosq],[0,-rhosq/Delta

,0,0],[0,0,-rhosq ,0] ,[(2*a*M*r*sin(theta)^2)/rhosq ,0,0,-(sin(theta)^2) *((r

^2+a^2) +(2*(a^2)*M*r*sin(theta)^2)/rhosq)]);� �
for the Kerr metric.

3.3 Python+GraviPy

Python is a multipurpose, object-oriented programming language [7] which can easily be expanded
with modules. The module GraviPy provides tensor calculation methods and it works on a freely
available symbolic analysis module SymPy [13].

We start our program by importing the GraviPy module. Then we define the four–vector of coordinates
and the black hole mass. We define the metric as a diagonal matrix. We then calculate and display
Christoffel symbols, Ricci tensor and Einstein tensor elements.� �

1 from gravipy import *

2 #####################

3 # Coordinates (\chi is the four -vector of coordinates)

4 t, r, theta , phi , M = symbols('t, r, theta , phi , M')
5 x = Coordinates ('\chi ', [t, r, theta , phi])

6 #####################

7 # Metric tensor

8 Metric = diag ((1 -2*M/r), -1/(1-2*M/r), -r**2, -r**2* sin(theta)**2)

9 g = MetricTensor('g', x, Metric)

10 #####################

11 # Christoffel symbols

12 Ga = Christoffel('Ga ', g)

13 # Display all components

14 print(Ga(All , All , All))

15 # Display a single component

16 print(Ga(1,2,1))

17 #####################

18 # Ricci tensor

19 Ri = Ricci('Ri ', g)

20 # Display all components
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21 print(Ri(All , All))

22 # Display a single component

23 print(Ri(1, 2))

24 #####################

25 # Einstein tensor

26 G = Einstein('G', Ri)

27 # Display all components

28 print(G(All , All))

29 # Display a single component

30 print(G(3, 3))

31 #####################� �
The lines 2-8 should be modified as� �

2 #####################

3 # Coordinates (\chi is the four -vector of coordinates)

4 t, r, theta , phi , M, a, rhosq , Delta = symbols('t, r, theta , phi , M, a, rhosq ,

Delta ')
5 x = Coordinates ('\chi ', [t, r, theta , phi])

6 #####################

7 # Metric tensor

8 rhosq = r**2+(a**2)*cos(theta)**2

9 Delta = r**2-2*M*r+a**2

10 Metric = Matrix ([[(1 -(2*M*r)/rhosq) ,0,0,(2*a*M*r*sin(theta)**2)/rhosq],[0,-

rhosq/Delta ,0,0],[0,0,-rhosq ,0] ,[(2*a*M*r*sin(theta)**2)/rhosq ,0,0,-(sin(

theta)**2) *((r**2+a**2) +(2*(a**2)*M*r*sin(theta)**2)/rhosq)]])� �
in order to define the Kerr metric. The diagonal matrix definition of the Schwarzschild case is changed
with a general metric.

3.4 Benchmark for the open source computer algebra systems

We performed some calculations for the Schwarzschild and Kerr spacetimes on Python+GraviPy
(Python 2.7.12), SageMath+SageManifolds (SageMath 7.5.1) and Maxima+ctensor (Maxima 5.37.2)
systems.

The Schwarzschild metric has only diagonal elements, while Kerr solution has non–diagonal elements
in its metric. We aimed to measure the effect of this difference in the computations. We used the
metric given in equation 2 for the Schwarzschild case and for the Kerr metric the metric is given
in equation 3. The SageMath+SageManifolds system allows parallel computing on CPU by adding
the line Parallelism().set(nproc=4) for 4–cores. We also measured the effect of this option in
calculations.

For our analysis, we used the code–block profiling method and measured the wall–clock time as it has
more importance for the general user. We calculated the Christoffel symbols, Ricci tensor and Einstein
tensor one by one on each system. Metric definition and displaying the results are not included in
the time measurement. By averaging the timing results for 10 runs on each system, the Table 1 is
generated.

In Python, we used the datetime module. This method shows the time value up to six decimals.� �
1 from gravipy import *

2 from datetime import datetime

3 ...

4 riccitime_=datetime.now()

5 Ri=Ricci('Ri',g)
6 _riccitime=datetime.now()

7 print "Elapsed time ...", _riccitime -riccitime_
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8 ...� �
In SageMath, we employed the inline time command. This command shows time with two decimals.� �

1 ...

2 time Ric=g.ricci ()

3 ...� �
In Maxima, we used elapsed real time() command which also shows time with two decimals.� �

1 ...

2 t0:elapsed_real_time ()$
3 uricci(false);

4 t1:elapsed_real_time ()-t0;

5 ...� �
The test computer has an Intel i7 4500U CPU (4096 KB cache for each 4 cores), 8 GB (DDR3) RAM,
NVIDIA GeForce 840M GPU and 1 TB HDD with 8GB swap.

Metric - Calculation Python SageMath
(core=1)

SageMath
(core=4)

Maxima

Schwarzschild - Christoffel 0.000056 1.57 1.28 0.10
Schwarzschild - Ricci 0.000040 3.73 3.62 0.00
Schwarzschild - Einstein 0.000036 5.33 5.08 0.00
Kerr - Christoffel 0.000073 23.67 9.00 0.04
Kerr - Ricci 0.000050 128.71 85.48 0.40
Kerr - Einstein 0.000044 152.39 107.42 6.34

Table 1: Benchmark results. (All numbers are in seconds).

As seen from the Table 1, some calculations for the Schwarzschild metric seem unsuitable for paral-
lelization due to chunk sizes of the CPU cores. However, using multiple cores for Kerr calculations
makes a significant effect on calculation time.

According to these results, Python and Maxima would be the best choices for tensor manipulation.
However, SageMath being powered by SageManifolds, provides an easy-to-use and combined toolkit
for the general user.

4 Further examples on scalar wave equation and geodesics
with SageMath and SageManifolds

We will focus on the SageMath+SageManifolds system to perform a set of calculations for the Schwarz-
schild metric. We will first define the spacetime by giving its variables and components. Then we will
perform calculations for two examples. In the first one, we calculate the Klein–Gordon equation for
a massless scalar field, extract its radial part and solve this differential equation numerically. We will
further compare our numerical result graphically with the asymptotic form of the analytical result.
In the next example, we will perform a very simple geodesic analysis for this spacetime using the
Hamilton–Jacobi formalism.

Generalization of the example codes to other metrics is straightforward. The codes for the calculation
of Klein–Gordon and Hamilton–Jacobi equations can be used for general metrics without modifica-
tion. For the detailed calculations, we applied some metric-related information in the code to see the
manipulation, equation solving and plotting capabilities of the computation system.
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The reader should follow the line numbers to execute the codes without problem. The code for the
definition of the spacetime is between lines (1-24). The analysis of the Klein–Gordon equation starts
in line 25 and ends in line 126. Then in the next section, the study of geodesics starts again with line
25 and ends in line 102. This means that, the reader should first execute the lines (1-24) for the metric
definition before each physical example.

4.1 Definition of the spacetime in SageManifolds

This part was studied before in Section 3.1, while giving examples for simple calculations in GR.
Nevertheless, we will place it here in order to present a complete code structure.� �

1 reset();

2

3 # Define 4-dim. the manifold "Man":

4 Man = Manifold(4, 'Man ', r'\ mathcal{M}');
5

6 # Define the parameter "M" (mass):

7 M = var('M');
8

9 # Define the coordinates {t=0, r=1, theta(=th)=2, phi=3} with ranges

10 # (BL = Boyer -Lidquist)

11 BL.<t,r,th,ph> = Man.chart(r't r:(0,+oo) th:(0,pi):\ theta ph:(0,2*pi):\phi ');
12

13 # Define the metric "g" on manifold "Man":

14 g = Man.lorentzian_metric('g');
15

16 # Enter the Schwarzschild metric components:

17 g[0,0] = (1-(2*M)/r);

18 g[1,1] = -1/(1-(2*M)/r);

19 g[2,2] = -r^2;

20 g[3,3] = -(r*sin(th))^2;

21

22 # Display the metric

23 show('The Schwarzschild metric:');
24 show(g.display ());� �

In the Schwarzschild case, the manifold has four dimensions and the only variable is the black hole
mass M . We define four spacetime coordinates and enter the components of the diagonal metric.
These definitions may need some modifications for other spacetimes.

4.2 Klein–Gordon equation in curved spacetime

Klein–Gordon equation for a massless scalar field can be written as [16]

1√
−g

∂µ(
√
−ggµν∂νΦ) = 0, (6)

where Φ is the scalar field and it can be decomposed with the Ansatz

Φ(t, r, θ, φ) = e−iωteikφ R(r) S(θ), (7)

for the Schwarzschild metric.

We will first define the variables ω, k and the result KG. The inverse metric and
√
−g are needed

in calculation, thus are calculated. Then the full scalar function Φ, radial and angular parts of the
solution Ansatz are defined. After giving the Ansatz, we start calculating the Klein-Gordon equation
in two for loops. The outer loop is over µ components and the inner one is over ν components.
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� �
25 # Defining variables:

26 var('omega ,k,KG ');
27

28 # Inverse metric:

29 ginv = g.inverse ();

30

31 # The square root of the absolute value

32 # of the metric determinant:

33 sqrtabsdetg=g.sqrt_abs_det ().expr();

34

35 # The scalar function Phi(t,r,th ,phi):

36 # The dependence on all coordinates

37 # is provided by "(*BL)"

38 Phi=function('Phi ')(*BL)
39

40 # The scalar field Ansatz is given here.

41 # R : Radial part ,

42 # S : Angular part

43 R=function('R')(r);
44 S=function('S')(th);
45 Phi=exp(-I*omega*t)*exp(I*k*ph)*R*S;

46

47 # Calculating the Klein -Gordon equation:

48 KG=0;

49 for mu in range(len(BL[:])):

50 for nu in range(len(BL[:])):

51 KG=KG+diff((ginv[mu,nu].expr()*sqrtabsdetg*diff(Phi ,BL[nu])),BL[mu]);

52

53 # Displaying the Klein -Gordon equation "KG"

54 show('The full Klein -Gordon equation (variable name is KG):')
55 show(KG)� �

This part of the code is general. The reader should only change the solution Ansatz accordingly and
the code can find the Klein-Gordon equation for any spacetime with any number of dimensions. The
result is stored in variable KG.

In our example, the Klein–Gordon equation is found as

KG =
ω2r3R (r)S (θ) e(i kφ−i ωt) sin (θ)

2M − r
+ (2M − r)rS (θ) e(i kφ−i ωt) sin (θ)

∂2

(∂r)2
R (r)

+(2M − r)S (θ) e(i kφ−i ωt) sin (θ)
∂

∂r
R (r)− rS (θ) e(i kφ−i ωt) sin (θ)

∂

∂r
R (r)

+
k2R (r)S (θ) e(i kφ−i ωt)

sin (θ)
−R (r) cos (θ) e(i kφ−i ωt) ∂

∂θ
S (θ)

−R (r) e(i kφ−i ωt) sin (θ)
∂2

(∂θ)2
S (θ) . (8)

We can find the radial and angular parts of the Klein-Gordon equation after analyzing its structure.
This part is semi-automatic and the user should supply some information.

We first divide the equation by the common factors and extract its operands in a vector. Then we
define the separation constant λaux. Using a loop over all operands, we decide which one belongs to the
radial part and which one belongs to the angular part of the equation. We take the radial derivative
of the components and if the result is zero, the component is angular, if it is not zero, we add it to the
radial part. We use collection and simplification commands to see the results in a good shape.� �

56 # We can analyze the Klein -Gordon equation

57 # to see how it is separated into
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58 # radial and angular parts.

59

60 # Common factors will be divided

61 # This part should be given by the user

62 divideKGby=exp(-I*omega*t)*exp(I*k*ph)*sin(th)*R*S;

63 finalKG=expand(KG/divideKGby);

64

65 # Extract the operands in the expression:

66 fkgops=finalKG.operands ()

67

68 # Find radial and angular parts:

69 # lambda_aux is the separation constant

70 var('lambda_aux ');
71 KGradialpart=lambda_aux;

72 KGangularpart=-lambda_aux;

73 for term in fkgops:

74 if diff(term ,r)==0:

75 KGangularpart=KGangularpart+term;

76 else:

77 KGradialpart=KGradialpart+term;

78

79 KGradialpart=expand(KGradialpart*R).simplify_full ().collect(R).collect(diff(R,

r)).collect(diff(R,r,r));

80 KGangularpart=expand(KGangularpart*S).simplify_full ().collect(S).collect(diff(

S,th)).collect(diff(S,th,th));

81

82 show('The radial part (variable name is KGradialpart):')
83 show(KGradialpart);

84 show('The angular part (variable name is KGangularpart):')
85 show(KGangularpart);� �

The radial part is then found as

KGradialpart =

(
ω2r3 + 2Mλaux − λaux r

)
R (r)

2M − r
+

2
(
2M2 − 3Mr + r2

)
∂
∂rR (r)

2M − r

+

(
4M2r − 4Mr2 + r3

)
∂2

(∂r)2R (r)

2M − r
, (9)

and the angular part is

KGangularpart = −
cos (θ) ∂

∂θS (θ)

sin (θ)
−

(
λaux sin (θ)

2 − k2
)
S (θ)

sin (θ)
2 − ∂2

(∂θ)2
S (θ) . (10)

Further simplifications are obvious but SageMath’s desolve command can not give symbolic solutions
for these equations. However, numerical solutions can be studied using related methods. We will use
desolve system rk4 as an example and solve the radial equation numerically. This method uses a
fourth–order Runge–Kutta scheme and in fact, the command desolve system rk4 is used as a wrapper
for the Maxima command rk [5].

Numerical solvers can generally deal with first order equations. Our second order equation will yield
two first order differential equations which will be solved simultaneously. We will define the first
derivative of the radial function as an auxiliary function

dR

dr
= Raux, (11)

and place it in the equation 9 to have

dRaux
dr

= −
4M2Raux + 2 r2Raux + 2 (λauxR− 3 rRaux))M +

(
ω2r3 − λaux r

)
R

4M2r − 4Mr2 + r3
. (12)
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The following code finds this set of equations as radial1 and radial2. The solver can deal with the

right hand sides of df(x)
dx = g(f(x), x) type equations. Thus we isolate the derivatives by solving the

differential equations as algebraic equations. radial1 and radial2 are the right hand sides of our
equations to be solved.� �

86 # The auxiliary function

87 R_aux=function('R_aux ')(r)
88

89 # Two auxiliary equations

90 radial1aux=diff(R,r)-R_aux;

91 radial2aux=KGradialpart.subs(diff(R,r)== R_aux).subs(diff(R,r,r)==diff(R_aux ,r)

);

92

93 # Right hand sides of the derivatives

94 radial1 =( solve(radial1aux ==0,diff(R,r)))[0]. right();

95 radial2 =( solve(radial2aux ==0,diff(R_aux ,r)))[0]. right ();

96

97 # Getting the outputs in input format

98 # (Outputs will be copied)

99 print(radial1)

100 print(radial2)� �
In their present forms, R andRaux are defined as functions. However, in order to use desolve system rk4

we need to define unknowns as variables. To do this, we need to copy the outputs for radial1 and
radial2 and change them accordingly. We display the outputs by print command to see them in the
input form which enables us to copy them easily.

After a formal analysis of the radial part, one can see that the radial solution can be given in terms of
confluent Heun functions [17]. General and confluent forms of the Heun function are encountered in
many applications in physics, especially as solutions of the wave equations [18–23].

The general Heun function is adapted by Oleg V. Motygin for GNU Octave [24]. However, no freely
available packages or modules can deal with confluent Heun functions. Therefore we cannot compare
our result with the full analytical solution. The asympotic form of the confluent Heun function is given
in reference [17] as

R` =
C`
r

sin

[
ωr + 2Mω ln(r)− `π

2
+ arg

(
Γ(`+ 1− 2iMω)

)]
, (13)

where λaux = `(`+ 1).

We first import the differential equation solver from sage.calculus.desolvers. We then define
the variables (including the unknown functions) and the equations and copy the equations from the
outputs of the code above. We give some numerical values to the parameters arbitrarily and solve
the system for some arbitrary set of initial conditions. In our example we have R(r = 0.3) = 1 and
dR
dr = Raux(r = 0.3) = 0.5. The solution is stored in radsol.

radsol has the structure [r,R,Raux]. points=[[i,j] for i,j,k in radsol] command creates
[i,j] (or [r,R]) points for plotting. radialsolution stores the plot of the numerical result.

In the next part, we define the asymptotic form of the analytical solution and plot it for the same
parameter set (we take C` = 250 to match the amplitude). We display both plots together to show
the agreement.� �

101 # Import the solver

102 from sage.calculus.desolvers import desolve_system_rk4

103

104 # Define unknowns as variables

105 var('R,R_aux ,r');
106
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107 # Define equations

108 radial1=R_aux;

109 radial2 =-(4*M^2* R_aux + 2*r^2* R_aux + 2*( lambda_aux*R - 3*r*R_aux)*M + (omega

^2*r^3 - lambda_aux*r)*R)/(4*M^2*r - 4*M*r^2 + r^3);

110

111 # Substitute numerical values for parameters

112 radial2=radial2.subs(M=0.1, omega =0.2,k=2.0, lambda_aux =2.0)

113

114 # Solve the system and plot the solution

115 radsol=desolve_system_rk4 ([radial1 ,radial2],[R,R_aux],ics =[0.3 ,1 ,0.5] , ivar=r,

end_points =100, step =0.01);

116 points =[[i,j] for i,j,k in radsol ];

117 radialsolution=list_plot(points ,axes_labels =['$r$ ','$R$ '], legend_label='
Numerical solution ');

118

119 # Asymptotic form of the analytic solution

120 var('Cl,L');
121 Rasym=Cl*(1/r)*sin(omega*r+2*M*omega*log(r)-(L*pi/2)+arg(gamma(L+1-2*I*M*omega

)))

122 Rasymnum=Rasym.subs(Cl=250,M=0.1, omega =0.2,L=1.0)

123 asympplot=plot(Rasymnum ,(r, 20, 100),linestyle='',marker='x',color='red ',
legend_label='Asymptotic solution ')

124

125 # Display both plots

126 show(asympplot+radialsolution)� �
The plot 1 of the solution gives an idea on the behavior of the radial function. Numerical solution and
the asymptotic form of the analytical solution are plotted together to show that they agree for large r.

Figure 1: The radial part of the Klein–Gordon solution.

4.3 Visualizing geodesics

The geodesic motion in a spacetime can be described by the Hamilton–Jacobi equation [15].

∂S

∂η
− 1

2
gµν

∂S

∂xµ
∂S

∂xν
= 0, (14)
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where S denotes the Hamilton’s principal function, gµν is the inverse metric and η is an affine param-
eter. The orbital equations then found using

∂xµ

∂η
+ gµν

∂S

∂xν
= 0. (15)

This formalism gives first order differential equations which are needed in numerical schemes as men-
tioned in the previous section.

The Hamilton’s principal function is decomposed as

S(η, t, r, θ, φ) =
m2

2
η − Et+ Lφ+ F (r) +G(θ), (16)

for the Schwarzschild spacetime. For the equatorial geodesics we take θ = π/2 and thus G(θ) = 0.
The metric components also change according to this constraint.

Before beginning our analysis, it should be emphasized that decomposition of the Hamilton’s principle
function S (and the scalar field Φ in the previous section) is not evident and needs a detailed analysis
in general spacetimes, which is beyond the scope of our work. Moreover, analysis of geodesics is a very
detailed study and our primitive example here aims only to visualize some geodesics.

The user should execute the lines (1-24) for the definition of the spacetime before running the codes
below.

We start by defining our variables and functions. We also calculate the inverse metric as needed in the
equations. After giving the Hamilton’s principle function Ansatz, we calculate the Hamilton–Jacobi
equation in two loops and set it to the variable HJfull. We call it HJfull as we have not put any
conditions (θ = π/2, etc.) on the equation yet.

The right hand sides (as needed by differential equation solvers) of the geodesic (orbital) equations
are then calculated (using nested loops) and put in the vector geodeqnrhs. We display the equations
both in the LATEX format and as a vector.� �

25 # Define variables , functions and calculate inverse metric

26 var('eta ,m,E,L,S,HJfull ');
27 F=function('F')(r);
28 G=function('G')(th);
29 ginv = g.inverse ();

30

31 # Define the principal function Ansatz

32 S=((eta*m^2)/2)-E*t+L*ph+F+G

33

34 # Calculate the Hamilton -Jacobi equation

35 HJfull =0;

36 for i in range(len(BL[:])):

37 for j in range(len(BL[:])):

38 HJfull=HJfull+ginv[i,j].expr()*diff(S,BL[i])*diff(S,BL[j]);

39 HJfull =(diff(S,eta) -(1/2)*HJfull);

40 show('The Full Hamilton -Jacobi equation (variable name is HJfull):')
41 show(HJfull);

42

43 show('The geodesic equations in LaTeX form (variable name is geodeqnrhs):')
44 geodeqnrhs=zero_vector(SR , len(BL[:]))

45

46 for mu in range(len(BL[:])):

47 for nu in range(len(BL[:])):

48 geodeqnrhs[mu]= geodeqnrhs[mu]-(ginv[mu ,nu].expr())*diff(S,BL[nu]);

49 writeresult='D[0](%s)($\eta$) = $%s$ ' %(BL[mu],latex(geodeqnrhs[mu]));

50 show(writeresult);

51
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52 show('Right hand sides of the geodesic equations as a vector ')
53 show(geodeqnrhs)� �

The code above is general and it can work for any spacetime if the Hamilton’s principal function is
given accordingly. The codes below depend on the Schwarzschild metric.

Conventionally, we take θ = π/2 to find the equatorial geodesics. We call the Hamilton–Jacobi equation
with this constraint as HJst and the right hand sides of the orbital equations as geodeqnrhsst. We
substitute θ = π/2 and G(θ) = 0 in the equations found in the general code.� �

54 # Take theta = pi/2:

55 var('HJst ')
56

57 # Hamilton -Jacobi equation for theta=pi/2 (variable name is HJst)

58 HJst=( HJfull.subs(diff(G)==0)).subs(th=pi/2)

59 show(HJst)

60

61 # Right hand sides of the geodesic equations for theta=pi/2

62 # (variable name is geodeqnrhsst)

63 geodeqnrhsst =( geodeqnrhs.subs(diff(G)==0)).subs(th=pi/2)

64 show(geodeqnrhsst)� �
We find

HJst =
m2

2
+

E2r

2(2M − r)
+
L2

2r2
− 2M − r

2r

(
dF (r)

dr

)2

, (17)

and the nonzero components of geodeqnrhsst are

dt

dη
= − Er

2M − r
, (18)

dr

dη
= −2M − r

r

(
dF (r)

dr

)
, (19)

dφ

dη
=
L

r2
, (20)

We are now ready to solve the orbital equations. Here, we will use another solver, desolve odeint

by importing from sage.calculus.desolvers. This solver uses scipy.integrate module of Python.
We will plot the geodesic curve, and a black disc with a radius equal to the event horizon radius will
indicate the black hole. Thus, we import Circle from sage.plot.circle. We define the variables

and give them arbitrary numerical values. We isolate dF (r)
dr as derofradfun from HJst and place it in

dr
dη equation.

We would like to solve time-dependent dr
dt and dφ

dt equations, instead of the equations with affine-

parameter (η) dependence. Thus, we divide dr
dη and dφ

dη by dt
dη , and set them as our equations: geodeqn1

and geodeqn2.

We solve our equations for arbitrarily set initial conditions and put the results in the variable sol. The
0th column of sol carries the r values and the 1st column carries the φ values. Using these, we generate
{x, y} points, where x = rcos(φ) and y = rsin(φ). The line plot of these points forms the geodesic
curve. We plot this curve and the black disc (a circle with parameters fill=True,rgbcolor=‘black’)
together to display the behavior.� �

65 # Importing the solver

66 from sage.calculus.desolvers import desolve_odeint

67 #Importing circle for visualizing the black hole

68 from sage.plot.circle import Circle

69

70 var('m_aux ,L_aux ,E_aux ,M_aux ,r_initial ,ph_initial ,eta_end ,step_size ');
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71

72 ##########################

73 # Variables

74 m_aux =0; # Either 1 (timelike) or 0 (null).

75 M_aux =10;

76 L_aux =23;

77 E_aux =0.4429;

78 step_size =1;

79 eta_end =10000;

80 r_initial =10* M_aux;

81 ph_initial =0.3;

82 ##########################

83

84 # Derivative of F (the radial function)

85 # (variable name is derofradfun)

86 # We will use the first root

87 derofradfun=solve(HJst ,diff(F,r));

88

89 # Define equations to solve

90 # dr/dt = geodeqn1

91 # dphi/dt = geodeqn2

92 geodeqn1 =(( geodeqnrhsst [1]/ geodeqnrhsst [0]).subs(diff(F,r)== derofradfun [1]. rhs

())).subs(E=E_aux ,L=L_aux ,m=m_aux ,M=M_aux);

93 geodeqn2 =( geodeqnrhsst [3]/ geodeqnrhsst [0]).subs(E=E_aux ,L=L_aux ,m=m_aux ,M=

M_aux);

94

95 # Solve the equations

96 sol=desolve_odeint ([geodeqn1 ,geodeqn2],[r_initial ,ph_initial],srange(0,eta_end

,step_size) ,[r,ph])

97 p=line(zip(sol[:,0]*cos(sol[:,1]),sol[:,0]*sin(sol[:,1])))

98

99 # Plot the black hole as a circle

100 # Show the geodesics and the circle on the same plot

101 C=circle ((0,0) ,2*M_aux ,fill=True ,rgbcolor='black ');
102 show(C+p)� �

The figure 2 shows an example of a null geodesic (m = maux = 0) for an arbitrary set of parameters.
Figure 3 shows the stable circular orbit for a timelike particle (m = maux = 1) and Figure 4 shows
another example of a timelike geodesic.

Figure 2: Example of a null geodesic for the Schwarzschild black hole (θ = π/2).
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Figure 3: Stable circular orbit for the Schwarzschild black hole for a timelike particle (θ = π/2).

Figure 4: Example of a timelike geodesic for the Schwarzschild black hole (θ = π/2).

5 Conclusion

We studied three computer algebra systems which allow tensor manipulation for GR calculations, and
showed how one can define a spacetime, calculate Christoffel symbols, Ricci tensor and Einstein tensor
for this spacetime using the specialized commands of these systems. We used SageMath with its tensor
manipulation and differential geometry module SageManifolds, Maxima with its tensor component
manipulation package ctensor and the Python language with the GraviPy module which runs on the
symbolic analysis module SymPy. A benchmark for these systems is also provided.

In the next part, our main focus was the SageMath+SageManifolds system to perform two examples:
Massless Klein–Gordon equation calculations and geodesic analysis for the Schwarzschild geometry.
First, general codes that can run for general spacetimes are given, and then the analysis is specialized
for the Schwarzschild case.

In our first example, we found the massless Klein–Gordon equation as a partial differential equation.
We then separated it to the radial and angular parts and analyzed the radial part in detail. We
confirmed our numerical result graphically using the asymptotic form of the analytical result.

In the second example, the orbit of a null or timelike particle around a Schwarzschild black hole was
constructed from the geodesic equations. There are multiple methods of doing that, and among them,
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the chosen one here is the Hamilton–Jacobi formalism as it yields first order differential equations that
can be treated easier than the second order equations on the computer. The orbits are visualized using
the plotting tools of SageMath.

A computation system should be chosen according to the needs of the problem. For example, if a
research topic depends on the symbolic manipulations of special functions of mathematical physics,
commercial packages are inevitable for most of the cases in the present situation. However, many
problems do not need such specialized calculations and numerical analysis is sufficient to see the
result. Therefore freely available packages offer complete computation systems for most of the scientific
problems.
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