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At the end of Hawking evaporation, the horizon of a black hole enters a physical region where
quantum gravity cannot be neglected. The physics of this region has not been much explored. We
characterise its physics and introduce a technique to study it.

I. THE THREE QUANTUM REGIONS OF
BLACK HOLE PHYSICS

In a spacetime formed by gravitationally collapsed mat-
ter, there are three distinct regions in which curvature
becomes Planckian and we expect the approximation de-
fined by quantum field theory interacting with classical
general relativity to break down in all three of them.
However, the physics of these regions is quite different.

The three regions are illustrated in the Carter-Penrose
causal diagram of Figure 1. The dark grey area is the re-
gion where quantum gravity cannot be neglected and the
diagram itself becomes unreliable. The light grey area is
the collapsing matter and the dashed line is the (trap-
ping) horizon (the event horizon is not determined by
classical physics). The three physically distinct regions
where curvature becomes Planckian are:

1. Region C (in the future of the event c in the dia-
gram) is directly affected by the collapsing matter
reaching Planckian density.

2. Region B (in the future of b) is affected by the hori-
zon reaching Planckian size because of Hawking’s
evaporation.

3. In region A (in the future of any location like a),
curvature becomes Planckian but the classical evo-
lution to the singularity is not causally connected
to matter or the horizon.

The physical distance between these regions depends
on the age of the black hole at the time when its horizon
reaches the quantum region. This age depends on the
overall mass of the black hole before being shrunk by
Hawking evaporation.

In order to give a rough estimate of these quantities
let us consider for simplicity the case of a Schwarzschild
black hole. The line element is

ds2 = −
(

1− 2Gm

r

)
dt2 +

(
1− 2Gm

r

)−1

dr2

+ r2
(
dθ2 + sin2 θ dφ2

)
(1)

ac b

Figure 1: The three regions of a black hole spacetime where
quantum gravity becomes relevant. In the dark grey region
quantum gravity cannot be neglected and the diagram itself
becomes unreliable. The future of the locations a, b and c en-
counter different quantum gravity phenomena depending, re-
spectively, on the presence of the collapsing matter (C), the
horizon (B), or neither (A).

We can take the three locations a, b and c to be at the
same fixed values of θ, φ, r and at three different values
ta, tb, tc of the t coordinate. The proper distance dl along
a line of constant θ, φ, r, namely a nearly horizontal line
in the causal diagram, is given by the line element

dl = dt

√
2Gm

r
− 1 . (2)

The quantity dl becomes large approaching the quantum
gravitational dark grey region of Figure 1. Curvature
scalars behave as ∼ m/r3 and hence become Planckian at
r/LPl ∼ (m/MPl)

1/3 where LPl and MPl are the Planck
length and the Plank mass, giving

dl ∼
√

2 (m/MPl)
1/3dt (3)

near the quantum gravitational dark grey region of Fig-
ure 1. For a stellar mass (m ∼ M� ∼ 1038MPl) black
hole, if no further mass enters the horizon, the end of
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Figure 2: Carter-Penrose causal diagram of the black to white
transition.

the Hawking evaporation is at tb− tc ∼ (M�/MPl)
3LPl,

hence the distance between b and c is

L ∼ LPl

(
M�

MPl

) 10
3

∼ 1075 light years, (4)

which is huge. That is: the locations b and c are ex-
tremely distant from each other [1–4]. This argument is
hand waving, but the conclusion is convincing: the dis-
tance between b and c, which is to say the ‘depth’ of the
black hole, is huge, for an old black hole. Notice that
what makes this distance large is not the smallness of
the radius considered (which is not Planckian): rather,
it is the long lifetime of the black hole that builds up the
length.

It is worthwhile pausing to ponder this fact: near the
end of the Hawking evaporation of an isolated stellar-
size black hole, the collapsing matter entering the quan-
tum region is at a —spacial, not temporal!— distance of
1075 light years from the horizon. Locality demands the
physics of spatially widely separated phenomena to be
independent. It is reasonable to expect quantum gravity
to affect the causal structure of spacetime, but in small
fluctuations, not by suddenly causally connecting events
that are extremely far apart.

It follows that the physics of each of the three regions
A, B and C can be studied independently from the oth-
ers (until something brings them in causal contact). More
precisely, the physics of the A region can be studied in-
dependently from what happens at B or C; while these
depend on the physics of the A region, since this bounds
the horizon and the collapsing matter.

The causal structure inside a classical Kerr metric is
complicated, but these complications may be irrelevant
because the onset of quantum gravity may well be on a
region where curvature becomes Planckian and this may
be spacelike and outside the Cauchy horizon because of
the classical instabilities or quantum fluctuations [5].

Since the physics of the A region neither depends on
the collapsing star nor on the shrinking horizon, it can be
studied in the context of an eternal black hole, which gets

rid of the collapsing matter, and neglecting the Hawking
radiation, whose back-reaction shrinks the area of the
horizon until it enters the quantum region. There is an
extensive recent literature on the possible scenarios for
the physics of the A region. A much studied possibility
is that spacetime continues on the future of the would-be
singularity, namely on the future of the dark grey region
of Figure 1, into an anti-trapped region, namely a region
with the metric of a white hole [6–16]. Here we take
this as an assumption, because this seems to us by far
the most plausible possibility and the one which is more
coherent with the physics that we know. In fact, the
entire effect of quantum gravity is a slight violation of the
Einstein equations in the high curvature region, which
prevents curvature to diverge and allows spacetime to
continue. This possibility was noticed long ago, already
in the fifties, by Synge [17].

Following in particular [18–21], we assume here that
the anti-trapped region is bounded by a future horizon
that connects it to the region external to the black hole, a
surprising possibility first noticed in [18]. The full space-
time has therefore the causal structure depicted in the
Carter-Penrose diagram in Figure 2.

The C region is where the collapsing matter itself
reaches the quantum gravity regime. It is called the
‘Planck star’ phase of the collapsing matter [22]. Here,
following [22], we simply assume that some form of mat-
ter bounce compatible with this scenario happens.

In this paper we focus on the physics of the B re-
gion, namely on the events near the end of the Hawking
evaporation of the black hole. This is the region where
the trapping horizon tunnels to an anti-trapping horizon.
Covariant Loop Quantum Gravity (CLQG) [23] can be
utilised to study the region around the classical singu-
larity using the spinfoam formalism [24]. The transition
amplitude for the entire quantum region (the whole dark
grey region in Figure 1) was first roughly estimated us-
ing CLQG in [25, 26]. Here we use a similar technique to
begin a more refined study of the B region only.

In particular, we compute the classical intrinsic and ex-
trinsic geometry of a boundary of the B region in terms of
a small number of parameters that we identify as charac-
terising the spacetime and the transition. The quantum
transition amplitude that describes the B region is going
to be a function of these parameters. Furthermore, in
view of the spinfoam transition amplitude calculations,
we introduce and study the geometry of a triangulation
of the boundary of B. In a forthcoming companion pa-
per, we will introduce a full discretisation of the B region
compatible with the triangulation of its boundary intro-
duced in section III and we will use it to explicitly write
the transition amplitude for the phenomenon via CLQG
(spinfoam) techniques.

The main result of this paper is the identification of the
four parameters which characterise the quantum transi-
tion at the B region and the definition of the correspond-
ing transition amplitude as a function of these parame-
ters. The actual computation of this amplitude will be
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addressed in the forthcoming companion paper.

II. THE BOUNDARY OF THE B REGION

To study the B region, we restrict for simplicity to the
spherically symmetric case and we assume the rest of
spacetime to be classical. For the most part, this is a
good approximation, since the curvature is below Planck-
ian values and quantum effects are likely to be negligible.
This is however not true for the boundary between the B
and the A region. We therefore simplify the problem by
describing the A region with an effective classical metric,
as in [20].

An effective metric for the entire spacetime that takes
into account the effect of Hawking radiation was studied
in [27]. Here, we further simplify the scenario by dis-
regarding the presence of Hawking radiation in the last
phases of the evaporation, hence around the B region, in
spite of the radiation being strong in this region. We have
no control over this approximation. Instead, we assume
that the black hole has already evaporated to a small size
and we take the metric around the B region to be well
approximated by a Schwarzschild metric, up to quantum
corrections in the A region.

The effective geometry of the A region continuing from
the trapped to the anti-trapped region can be described
by the line element [20]

ds2
l =

4(τ2 + l)2

2m− τ2
dτ2− 2m− τ2

τ2 + l
dx2− (τ2 + l)2dΩ2 , (5)

where dΩ2 is the metric of the 2-sphere, l � m is an
intrinsic parameter of the effective metric and −

√
2m <

τ <
√

2m. This line element defines a genuine pseudo-
Riemannian space, with no divergences and no singular-
ities ∀ l 6= 0. In the limit l → 0, the metric locally con-
verges to the interior Schwarzschild metric for a black
hole in −

√
2m < τ < 0 and to the interior Schwarzschild

metric for a white hole in 0 < τ <
√

2m. In this limit,
τ = 0 becomes the singularity, separating a trapped from
an anti-trapped region. For l 6= 0 the curvature remains
instead bounded. Up to terms of order O (l/m), the cur-
vature scalar K2 ∼ RµνρσRµνρσ constructed by squaring
the Riemann tensor, which is plotted in Figure 3, is

K2(τ) =
9 l2 + 96 lτ2 + 48 τ4

(l + τ2)8
m2, (6)

which has the finite maximum value

K2(0) =
9m2

l6
. (7)

The Ricci tensor vanishes up to terms of order O(l/m).
The space-like surfaces τ = constant can be used to

foliate the interior of both, the black and the white hole.
Each of these surfaces has the topology S2×R. Suppress-
ing one angular coordinate, they can be depicted as long

τ

Κ2K2

τ

K2

τ

Figure 3: The bounded curvature scalar (6).

cylinders of different radii and heights. In the interior
black hole region (−

√
2m < τ < 0), as τ increases, the

radial size of the cylinder shrinks while the axis of the
cylinder gets stretched. At τ = 0 the cylinder reaches a
minimal size, and then smoothly bounces back and starts
increasing its radial size and shrinking its length as τ in-
creases in the interior white hole region (−

√
2m < τ < 0).

The cylinder inside the hole never reaches arbitrary small
sizes (the singularity), but it rather bounces at a small
finite radius l. The value of l is given by the requirement
that K(0) ∼ 1 in Planck units, which gives l ∼ m1/3.
The limit l → 0 is simply the joining of a Schwarzschild
black hole interior and a Schwarzschild white hole inte-
rior through the singularity. This is not a Riemann space
— it is analogous to a double cone: a space with a sin-
gular region of measure zero — but it is a rather well
behaved metric manifold, where geodesics can be defined
and studied [20]. In what follows, we mostly work in this
l → 0 limit.

All this defines the metric surrounding the B region.

A. Choice of the boundary

The idea to define a boundary for the B region is to
first surround it in the causal diagram with a diamond
shaped null surface Σ (see Figure 2), that is a diamond
null surface times a sphere in spacetime, and then, since
an appropriate boundary for computing transition am-
plitudes must be spacelike, to slightly deform Σ into a
spacelike surface. This surface is the Heisenberg cut we
choose, namely the surface we shall take as the boundary
between the quantum and the classical regions. Notice
that in quantum gravity, the Heisenberg cut is also a
spacetime boundary (see [28], section 5.6.4).

We want now to concretely specify Σ and compute
its intrinsic and extrinsic geometry. Since it has been
assumed that the dissipative irreversible physics of the
Hawking radiation is over at this point, the B region must
be time-reversal invariant. We do not know how good
this approximation is. The surface Σ can consequently
be seen as the union of two surfaces, a past one Σp and a
future one Σf , equal up to time reflection, Σ = Σp ∪Σf .
Here, the labels p and f stand for past and future, and
later on we shall also use the index t = {p, f} (hence
Σt) where t stand for time. Accordingly, we only need to
study the past boundary Σp, as the future boundary Σf

is determined by symmetry.
The past boundary is contained in the external and
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Figure 4: The past portion of the boundary surface.

black hole regions of a Kruskal diagram representing
Schwarzschild spacetime. Since both regions are covered
by the ingoing Eddington-Finkelstein coordinates, we can
use these coordinates to define Σp. The line element in
these coordinates reads

ds2 = −
(

1− 2m

r

)
dv2 + 2dr dv + r2 dΩ2. (8)

The Schwarzschild time coordinate t is related to the in-
going EddingtonFinkelstein coordinates by

t = v − r∗ = v − r − 2m ln
∣∣∣ r
2m
− 1
∣∣∣ , (9)

or

dt = dv − dr(
1− 2m

r

) . (10)

The null past diamond boundary can be defined in the
Kruskal diagram as follows: Let us consider a point Sout
(a 2-sphere in spacetime) outside the horizon at advanced
time v+ and Schwarzschild time t = 0, and a point Sin in-
side the horizon at advanced time v− < v+. The null past
diamond boundary is taken to be the union of the outgo-
ing past light cone of Sout and of the ingoing past light
cone of Sin from their intersection upward; see Figure 4.
To simplify the notation, in the following we replace the
labels out and in with the index ± = {+,−} ≡ {out, in},
e.g. S+ ≡ Sout and S− ≡ Sin.

Next, we define the spacelike past boundary Σp by
slightly deforming the null past diamond boundary while
keeping fixed S+ and S−. A convenient choice of defor-
mation is the following one. Consider the surface Σp− of
constant Lemâıtre time coordinate [29, 30]

tL = t+ 2
√

2mr + 2m ln

∣∣∣∣∣
√
r/2m− 1√
r/2m+ 1

∣∣∣∣∣ , (11)

passing by S− and the surface Σp+ defined by

v = βr, (12)

passing by S+, for some constant β ∈ R. Let Sp be
their intersection; see Figure 4. We choose the spacelike
past boundary Σp to be the union of the portion of Σp−

Figure 5: Carter-Penrose diagram of the B region with the
surface Σ and its components highlighted.

between Sp and S− and the portion of Σ+ between Sp

and S+. The parameter β can be fixed by requiring the
continuity of the normal to Σp at Sp.

The spacelike future boundary surface Σf is defined to
be the time-reversal of the surface Σp and the full space-
like boundary surface Σ is then partitioned in the four

components Σp+, Σp−, Σf+ and Σf−; see Figure 5. The
Carter-Penrose diagram of the B region consists of two
separate portions of the Kruskal diagram which are ap-
propriately joined. This is the ‘cutting and pasting’ used
in [18] in order to write for the first time a metric for the
black-to-white transition.

We now need to determine the intrinsic and the extrin-
sic geometry of Σ.

B. Intrinsic geometry

The intrinsic geometry of Σp+ is obtained by differentiat-
ing its defining equation (equation (12)),

dv = βdr, (13)

and inserting the result in the line element in equa-
tion (8). This gives

ds2
+ = β

(
2− β

(
1− 2m

r

))
dr2 + r2 dΩ2. (14)

To find the intrinsic geometry of Σp−, we rewrite the
explicit expression of the Lemâıtre time coordinate in
equation (11) in terms of the (v, r) coordinates. Then we
differentiate it, finding that on a constant tl surface the
following relation is satisfied:

dv =
dr

1 +
√

2m/r
. (15)

Using this relation in the line element in equation (8), we
obtain that the line element resulting from the intrinsic
metric of the Σ− surface is

ds2
− = dr2 + r2 dΩ2. (16)

That is, Σ− is intrinsically flat.
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C. Extrinsic geometry

Next, we want to determine the extrinsic geometry of Σ.
Since the two surfaces Σp+ and Σp− are both defined

by constraint equations of the form C = 0, it is easy to
compute their normal 1-forms using

nµ = − ∂µC

|∂νC∂νC|1/2
. (17)

In Schwarzschild coordinates, the normals to the surfaces
Σp− and Σp+ are then given by

n−µ =

(
−1,−

√
2mr

r − 2m
, 0, 0

)
, (18)

n+
µ =

(
−1, β −

(
1− 2m

r

)−1
, 0, 0

)
∣∣∣β (β − 2− 2mβ

r

)∣∣∣1/2 . (19)

Demanding that the normals match on Sp, uniquely fixes
the value of β:

β =
1

1 +
√

2m
rSp

. (20)

rSp can also be seen as a function of the retarded time
v = v+ − v−.

To deal with the extrinsic curvature of the surfaces Σp±
it is easier to express them as systems of parametric equa-
tions xµ± = xµ±(ya±), where ya± are some parameters which
serves as intrinsic coordinates to the surfaces. Given a
generic surface defined by the system of parametric equa-
tions xµ = xµ(ya) for some ya, the tangent 1-form to the
surface eµa is given by

eµa =
∂xµ

∂ya
(21)

and the extrinsic curvature tensor kab of the surface reads

kab = eµae
ν
b∇µnν . (22)

Let k±ab be the extrinsic curvature of Σp±. Then, a
straightforward calculation gives

k− ≡ k−ab dxadxb =

√
m

2r3
dr2 −

√
2mr dΩ2 (23)

and

k+ ≡ k+
ab dxadxb =

mβ3/2(r(3− β) + 2mβ)√
r5(r(2− β) + 2mβ)

dr2

− r(1− β) + 2mβ√
β(2− (1− 2m/r)β)

dΩ2 .

(24)

This completes the computation of the geometry of the
boundary of B. This geometry is entirely determined by

 

Figure 6: The triangulation of Σt. The brown tetrahedron t−
is inscribed into the larger violet tetrahedron t+. The blue
segments connect vertices of the two tetrahedra radially.

four parameters: the mass m, the Schwarzschild radii r±
of the spheres S±, which by construction satisfy

r− < 2m < r+ , (25)

and the retarded time v = v+ − v−. The physical inter-
pretation of these four parameters is transparent. The
mass m is the mass of the black hole when the black-
to-white transition happens; the retarded time v is the
external (asymptotic) time it takes for the transition to
happen; the radius r+ is the minimal external radius
where we assume the classical approximation to hold and
the radius r− is the minimal internal radius where we as-
sume the classical approximation to hold. When m and
r± are fixed, the value of v can be equivalently deter-
mined by fixing β or rSp . These are the only parameters
describing the quantum transition.

Quantum gravity should determine a transition am-
plitude W for the process as a function of these four
parameters

W = W (m, r±, v). (26)

In Planck units, the four parameters can be seen as di-
mensionless. We expect the specific details of the chosen
Σ not to matter, as they can be absorbed in a shift of the
Heisenberg cut (as long as it does not enter the quantum
region).

The task of the forthcoming companion paper is to
write an explicit expression for the function W (m, r±, v)
using the covariant LQG transition amplitudes. These
are given in an expansion in number of degrees of free-
dom. At finite order, the amplitudes are defined for spe-
cific discretisations of the geometry. Below we define a
first order discretisation of Σ in the form of a triangu-
lation. As we shall see in the companion paper, this
triangulation can in fact be seen as the boundary of a
cellular decomposition of the B region.

III. TRIANGULATING Σ

The topology of the B region is S2×[0, 1]×[0, 1] and the
topology of its boundary ∂B = Σ = Σp ∪ Σf is S2 × S1.

We can identify two symmetries of the geometry of Σ
and one symmetry of its topology:
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• The Z2 time reversal symmetry that exchanges p
and f .

• The SO(3) symmetry inherited by the spherical
symmetry of the overall geometry.

• A Z2 symmetry that exchanges the internal (min-
imal radius) sphere S− and the external (maximal
radius) sphere S+. This is a symmetry of the topol-
ogy, but not of the geometry, since S− and S+ have
different size.

To find a triangulation of Σ we discretise the two
spheres S− and S+ into regular tetrahedra. This re-
places the continuous SO(3) symmetry with the discrete
symmetries of a tetrahedron. In particular, we discre-
tise each of the two spheres S± in terms of a tetrahedron
t±. We label the four vertices of each tetrahedron as
v±a where a = 1, 2, 3, 4; and the triangles bounding the
tetrahedra as l±a, where the triangle l±a is opposite to
the vertex v±a.

Thanks to the Z2 time reversal symmetry, the trian-
gulations describing Σp and Σf must be topologically
equivalent. For this reason, the same construction can
be applied to both. A convenient triangulation for Σt,
illustrated in Figures 6 and 7, is the following one. The
placement of the smaller tetrahedron t− inside the big-
ger tetrahedron t+, which can be chosen arbitrarily, is
taken to be as in Figures 6 and 7(a), such that the ver-
tex v−a is opposite to the vertex v+a and, hence, the
face l−a is directly facing the vertex v+a. Then, each
vertex v+a of t+ is linked to the three vertices of the
triangle l−a (Figures 6 and 7(a)), creating 14 tetrahedra
in total. We call T t+a the tetrahedra that have l+a as
faces (violet in Figure 7(b)) and T t−a the tetrahedra that
have l−a as faces (brown in Figure 7(c)). Each of the six
remaining tetrahedra (blue in Figures 7(d) and 7(e)) is
bounded by two of the T t+a tetrahedra and two of the T t−a
tetrahedra. Noting that the labels given to the T t+a and
T t−a tetrahedra are such that each of the six remaining
tetrahedra is bounded by T t+b, T

t
+c, T

t
−d and T t−e, with

b 6= c 6= d 6= e, we can then label the six remaining tetra-
hedra as T tbc ≡ T tcb, where the labels b and c refer to T t+b
and T t+c. Clearly, from T tbc one can readily trace back the
other two tetrahedra T t−d and T t−e.

The full triangulation of Σ is constructed identifying
each l±a face of Σp with the l±a face of Σf . This com-
pletely defines the triangulation of Σ.

The complication of the triangulation chosen is due to
the non trivial topology of Σ and from the computational
opportunity of choosing a triangulation that respects the
symmetries of the problem.

A. The dual of the triangulation

In CLQG one works with the dual of a cellular decompo-
sition of a spacetime region. More precisely, the spinfoam

(a) (b) (c)

(d) (e) (f)

Figure 7: All images represent the triangulation of Σt, but
with different tetrahedra highlighted. In (a) no tetrahedron
is highlighted (the tetrahedron t− is in brown to remind that it
is hollowed inside); in (b) the four T t

−a are highlighted; in (c)
three T t

+a out of four are highlighted; in (d) three T t
ab out of six

are highlighted; in (e) the remaining three T t
ab are highlighted;

in (f) two T t
−a, two T t

+b and two T t
cd are highlighted.

that captures the discretised degrees of freedom of the ge-
ometry is supported by the 2-skeleton of the dual of the
cellular decomposition. The boundary of the spinfoam is
the boundary spin network, which is dual to the bound-
ary triangulation. The graph ΓΣ of the spin network is
the two-skeleton of the dual of the boundary triangula-
tion.

The spin-network graph ΓΣ for the triangulation we
have constructed, is illustrated in Figure 8. Each circle
is a node of the spin network, and represents a tetrahe-
dron, and each link joining two nodes represent a triangle
separating two tetrahedra. (Intersections of links in this
two-dimensional graph representation have no meaning.)

Since the information carried by the graph of a spin-
network is only in its topology, as long as the latter re-
mains unchanged, the graph can be deformed at will.
Although the graphical representation of the dual graph

Figure 8: Two-dimensional graph ΓΣ of the spin network of Σ.
The circles are nodes (dual to tetrahedra) and the segments
are links (dual to the triangles).
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ΓΣ in Figure 8 is completely fine to represent the topo-
logical information of the spin-network, it is not the best
choice to manifestly represent all of its symmetries. A
more symmetrical representation is the one in Figure 9.

Although the graph ΓΣ is quite complicated, thanks to
the symmetries of the problem it has only two kinds of
nodes that are topologically distinct: the T t±a nodes and
the T tab nodes. The symmetries act by permuting the a
indices and exchanging p with f or + with −. Geomet-
rically, the T t+a nodes differ from the T t−a ones, as the
last symmetry is not geometrical. For the same reasons,
there are only four kind of links up to geometrical sym-
metries (two kind up to topological symmetries). These
correspond to:

• The four links l+a dual to triangles forming the
discretized sphere S+.

• The four links l−a dual to triangles forming the
discretized sphere S−. Together with the l+a links
they connect Σp with Σf . They are vertical in the
second panel of Figure 9.

• The 24 links lt(+a)(bc) (12 for each t), with b =

a, c 6= a, dual to the internal triangles separat-
ing the boundary tetrahedra T t+a (violet) from the
internal tetrahedra T tbc (blue).

• The 24 links lt(−a)(bc) (12 for each t), with a 6= b 6= c,

dual to the internal triangles separating the bound-
ary tetrahedra T t−a (brown) from the internal tetra-
hedra T tbc (blue).

The geometrical data that characterise the discretised
geometry (and define coherent spin network states) are
the areas of the triangles and the angles between tetra-
hedra at these triangles. Hence, the relevant boundary
data for the calculation are:

• The two areas a± of the internal and the external
sphere S±, which determine the areas associated to
the links l±a

• The two areas A± of the triangles dual to lt(±a)(bc).

Figure 9: The left figure portrays a two-dimensional repre-
sentation of the dual of the triangulation of Σt and the right
figure portrays a three-dimensional representation of the dual
ΓΣ of the full triangulation of Σ, with labels omitted; one can
easily label the right figure reading the different labels from
the left figure and using t = p for the bottom and t = f for
the top.

• The two (thin) angles k± between Σp± and Σf± at
the internal and external sphere, which determine
directly the angles associated to the links l±a.

• Two (thick) angles K± that depend on the extrin-
sic curvature of Σ±. The angles in Σp have the
opposite sign of the angles in Σf .

The extrinsic coherent state ψa±,k±,A±,K± on
the graph ΓΣ defined by the geometrical data
(a±, k±, A±,K±) represents the incoming and out-
going quantum states that correspond to the external
classical geometry [23]. The CLQG transition amplitude
between coherent states will be a function of eight real
numbers, with rather clear geometrical interpretation:

W (a±, k±, A±,K±) = W (ψa±,k±,A±,K±) , (27)

where W (ψ) for an arbitrary state ψ in the boundary
quantum state is defined in [23].

In turn, these eight numbers cn = (a±, k±, A±,K±)
depend on the geometry of Σ described in the previ-
ous section. Hence, they depend on the four parameters
m, r±, and v defined above. This defines the amplitude
for the black-to-white hole transition as a function of
these parameters:

W (m, r±, v) = W (cn(m, r±, v)) . (28)

Our last task is to compute the functions cn(m, r±, v).

B. Areas and angles

The area of the spheres S± is directly determined by
the radii r±. Since the four triangles l±a bounding the
tetrahedra t± that discretise the spheres S± are equal by
symmetry, we take their area to be one fourth of that of
the spheres, that is

a±
def
= πr2

±. (29)

The three-dimensional surface Σt is discretised in
terms of 14 tetrahedra. We distribute the total volume
of Σt equally between all tetrahedra. The volume of each
tetrahedron is then

V =
1

14

∫
Σt

d3x
√
|det g(3)|

=
1

14

∫
Σ+

dr dθ dφ r2| sin θ|

√∣∣∣∣β(2− β
(

1− 2m

r

))∣∣∣∣
+

1

14

∫
Σ−

dr dθ dφ r2| sin θ|

=
4π

14

∫
Σ+

dr r2

√∣∣∣∣β(2− β
(

1− 2m

r

))∣∣∣∣
+

1

14

4π

3

(
r3
S − r3

−
)
.
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Figure 10: Definition of k+

The integral over Σ+ can be computed explicitly (with
computer algebra) in the case in which β is fixed by the
continuity at Sp. We do not give the explicit expression
here. Once the volume of the T t±a tetrahedron has been
fixed, the value of the area A±, which is the area of the
three triangles (dual to the links lt(±a)(bc)) that toghether

with l±a bound T t±a, results to be fixed as well and it
can be computed as follows. Denoting b± the value of
the edge shared by l±a and one of the faces having area
A± and denoting h± its height relative to b±, the area
A± is

A± =
1

2
b±h± . (30)

The base b± is trivially determined from the area a± of
the equilateral triangle l±a:

b± =

√
4π√

3
r± . (31)

The height h± is instead determined through the geo-
metrical relation

h± =

√
H2

± +
1

12
b2± , (32)

where H± is the height of the T t±a tetrahedron relative
to the face l±a and it can be expressed in terms of the
volume of the tetrahedron as

H± =
3V

a±
=

3V

πr2
±
. (33)

Inserting the expressions in equations (31) and (32) in
the formula in equation (30) we finally find

A± =

√
3
√

3V 2

πr2
±

+
π2

9
r4
± . (34)

The volume V in the last expression must be read as a
function V (m, r+, r−, rS) of the parameters defining the
transition.

The angles k±, which are represented in Figure 10, are
defined as

cos k±
def
=
(
gµνn±fµ n±pν

)∣∣
S±

. (35)

It is then straightforward to find

cos k+ =
1 +

[
(1− 2m/r+)β − 1

]2
|β(β − 2− 2mβ/r+)|(1− 2m/r+)

(36)

and

cos k− =
1 + 2m/r−
1− 2m/r−

. (37)

The angles K± bear the extrinsic curvature of Σ±. We
choose to define them as the average of the extrinsic cur-
vature, shared over the 12 triangles lt(±a)(bc):

K± =
1

12

∫
Σ±

kaa. (38)

We have

(k+)aa =

(
1− 2m

r

)
mβ3/2(r(3− β) + 2mβ)√

r5(r(2− β) + 2mβ)

− 2

r2

r(1− β) + 2mβ√
β(2− (1− 2m/r)β)

(39)

and

(k−)aa = −
√

m

2r3

(
3 +

2m

r

)
. (40)

For the time being, we leave the integral unsolved.
Hence we have found analytic expressions for the four

areas, a± and A±, and the four angles, k± and K±, as
functions of the four parameters m, r± and β. Equiv-
alently, the parameter β can be traded for rS through
equation (20), or also traded for v.

IV. CONCLUSION

The above construction defines the black-to-white hole
transition amplitude W (m, r±, v) as a function of the
physical parameters (m, r±, v) that characterise the tran-
sition, and in terms of covariant LQG transition ampli-
tudes. A number of questions remain open, which we list
here.

• To compute the amplitude W (ψa±,k±,A±,K±) to the
first relevant order, we need to find a spinfoam
bounded by ΓΣ. This will be done in a forthcoming
companion paper.

• The amplitude is then given by a complicated
multiple group integral, which is hard to study.
Asymptotic techniques, and in particular those re-
cently developed in [31] are likely to be essential for
this. Alternatively, a numerical approach, follow-
ing [32, 33] may provide insights in the amplitude.

• The question of eventual infrared divergences in the
amplitudes and, eventually, how to deal with them,
needs to be addressed.

• To compute probabilities from amplitudes we have
to address the problem of the normalisation. This
can be solved using the techniques developed in the
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boundary formalism. See in particular [34]. Obvi-
ously the probabilities computed give the relative
likelihood of a transition within the space of the
parameter considered, and not the relative proba-
bility with respect to alternative scenarios on the
end of the life of a black hole.

• We have taken a number of approximations, which
we do not control. Physical intuition suggests that
the approximation given by disregarding a direct
effect of Hawking radiation in the last phases of
the evaporation (besides having already shrunk the
horizon), may be of particular interest to check.

• The black-to-white hole transition may have impor-
tant astrophysical and cosmological implications.
White hole produced by the transition of Planck
size holes may be stable [35] and form a component
of dark matter. Alternatively, if the transition can

happen at larger black hole masses, it may be re-
lated to cosmic rays and fast radio bursts [36–38].
A control on the amplitude of this transition should
help to shed light on these possibilities.

***
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