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In discussions of the cosmological constant, the Casimir effect is often invoked as decisive evidence
that the zero-point energies of quantum fields are ‘‘real.’’ On the contrary, Casimir effects can be
formulated and Casimir forces can be computed without reference to zero-point energies. They are
relativistic, quantum forces between charges and currents. The Casimir force (per unit area) between
parallel plates vanishes as �, the fine structure constant, goes to zero, and the standard result, which
appears to be independent of �, corresponds to the � ! 1 limit.
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I. INTRODUCTION

In quantum field theory as usually formulated, the zero-
point fluctuations of the fields contribute to the energy of
the vacuum. However this energy does not seem to be
observable in any laboratory experiment. Nevertheless,
all energy gravitates, and therefore the energy density of
the vacuum, or more precisely the vacuum value of the
stress tensor, hT��i � �Eg�� [1], appears on the right-
hand side of Einstein’s equations,

R�� �
1

2
g��R � �8�G� ~T�� � Eg��	 (1)

where it affects cosmology. ( ~T�� is the contribution of
excitations above the vacuum.) It is equivalent to adding
a cosmological term, 	 � 8�GE, on the left-hand side.

A small, positive cosmological term is now required to
account for the observation that the expansion of the
Universe is accelerating. Recent measurements give [3]

	 � �2:14
 0:13� 10�3 eV	4 (2)

at the present epoch. This observation has renewed interest
in the idea that the zero-point fluctuations of quantum
fields contribute to the cosmological constant, 	 [4].
However, estimates of the energy density due to zero-point
fluctuations exceed the measured value of 	 by many
orders of magnitude. Caution is appropriate when an effect,
for which there is no direct experimental evidence, is the
source of a huge discrepancy between theory and
experiment.

As evidence of the ‘‘reality’’ of the quantum fluctuations
of fields in the vacuum, theorists often point to the Casimir
effect [7]. For example, Weinberg, in his introduction to
the cosmological constant problem, writes [6], ‘‘Perhaps
surprisingly, it was a long time before particle physicists
began seriously to worry about (quantum zero-point fluc-
tuation contributions to 	) despite the demonstration in the
Casimir effect of the reality of zero-point energies.’’ More
recent examples can be found in the widely read reviews by
Carroll [8], ‘‘. . .And the vacuum fluctuations themselves
are very real, as evidenced by the Casimir effect,’’ and by
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Sahni and Starobinsky [9,10] ‘‘The existence of zero-point
vacuum fluctuations has been spectacularly demonstrated
by the Casimir effect.’’

In 1997 Lamoreaux opened the door to precise measure-
ment of Casimir forces [11]. The Casimir force (per unit
area) between parallel conducting plates,

F � �
@c�2

240d4
(3)

has now been measured to about 1% precision. Casimir
physics has become an active area of nanoscopic physics in
its own right [12]. Not surprisingly, every review and text
on the subject highlights the supposed special connection
between the Casimir effect and the vacuum fluctuations of
the electromagnetic field [13].

The object of this paper is to point out that the Casimir
effect gives no more (or less) support for the reality of the
vacuum energy of fluctuating quantum fields than any
other one-loop effect in quantum electrodynamics, like
the vacuum polarization contribution to the Lamb shift,
for example. The Casimir force can be calculated without
reference to vacuum fluctuations, and like all other observ-
able effects in QED, it vanishes as the fine structure con-
stant, �, goes to zero.

There is a long history and large literature surrounding
the question whether the zero-point fluctuations of quan-
tized fields are ‘‘real’’ [14]. Schwinger, in particular, at-
tempted to formulate QED without reference to zero-point
fluctuations [15]. In contrast Milonni has recently refor-
mulated all of QED from the point of view of zero-point
fluctuations [14]. The question of whether zero-point fluc-
tuations of the vacuum are or are not real is beyond the
scope of this paper. Instead I address only the narrower
question of whether the Casimir effect can be considered
evidence in their favor.

For a noninteracting quantum field the vacuum (or zero-
point) energy is given by E � 
 1

2

P
@!0, where the f@!0g

are the eigenvalues of the free Hamiltonian and the plus or
minus sign applies to bosons or fermions, respectively. In
three dimensions the sum over frequencies diverges quarti-
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cally, E ��4. This contribution does not arise if the fields
in the classical Lagrangian are ordered in a prescribed way
(‘‘normal ordering’’), but the reason for this choice of
ordering is obscure and it is probably more appropriate to
choose the ordering arbitrarily (though consistent with the
symmetries of the theory), in which case the free field zero-
point energy can be canceled by a counterterm. However
comparable contributions reappear when interactions are
introduced: the vacuum energy is related to the sum of all
vacuum-to-vacuum Feynman diagrams, a few of which are
shown (e.g. for QED) in Fig. 1. A counterterm can be
introduced to cancel these contributions to any order in
perturbation theory. However since the leading divergence
is quartic, such fine-tuning is generally regarded as
unacceptable.

In the standard approach [13], the Casimir force is
calculated by computing the change in the zero-point
energy of the electromagnetic field when the separation
between parallel perfectly conducting plates is changed.
The result, Eq. (3), seems universal, independent of every-
thing except @, c, and the separation, inviting one to regard
it as a property of the vacuum. This, however, is an illusion.
When the plates were idealized as perfect conductors,
assumptions were made about the properties of the mate-
rials and the strength of the QED coupling �, that obscure
the fact that the Casimir force originates in the forces
between charged particles in the metal plates. More spe-
cifically,
(i) T
FIG.
he Casimir effect is a function of the fine structure
constant and vanishes as � ! 0. Explicit depen-
dence on � is absent from Eq. (3) because it is an
asymptotic form, exact in the � ! 1 limit. The
Casimir force is simply the (relativistic, retarded)
van der Waals force between the metal plates.
(ii) C
asimir effects in general can be calculated as
S-matrix elements, i.e. in terms of Feynman dia-
grams with external lines, and without any reference
to the vacuum or its fluctuations. The usual calcu-
lation, based on the change in 1

2

P
@! with separa-
1. QED graphs contributing to the zero-point energy.
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tion, is heuristic. An elementary example of a simi-
lar situation occurs in electrostatics. The energy of a
smooth charge distribution, ��x	, can be calculated
directly from 1

2

R
dxdy���x	��y	=jx� yj�, or alter-

natively, from the energy ‘‘stored in the electric
field,’’ 1

8�

R
dxj ~E�x	j2. The existence of the latter

formula cannot be regarded as evidence for the
reality of the electric field, which awaited the dis-
covery that light consists of propagating electro-
magnetic waves.
In the following section I review the dependence of the
Casimir effect on the fine structure constant. Next I discuss
the calculation of Casimir effects without mention of vac-
uum energies. Finally I conclude with a brief summary.
II. THE DEPENDENCE OF THE CASIMIR EFFECT
ON THE FINE STRUCTURE CONSTANT

At first sight the Casimir force, Eq. (3) seems universal
and independent of any particular interaction. F depends
only on the fundamental constants @ and c. However, a
moment’s thought reveals that interactions entered when
one idealized the metallic plates as perfect conductors that
impose boundary conditions on the electromagnetic fields.

Actual metals are not perfect conductors. In fact there is
now a large literature dedicated to ‘‘finite conductivity
corrections’’ to the Casimir effect [13]. These treatments
are based on Lifshitz’ theory of the Casimir effect for
dielectric media [16]. A simpler treatment, based on the
Drude model of metals, is sufficient to describe things
qualitatively [17,18]. A conductor is characterized by a
plasma frequency, !pl, and a skin depth, �. !pl character-
izes the frequency above which the conductivity goes to
zero. � measures the distance that electromagnetic fields
penetrate the metal. Both !pl and ��1 depend on the fine
structure constant, �, and vanish as � ! 0. In the Drude
model,

!2
pl �

4�e2n
m

;

��2 �
2�!j�j

c2
where � �

ne2

m��0 � i!	

(4)

where n is the total number of conduction electrons per
unit volume, m is their effective mass, and �0 is the damp-
ing parameter for the Drude oscillators. Typically the
frequencies of interest are much greater than �0, so � �

c=
���
2

p
!pl.

The frequencies that dominate the Casimir force are of
order c=d [13]. So the perfect conductor approximation is
adequate if c=d � !pl, or

� �
mc

4�@nd2
: (5)

Typical Casimir force measurements are made at separa-
tions of order 0:5 �m. For a good conductor like copper,



FIG. 2. Feynman diagrams for the Casimir-Polder force.
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Eq. (5) requires � to be greater than about 10�5, which is
amply satisfied by the physical value � � 1=137. Thus the
standard Casimir result can be regarded as the � ! 1 limit
of a result that for smaller values of � depends in detail on
the nature of the plates.

Let us examine the � ! 0 limit. In this limit the scale of
atomic physics, the Bohr radius, @2=me2, grows like 1=�.
Therefore n scales like e6 and both !pl and � vanish like
�2 [19]. So at any fixed separation, d, the Casimir force
goes away quickly as � ! 0. Also, since � ! 1 as � ! 0,
the separation, d, becomes ill defined since the fields
penetrate further than the nominal separation of the plates.

The feature that distinguishes the Casimir force from
many other effects in QED is that it reaches a finite limit as
� ! 1. Had that not been the case, the dependence on
material parameters like !pl would have had to be explicit
and the effect would never have been accorded universal
significance. In fact just such a situation occurs in the case
of the Casimir pressure on a conducting sphere. If one
calculates the Casimir pressure for a realistic material,
one obtains a result that diverges as the plasma frequency
(the cutoff on the ! integration) goes to infinity [20].
Therefore it is impossible to define the Casimir pressure
on a conducting sphere independent of the details of the
material [21].

III. THE CASIMIR EFFECT WITHOUT THE
VACUUM

Casimir’s original goal was to compute the
van der Waal’s force between polarizable molecules at
separations so large that relativistic (retardation) effects
are essential. He and Polder carried out this program and
found an extremely simple result [24],

�E � �
23@c

4�R7 a1a2:

aj is the static polarizability of the jth molecule, ~p � a ~E.
They found a similarly simple result for a polarizable
molecule opposite a conducting plate: �E �
�3@ca=8�R4. These results were derived using the stan-
dard apparatus of perturbation theory (to fourth order in e)
without any reference to the vacuum. They correspond to
the long range limit of the Feynman diagrams of Fig. 2.

Casimir was intrigued by the simplicity of the result, and
following a suggestion by Bohr [25], showed that the
Casimir-Polder results could be derived more simply by
comparing the zero-point energy of the electromagnetic
field in the presence of the molecules with its vacuum
values [26]. He then considered the especially simple
example where both molecules are replaced by conducting
plates [7].

Despite the simplicity of Casimir’s derivation based on
zero-point energies, it is nevertheless possible to derive his
result without any reference to zero-point fluctuations or
even to the vacuum. Such a derivation was first given by
021301
Schwinger [27] for a scalar field, and then generalized to
the electromagnetic case by Schwinger, DeRaad, and
Milton [28]. Reviewing their derivation, one can see why
the zero-point fluctuation approach won out. It is far
simpler.

In more modern language the Casimir energy can be
expressed in terms of the trace of the Green’s function for
the fluctuating field in the background of interest (e.g.
conducting plates),

E �
@

2�
Im

Z
d!!Tr

Z
d3x�G�x; x;!� i 	

� G0�x; x;!� i 	� (6)

where G is the full Green’s function for the fluctuating
field, G0 is the free Green’s function, and the trace is over
spin.

On the one hand

1

�
Im

Z
�G�x; x;!� i 	 �G0�x; x;!� i 	� �

d�N
d!

is the change in the density of states due to the background,
so Eq. (6) can be regarded as a restatement of the Casimir
sum over shifts in zero-point energies, 12

P
�@!� @!0	. On

the other hand, the Lippman-Schwinger equation allows
the full Green’s function, G, to be expanded as a series in
the free Green’s function, G0, and the coupling to the
external field as in Fig. 3 [29]. So the Casimir energy can
be expressed entirely in terms of Feynman diagrams with
external legs—i.e. in terms of S-matrix elements which
make no reference to the vacuum.

As an explicit example, consider the Casimir effect for a
scalar field, ", in one dimension, forced to obey a Dirichlet
boundary condition, " � 0, at x � 
a=2. A traditional
calculation, summing over zero-point energies, yields a
Casimir force, F � �@c�=24a2 in this case. This is the
one-dimensional, scalar analog of Casimir’s original cal-
-3



FIG. 3. Diagrammatic expansion of the Casimir force: The thick (thin) line denotes the full (free) Green’s function; the one-point
function is omitted because it does not contribute to the force.
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culation. As in that case, the dependence on the coupling
constant has been obliterated by taking a limit where the
interaction can be idealized as a boundary condition. To
better model the physical situation we replace the bound-
ary condition by a �-function external potential at x �

a=2. Explicitly, we calculate the force between the sin-
gular points at x � 
a by calculating the derivative with
respect to a of the effective energy of " in the presence of a
background field, ��x	. The interaction is

L int �
1

2
g��x	"2�x	 (7)

and we specify ��x	 � ��x� a=2	 � ��x� a=2	. The
‘‘boundary condition limit,’’ "�
a=2	 � 0, is obtained
by sending g ! 1. To regulate infrared divergences that
afflict scalar fields in one dimension, we introduce a mass,
m, for ".

The effective energy is given by the sum of all one-loop
Feynman diagrams with insertions of ��x	—the diagrams
shown in Fig. 3—and its derivative with respect to a gives
the force [13,23],

F�a; g;m	 � �
g2

�

Z 1

m

t2dt�����������������
t2 �m2

p

�
e�2at

4t2 � 4gt� g2�1� e�2at	
: (8)

This result embodies all the features we desire. It vanishes
(quadratically) as g ! 0, as expected for a phenomenon
generated by the coupling of " to the external field. In the
boundary condition limit, g ! 1, the dependence on the
material disappears,

lim
g!1

F�a; g;m	 � �
Z 1

m

dt
�

t2�����������������
t2 �m2

p
�e2ta � 1	

; (9)

and it reduces to ��=24a2 in the m ! 0 limit.
IV. CONCLUSION

I have presented an argument that the experimental
confirmation of the Casimir effect does not establish the
reality of zero-point fluctuations. Casimir forces can be
calculated without reference to the vacuum and, like any
021301
other dynamical effect in QED, vanish as � ! 0. The
vacuum-to-vacuum graphs (See Fig. 1) that define the
zero-point energy do not enter the calculation of the
Casimir force, which instead only involves graphs with
external lines. So the concept of zero-point fluctuations is a
heuristic and calculational aid in the description of the
Casimir effect, but not a necessity.

The deeper question remains: Do the zero-point energies
of quantum fields contribute to the energy density of the
vacuum and, mutatis mutandis, to the cosmological con-
stant? Certainly there is no experimental evidence for the
reality of zero-point energies in quantum field theory
(without gravity). Perhaps there is a consistent formulation
of relativistic quantum mechanics in which zero-point
energies never appear. I doubt it. Schwinger intended
source theory to provide such a formulation. However, to
my knowledge no one has shown that source theory or
another S-matrix based approach can provide a complete
description of QED to all orders. In QCD confinement
would seem to present an insuperable challenge to an
S-matrix based approach, since quarks and gluons do not
appear in the physical S matrix. Even if one could argue
away quantum zero-point contributions to the vacuum
energy, the problem of spontaneous symmetry breaking
remains: condensates that carry energy appear at many
energy scales in the standard model. So there is good
reason to be skeptical of attempts to avoid the standard
formulation of quantum field theory and the zero-point
energies it brings with it. Still, no known phenomenon,
including the Casimir effect, demonstrates that zero-point
energies are real.
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