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The notion of black-hole entropy was introduced by Jacob Bekenstein in 1972.
During past 45 years this subject was in the center of interests of the modern
theoretical physics. In this paper we briefly discuss ”puzzles” of the black-hole
physics, connected with their entropy. We also demonstrate that when the stan-
dard energy conditions are violated entropy associated with the event horizon can
have quite unexpected behavior,

1. Instead of Introduction

Jacob Bekenstein became famous after he published in 1972 three papers on black

hole entropy and no-hair theorem.1–3 He was only 25 years old at that time. His

work was very close to my scientific interests and I followed all his publications.

But for the first time I met Jacob only in the middle of 90th at the conference in

Moscow. By that time he was already a world-wide recognized expert in black holes.

What surprised me at our first meeting, was that this famous scientist turned out

to be such a shy person, very friendly and widely open for discussions.

After this I have met Jacob at many conferences and had a lot of discussions with

him. I remember that at one of the Quantum gravity meeting at Utrecht we were

sitting together with Jacob. After my talk he mentioned that it was interesting but

I spoke too fast. His talk was after mine. At the end of it because of the shortage of

time he was speaking even faster than me. We laughed together when I mentioned

this to him.

On many occasions I tried to convince Jacob, that black hole quantization, which

he and Slava Muchanov have advocated, not necessary means that the spectrum

of black hole radiation should be discrete. My argument was that in their model

the discrete levels have huge degeneracy and the interaction between these internal

degrees of freedom can make the spectrum of radiation practically continuous. Jacob

did not agree with me and proposed arguments, based on the gedanken experiments,
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supporting his point of view. Jacob could be a bit stubborn.

In 2016 there was a celebration of a hundred anniversary of black holes. We

with Don Page were organizing a meeting ”Black Holes’ New Horizons” devoted to

this event, which was held in May 2016 in Oaxaca (Mexico). We wanted very much

to see Jacob at our meeting and sent him in the beginning of March of 2015 our

invitation letter. A few days later (on March 6) I got the following answer from

Jacob:

”Dear Valeri,

So kind of you to invite me to the workshop in Oaxaca. I would have liked to

go, but I am, of late, skipping meetings which involve very long travel. And this

would be a classic example of such. I imagine I will be missing a lot of fun; such is

life. But I wish you and Don a successful organizing of what must be a very exotic

meeting. I hope you enjoy it. My very best wishes,

Jacob”

Jacob Bekenstein passed away on August 16, 2015. To honor his memory we

dedicated to him a special session at our Black Hole meeting. Bill Unruh and Barack

Kol, who knew Jacob very well, spoke about their memories dedicated to Jacob’s

life.

2. Black-hole entropy puzzles

2.1. Bekenstein-Hawking entropy of astrophysical black holes is

huge

In his groundbreaking papers1,3 Jacob Bekenstein claimed that a black hole should

have entropy proportional to its surface area. He arrived to this conclusion by

considering gedanken experiments with black holes. His conclusion was that this

entropy is SH = βA/l2Pl, where the dimensionless coefficient β is of order of 1.

Hawking calculations of the quantum radiation of black holes4,5 demonstrated that

it is thermal and the temperature of a black hole of mass M is

TBH =
~c3

8πGMkB
, (1)

where kB is the Boltzmann constant. This result allowed to fix the parameter β

in the Bekenstein’s expression for the entropy, β = 1/4. The exact expression for

what is called now Bekenstein-Hawking entropy isa

SBH =
A

4l2Pl

. (2)

Already in his first papers, Bekenstein estimated the black hole entropy for

stellar mass black holes, and found that is huge. In3 he wrote:

aThe standard subscript BH used in the expression has double meaning. It is used as an abbrevia-

tion for the ”Black Hole”. It can also be understood as the abbreviation for ”Bekenstein-Hawking”.
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Now we know that besides stellar mass black holes there also exist supermassive

black holes with the mass M ∼ 106 − 1010M⊙. The corresponding dimensionless

entropy of these objects is SBH ∼ 1089 − 1097.

The papers6,7 contain estimations of the contribution of matter and black holes

to the entropy of the Universe. The table below taken from the paper6 summarizes

its results.

objects entropy energy

1022 stars 1079 Ωstars ∼ 10−3

relic neutrinos 1088 Ων ∼ 10−5

stellar heated dust 1086 Ωdust ∼ 10−3

CMB photons 1088 ΩCMB ∼ 10−5

relic gravitons 1086 Ωgrav ∼ 10−6

stellar BHs 1097 ΩSBH ∼ 10−5

single supermassive BH 1091 107M⊙

1011 × 107M⊙ SMBH 10102 ΩSMBH ∼ 10−5

holographic upper bound 10123 Ω = 1

The main conclusion is that up to best of our present knowledge most of the

entropy of our Universe is in the form of the black-hole entropy. The following

example also illustrates a peculiar property of black holes as thermodynamical sys-

tems. Let us assume that one kilogram of matter falls down into the black hole of

mass 1010M⊙. The change of the entropy in this process is as large as ∆SBH ∼ 1077

and it is comparable with the thermal entropy of a single star.

The concept of black-hole entropy, introduced by Jacob Bekenstein, is now

widely used. Google search shows that more than a half of million documents uses

this notion. There are several puzzles of the black hole physics which are connected

with this notion. Below we briefly discuss some of them.

One can illustrate the key problem connected with the notion of the black-hole

entropy as follows. Suppose one has a sphere of radius R. Its surface area is

A = 4πR2. Let us consider triangulation of the sphere and assume the area of a

single triangle is s = l2 (see Figure 1). The total number of the triangles is N = A/s.

One can use such a sphere to encode information, for example, by coloring triangles

by black and white colors. Total number of possible combinations is 2N , and the

amount of information that one can transfer by using such a code is ∼ A/l2. The
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Fig. 1. Sphere triangulation

entropy corresponding to the loss of this information is S ∼ A/l2. This simple

observation shows that in order to obtain SBH the size of elementary cells must

be of order of the Planckian length. In other words, a plausible explanation of the

statistical-mechanical origin of the black-hole entropy should appeal to quantum

gravity.

2.2. Black-hole entropy and entanglement

In the interaction with surrounding matter a black hole behaves as a heated body

with temperature TBH and entropy SBH . Black holes obey laws, similar to the

laws of the standard thermodynamics8 (for a comprehensive discussion see e.g.

reviews9,10). A natural question which attracted a lot of attention is: Is the analogy

of black holes with thermodynamical systems complete? Do there exist internal

degrees of freedom responsible for the black-hole entropy? One of the first attempts

to answer this question was proposed by Bombelli, Koul, Lee and Sorkin (BKLS).11

They propose to relate the black-hole entropy to the entanglement entropy of zero

point fluctuations. A similar idea was proposed by t’Hooft12 in his famous brick wall

model. The BKLS idea was rediscovered in13,14 , where the entanglement entropy

of a free quantum field in the spacetime of a black hole was calculated. There

were many interesting and important publications on this subject (see e.g.15–18). A

nice review, which contains a detailed analysis of these and other publications and

describes the ”state of art” of the black hole entropy problem by 1994 can be found

in the paper by Jacob Bekenstein.19

The origin of such entanglement entropy can be understood as follows. The

interior of the black hole is bounded by the event horizon. For an external observer a

regular at the horizon (vacuum) state of a quantum field can be described in terms of

Rindler particles (RP). Each of these RP has a partner particle (PP) located inside

the horizon and which is strongly correlated with it. A superposition of RP and

PP is a pure quantum state. Averaging over unobservable by an external observer

PP states results in the density matrix ρ̂RP for RP states. It describes the system
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entanglement. The entanglement entropy is defined as S = −TrRP (ρ̂RP ln ρ̂RP ).

Some of the Rindler particles penetrate the potential barrier, surrounding the

black hole. They form the Hawking radiation. However, the vast majority of Rindler

particles are reflected by the potential barrier and fall down inside the black hole.

At the same time new RPs are injected by the black hole. As the result, the

distribution of the RP outside of the horizon is stationary. The RPs during their

(short) lifetime outside the black hole contribute to the entanglement entropy. The

corresponding density matrix ρ̂RP is thermal. This property is closely related with

the thermality of the Hawking radiation. Since the vast majority of the Rindler

quanta that contribute to the entropy are located in the very close vicinity of the

horizon, this entropy is proportional to the surface area of the black hole.

The problem of this and similar approaches to the black-hole entropy is that this

quantity is divergent. The divergence is a consequence of the assumption that the

black hole surface is infinitely sharp. Certainly, this is an idealization. In fact, as a

result of emission of the Hawking quanta, the horizon fluctuates. This effect of the

horizon fluctuation was described in the remarkable paper by Jacob Bekenstein.20

In terms of proper distance, the scale of such fluctuations is of the order of the

Planck length, lPl. By using this cut-off one obtains the finite expression for the

black-hole entanglement entropy

Sent = βSBH , (3)

where the dimensionless parameter β is of order of 1.14

There were several, more formal proposals, for making Sent finite. One of the

most popular attempts was some analogue of the renormalization procedure. It

was proposed to prescribe to a black hole (infinite) negative, so called ”geometric”,

entropy, in such a way that after adding it to the (infinite) positive entanglement

entropy one obtains a finite answer, which is identified with SBH . The weak point

of this approach is that it does not allow one to explain black hole entropy by

statistical-mechanical counting of some black hole degrees of freedom. It introduces

the notion of ”geometric entropy”, which does not have any statistic-mechanical

meaning.

2.3. Universality problem

The above described approach, in which the entropy of the black hole is related to

existing physical fields, has a fundamental problem. Each of the fields gives indepen-

dent (additive) contribution to Sent. Hence, even if the proper physical mechanism

of the cut-off is found, the factor β, which enters (3), depends on the number and

characteristics of the fields that contribute to Sent. In particular, it depends on the

spectrum of mass and properties of fundamental elementary particles, even of those

that are not yet discovered.

This problem is closely related to another, even more fundamental problem: The

universality of the black hole entropy SBH . Consider a black hole with mass much
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larger than the Planckian mass. Such an object is classical and one can neglect

possible quantum corrections. In other words, in order to find the Bekenstein-

Hawking entropy of the black hole it is sufficient to use the corresponding solution

of the classical Einstein equations. At the same time, one is going to obtain the

same answer by counting some microscopic degrees of freedom of some version of

quantum gravity. In order to obtain the required value of SBH the corresponding

constituents must be heavy, with mass comparable with the Planckian one. The

calculations, based on the fundamental theory should correctly reproduce the result

of the low energy classical gravity. In other words, there must exist a mechanism,

that guarantees that the calculations based on counting of states in the fundamental

theory always give the correct answer, SBH , which is known from the low energy

gravitational theory. This is a so called universality problem.21–23,23–25

There are several approaches to counting the black-hole degrees of freedom and

calculation of its entropy based on the some ”fundamental” theory, such as string

theory, loop gravity, induced gravity, etc. A discussion and comparison of these

approaches can be found in comprehensive reviews.26,27 Common feature of these

approaches is that the low energy gravity is an emergent phenomenon generated by

fundamental quantum heavy constituents (strings, loops, etc). In such a case the

black-hole entropy is obtained by counting the number of states of such constituents.

2.4. Information loss paradox

Another black-hole puzzle is a so called information loss paradox. It can be for-

mulated as follows. Suppose a black hole was formed as a result of the collapse of

matter, which originally was in pure quantum state. For example, it was a coherent

state of collapsing photons. After its formation black hole emits Hawking radiation

and its mass decreases. If as result of this process the black hole disappears, the final

state of the system would be radiation emitted by the black hole. In other words, a

pure state is transformed into a state described by the density matrix with non-zero

entropy. This implies the violation of unitarity of quantum mechanics.28 Certainly,

there is an option that the evaporation is not complete and some remnant would

remain. If the initial mass of the black hole was large, this remnant must contain

partners of all the particles emitted outside during Hawking evaporation. Since the

initial state was pure, the entropy of these partners is the same as the total entropy

of the emitted outside particles. In the classical description, this entropy is finally

absorbed by the singularity inside the black hole. If in an UV complete version of

Einstein gravity one or more new universes are created inside the black hole,29,30

they ”inherit” the corresponding entropy.

The information loss paradox arises if for some reason this ”scenario” is con-

sidered as unsatisfactory, and one insists that the evaporation of the black hole is

complete and no remnant is left. This point of view is adopted in the string theory.

There exist large number of publications devoted to the unitarity problem in the

black hole evaporation (see e.g. reviews31–38). For example, one can assume that
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(1) the information ”comes out” with the Hawking radiation,32 or (2) the informa-

tion is ”stored” in soft-modes near the horizon,39,40 or (3) the information ”comes

out” at the final state of the evaporation (see e.g.37,41,42 and references therein).

There is another interesting question which is directly connected with the in-

formation loss paradox. Let us consider two black holes, which at some moment

of time T have same mass M . Let us assume that they were formed as a collapse

of matter in the pure state. Let us also assume that one of these black hole was

just formed, while the other one was formed long time ago, at time T0 < T . Its

initial mass was M0 > M , and it lost the mass ∆M = M0 −M as a result of the

Hawking evaporation. Before the mass of the second black hole becomes M it emits

radiation which has entropy ∼ ∆S ∼ M2
0 −M2. For example, if M0 =

√
2M , the

emitted entropy ∆S is of the order of SBH(M). The time during which the surface

area of the event horizon of an evaporating black hole is halved is often called ”Page

time”.43

Evaporation of particle in the black hole exterior is accompanied by creation

of its partner inside the black hole. By time T the entropy of such partners is

the same, as the entropy of the emitted particles, ∆S. Thus the ”internal states”

of these two black hole, ”young” and ”old”, with the same mass M at time T

is different. If this information returns to the external observer during the last

stage of their complete evaporation, this phase duration should be different for two

black holes. A result reported by Gregory Vilkovisky some time ago44–46 might be

interesting in connection with this problem.

The number of papers on this subject is fast growing. This means that at the

moment we do not have a solution of this puzzle, at least the one which satisfies

most the gravity-string community.

2.5. Where black-hole entropy is located?

In the discussion of black holes many different definitions of their horizon were

proposed, such as: event horizon, apparent horizon, isolated horizon etc. Most of

the statistical-mechanical calculations of the black hole entropy was done under an

assumption that the black hole is either static or stationary. In this case different

definitions of black hole horizon agree. And it is natural to associate the black hole

entropy with the event horizon. However, if the black hole is not stationary and its

mass and shape depend on time the question where black hole entropy is located

becomes non-trivial. Difference between different definitions of the horizon becomes

very important, when the weak energy condition is violated. Such a violation is

inevitable when quantum effects connected with the Hawking radiation are taken

into account. For example, there may exist a closed apparent horizon, while there

is no event horizon.47 In the rest of the paper we discuss possible ”paradoxical”

behavior of the event horizon in the case when the energy conditions are violated.
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3. Wormhole and entropy of Rindler horizon

If there exist matter violating the energy conditions, the Einstein equations allow

solutions which describe traversable wormholes (a detailed discussion of this subject

can be found in a nice book48). Such wormholes can be used as a device for ”study”

of black hole interiors49 . When the mass and the size of mouths of the wormhole

are small and the mass of the (non-rotating) black hole is large this effect allows a

simple analytical description. We shall use an approach proposed by Emparan and

collaborators for study of the event horizon for a small mass black hole falling into

the very large black hole50–52 . Namely, we approximate the event horizon of the

black hole of large mass M by the Rindler horizon. This is a plane null surface in

a flat spacetime. In the presence of a static wormhole, this plane first passes one

of the mouths, and some time later it passes the other mouth. We are going to

describe what happens in such a process with the event horizon. Here and later we

consider a case when the number of spacetime dimensions is 4 or higher. This does

not make the problem more complicated, but it is useful for a general discussion.

Let us consider (D = n+ 2)-dimensional flat spacetime and denote by

Xa = (T,X, ~Z), ~Z = Z1, . . . , Zn , (4)

Cartesian coordinates in it. Denote by γ± two straight lines defined by the equations

γ± : X = ±1

2
L, Zi = 0 . (5)

We assume that these two lines represent positions of the two spherical mouths of a

traversable wormhole. We assume that the radii of the mouths are equal and very

small, and that the time at the mouthes obeys the relation T+ = T−. In such a

model, any null ray that enters into γ−-mouth at time T comes out γ+-mouth at

the same moment of time.

We identify the unmodified Rindler horizon with a null plane Π: T = X − L/2.

It crosses γ+ at T = 0. We also denote by N the past null cone with the vertex at

γ−-mouth at the moment of time T = 0 (see Figure 1).

In our problem there exists only one dimensional parameter L which gives the

length scale. It is convenient to use dimensionless coordinates xa = Xa/L = (t, x, ~z).

We also denote ξ = x+ 1/2. In these coordinates (t, ξ, ~z) the equations of the past

null cone N and the undeformed horizon Π are

ξ2 + ρ2 = t2, t = ξ − 1 . (6)

where ρ =
√
~z2. This null cone intersects the horizon Π at n-dimensional surface Γ,

which is a simultaneous solution of the equations (6)

x = −1

2
ρ2, t = −1

2
(ρ2 + 1) . (7)

We denote by N+ a part of the cone N locates above the null plane Π, and by H a

part of the plane Π located outside the surface Γ. It is easy to check that Rindler

horizon, modified by the presence of the wormhole, is H = N+ ∪ H. Really, an
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Fig. 2. This picture illustrates how the surface of Rindler horizon is modified in the presence of

a static traversable wormhole. At this picture time changes in the vertical direction. Two solid

lines γ± represent positions of the mouths of the traversable wormhole.

additional region lying between N+ and Π is visible in the presence of the wormhole.

The rays from this domain can pass through the wormhole and appear outside γ+
mouth before the null plane Π crosses it.

Since interesting modification of the event horizon occurs at negative value of

time t, it is convenient to define τ = −t. We denote by Bτ a slice of the distorted

Rindler horizon at time t = −τ . For t ≥ 0 Bτ is n-dimensional Euclidean spaces

En. For 1/2 < τ < 1, Bτ slice is a sum of 2 disconnected n dimensional spaces.

One of them is En and the other is a round sphere Sn of radius τ . The surface area

of a unit n-dimensional sphere Sn is

Sn =
2πn/2

Γ(n/2)
. (8)

In a flat space a sphere of radius τ contains a volume Vn+1 = 1
nτ

n+1Sn .

In order to calculate the surface area of the horizon slices let us make some

remarks. Let us denote by dσ2
n the line element of the surface of n dimensional unit

sphere

dσ2
n = dθ2 + sin2 θdσ2

n−1 . (9)

To illustrate the properties of the horizon slices at different moments of time we

consider a section θ1 = . . . φ = 0, and chose the parameter θ so that its value θ = 0

corresponds to the lowest point of the sphere.

Let us denote

cos θΓ = 1− 1

τ
, for τ > 1/2 . (10)
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Fig. 3. τ = 1/2 Fig. 4. 1/2 < τ < 1

Fig. 5. τ = 1 Fig. 6. τ > 1

Fig. 7. t = −τ =const slices of the horizon

The angle θΓ determines a point where Γ curve intersects the slice t = −τ =const.

In the interval τ ∈ [1/2,∞), θΓ monotonically decreases from π at τ = 1/2 to 0

when τ → ∞. For large τ , θΓ ∼ (2/τ)1/2. The structure of slices Bτ for τ ≥ 1/2 is

shown at Figure 7. For τ = 1, B1 is a half of the sphere Sn of radius 1 glued to a

part of En (see Fig 5). For τ > 1 the slice has the form presented at Fig 6.

The line element of the spherical component of the event horizon at τ > 0 is

dl2 = τ2dσ2
n . (11)

The area of the distorted part of the event horizon is

An(τ) = τnSn−1Pn, Pn(θΓ) =

∫ θΓ

0

dθ sinn−1(θ) . (12)

The area of the part of the undistorted horizon located inside Γ at time τ is

A0
n(τ) =

1

n
τn sinn(θΓ)Sn−1 . (13)

Thus, the change of the area of the horizon at τ > 1/2 is

∆An = A0
n(τ)−An(τ) = Sn−1∆, ∆ =

1

n
(2τ − 1)n/2 − τnPn(θΓ) . (14)

For the case D = 4 (n = 2) and τ ≥ 1/2, the area deficit ∆A2 does not depend

on time and it is

∆A2 = −π . (15)
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For τ ∈ [0, 1/2]

∆A2 = −4πτ2 , (16)

so that at τ = 0, that is when the horizon is not distorted, ∆A2 vanishes.

The evolution of the entropy of the Rindler horizon in the presence of the worm-

hole can be described as follows. The Rindler event horizon is defined by the

following condition: At late time in future it coincides with the plane Π. The sur-

face of this horizon in the past is slightly different from this plane. This difference

asymptotically vanishes in the infinite past, however the size of domain where the

horizon differs from Π, grows in the past. As a combination of these two effects,

∆A2 remains the same. If we consider evolution of this ”real” Rindler horizon, we

come to the conclusion that it does not change up to the moment of time t = −1/2.

At this moment a spherical part of the event horizon separates. Its initial radius is

1/2 and its area is π. The area of the unperturbed horizon A0
n becomes less then

the area of the initial horizon by the value π. Later in time the separated part of

the horizon shrinks to zero. The net result of this evolution is that the area of the

Rindler horizon at late time is less that its initial value by quantity π. If we restore

the dimensionality one gets the following expression for the decrease of the entropy

∆S = S(t = ∞)− S(t = −∞) = −π
L2

4l2pl
. (17)

If the number of spacetime dimensions is greater than four, the behavior of the

entropy associated with the Rindler horizon is even more peculiar. For example for

D = 5 (n = 3) one has

∆A3 = 4π∆3 , (18)

∆3 =
1

6
(τ + 1)(3τ − 2)

√
2τ − 1− 1

2
τ3 arccos(

τ − 1

τ
) . (19)

For τ → ∞ ∆A3 is negative and its absolute value infinitely grows

∆A3 ∼
[

−2
√
2

5
τ1/2 +

√
2

14
τ−1/2

]

S2 . (20)

Calculations for D = 6 give

∆A4 = 2π2∆4, ∆4 =
1

4
− 2

3
τ . (21)

Similar results are valid for any n ≥ 3: the corresponding ∆An is negative and

divergent in the limit τ → ∞.

4. A wormhole in a black hole geometry

As we mentioned, the Rindler horizon is a certain idealization of the black hole

horizon in the limit when the mass of the latter is very large. However, there exit

two properties that differ the Rindler horizon from the horizon of the black hole: its

topology differs from the spherical topology of the black hole, and its surface area

is infinite. The first difference implies that the Rindler horizon is not a trapped

surface. In this section we discuss how the black-hole event horizon evolves in the

presence of a traversable wormhole, when one of its mouths falls into it.
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4.1. Null rays in the black-hole interior

We write the metric of (D = n+ 2)-dimensional spherical black hole in the form

dS2 = −fdV 2 + 2dV dr + r2dω2
n , (22)

where f = 1 − (rg/r)
n−1. In is convenient to use the dimensionless form of the

coordinates and the metric. For this purpose we put

V = rgv, r = rgx, dS2 = r2gds
2 , (23)

where

ds2 = −fdv2 + 2dvdx+ x2dω2
n, f = −1− xn−1

xn−1
. (24)

In the black hole interior x ∈ (0, 1) the function f is negative.

We consider a situation when one of the mouths of a traversable wormhole falls

down into the black hole, while the other mouth is kept at rest in its exterior. As

earlier, we assume that the size of the mouths is very small. We also assume that the

inner mouth reaches the singularity at the moment v = 0 of the advanced time. All

the causal curves that enter the inner mouth before this would appear in the black

hole exterior. We denote by N the past null cone with the vertex at x = 0, that is

in the position of the inner mouth at v = 0. We also denote by Γ an intersection of

N with the surface x = 1, which is a position of unperturbed horizon. We denote

by N+ a part of N with x ≤ 1 restricted by Γ, and by H a part of the horizon

H outside Γ, that is an undistorted part of the horizon. Thus the surface of the

distorted horizon is N+ ∪H.

To find the n-dimensional surface Γ one needs to solve equations for null rays in

the black hole geometry. Let us write the line element of a unit sphere in the form

dω2
n = dθ2 + sin2 θdω2

n−1 . (25)

Because of the spherical symmetry it is sufficient to consider only null rays, prop-

agating along the axis of the symmetry of Sn−1. In the coordinates (v, x, θ, θi),

with i = 1, . . . , n− 2 one can put θi = 0. Thus a null ray from the cone N can be

specified by functions (v(ν), x(ν), θ(ν)), where ν is an affine parameter along the

ray. The problem reduces to finding null rays in 3D spacetime with metric

ds2 = −fdv2 + 2dvdx+ x2dθ2 . (26)

It has 2 Killing vectors ∂v and ∂θ, hence one has

−f v̇ + ẋ = E , (27)

x2θ̇ = L , (28)

−f v̇2 + 2v̇ẋ+ x2θ̇2 = 0 . (29)

The first two relations correspond to the conservation of the energy E and the

angular momentum L. The last relation is a normalization condition for the null

ray velocity. One can exclude the parameter E. It is sufficient to change the affine
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parameter ν → ν̃ = E−1ν. We use a dot to denote a derivative with respect to this

new parameter.

To determine a position of the distorted horizon one needs to trace back in time

the beam of null rays that arrive to the inner mouth of the wormhole at the moment

when it reaches the singularity, that is a point (v = 0, x = 0, θ = 0). The null rays

from such a beam differs by the value of the parameter λ = L/E. Inside the black

hole one has f = −|f | and the equations (27)–(29) take the form

ẋ = 1− |f |v̇ , (30)

θ̇ =
λ

x2
, (31)

−|f |v̇2 + 2v̇ +
λ2

x2
= 0 . (32)

The last equation gives

v̇ =
1− ǫU

|f | , U =
√

1 + λ2|f |/x2 . (33)

The parameter ǫ takes the values ±1. For λ = 0 the equation (33) takes the form

v̇ =
1− ǫ

|f | . (34)

Hence for ǫ = +1, v̇ = 0. Such ray propagates along fixed advanced time surface.

For the other ray with λ = 0, one has v̇ = 2/|f |. Such a ray propagates along fixed

”retarded time” surface. Only the rays with ǫ = +1, after being traced back in

time, cross the event horizon.

4.2. Γ−curve

A curve Γ is formed by intersection of the rays with ǫ = 1 with the undistorted

horizon. To find Γ one needs to solve the following equations

v̇ =
1− U

|f | , ẋ = U, θ̇ =
λ

x2
. (35)

These equations imply

dv

dx
=

1− U

|f |U ≡ − λ2

x2U(1 + U)
,

dθ

dx
=

λ

x2U
. (36)

The function U is singular at x = 0. The right-hand side of these equations can be

written in a more clear form. Let us denote

U =
U

x
n+1

2

, U =
√

λ2(1− xn−1) + xn+1 . (37)

Then the equations (36) takes the form

dv

dx
= − λ2xn−1

U(U + x
n+1

2 )
,

dθ

dx
=

λx
n−3

2

U . (38)
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The quantity λ enters as a parameter in the right-hand side of these equation. It

is easy to find solutions of (38) for special limiting value of this parameter. Namely

for λ = 0 one has v(x) = θ(x) = 0. For λ → ∞, U ∼ λ
√
1− xn−1 and equations

(38) take the form

dv

dx
= − xn−1

1− xn−1
,

dθ

dx
=

x
n−3

2

√
1− xn−1

. (39)

The solution of the second equations is

θ =
2

n− 1
arcsin(x−

n−1

2 ) . (40)

In particular, the value θ∞ of the angle θ at the moment when a null ray with the

impact parameter λ = ∞ reaches the unperturbed horizon x = 1 is

θΓ∞ =
π

n− 1
. (41)

The corresponding advanced time vΓ∞ = −∞.

For a finite value of the impact parameter λ the coordinates (vΓ, θΓ) of the

points, where the ray crosses the unperturbed horizon x = 1, are

vΓ(λ) = −λ2

∫ 1

0

dx
xn−1

U(U + x
n+1

2 )
, (42)

θΓ(λ) = λ

∫ 1

0

dx
x

n−3

2

U . (43)

These relations are nothing but parametric equations of the surface Γ.

4.3. Shape and area of the distorted event horizon

In order to determine a shape of the event horizon at some moment of time one

needs to integrate backward in time v null ray equation for both subsets of the

rays, with ǫ = ±1. We need to find intersection of such rays with v0 =const surface,

with v0 < 0. For the rays from the subset ǫ = −1 the corresponding range of

λ is λ ∈ [0,∞). For the other subset of rays with ǫ = +1, λ is in the interval

λ ∈ [λΓ(v0),∞). λΓ(v0) is the impact parameter of the ray that crosses Γ at v = v0.

To make the calculations easier we introduce a new parameter µ = ǫ/λ, and denote

µΓ = 1/λΓ. Then µ changes from −∞ till µΓ. The negative µ corresponds to a

subset with ǫ = −1, while the positive µ correspond to the other subset. We also

denote y = xn. Then the corresponding set of null-ray equations takes the form

dy

dv
= −nVW,

dθ

dv
= − W

y
n+1

2n

, (44)

V =

√

1− y
n−1

n + µ2y
n+1

n , W = V + µy
n+1

2n . (45)

The initial conditions at v = 0 are y = θ = 0.

At y = 0 one has V (0) = W (0) = 1. The first, y−equation is regular at this

point, while the second equation has integrable singularity. In order to treat this
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singularity it is sufficient to write θ = θ̃ +∆θ(y) and to chose the (finite at y = 0)

function ∆θ so that the equation for θ̃ becomes regular at y = 0. One has

∆θ =

{

2y1/4 + 1
3
y3/4 , if n = 2 ,

2
n−1

y
n−1

2n , if n ≥ 3 .
(46)

The equation for θ̃ is

dθ̃

dv
= Θ̃, Θ̃ = Θ− d∆θ

dy
Y . (47)

For n ≥ 3

Θ̃ = − W

y
n+1

2n

(1− V ) . (48)

It is easy to check that for Θ̃ ∼ y
n−3

2n , so that that the right-hand side of (47) is

finite at y = 0.

Fig. 8. v0 = −0.05 Fig. 9. v0 = −0.1

Fig. 10. v0 = −0.5 Fig. 11. v0 = −1.0

Fig. 12. Shape of the horizon slices at different moments of the advanced time v0.
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By integrating the equations (45) till the moment v0 of the advanced time v, one

obtains values x0(µ) = x(v0, µ) and θ0(µ) = θ0(v0, µ). These expressions determine

parametrically the shape of the v = v0 slice of the deformed horizon. The full slice

of the deformed horizon corresponds to the values of µ in the interval µ ∈ (−∞, µΓ].

The point µΓ, where x0 = x0(µΓ) = 1 and θ0 = θ0(µΓ), is a point of Γ where the

slice v0 intersects the unperturbed horizon.

The Figures 12 shows the coordinate form of the slices v = v0 of the event

horizon for different values of the advanced time v0. In these diagrams we used

polar coordinates (x, θ). By rotation of the plots around the horizontal line one

obtains a two-dimensional surface illustrating the form of the slice v =const of the

event horizon. It should be emphasized that the two-geometry induced on such a

rotation surface by its embedding into 3-dimensional flat space does not coincide

with the two geometry of a slice of the distorted horizon. The latter is

dω2 = x2(θ)(dθ2 + sin2 θdφ2) . (49)

Namely this metric determines the area element of the horizon slice, dσ =

x2(θ) sin(θ)dθdφ. The surface area of the deformed slice of the horizon is

An(v0) = rng Sn−1Pn[x], Pn[x] =

∫ θΓ

0

dθ sinn−1(θ)xn(θ) . (50)

The same expression with x(θ) = 1 give the value of the surface area A0
n(v0) of the

unperturbed part 0 ≤ θ ≤ θΓ of the horizon. The difference

∆An(v0) = A0
n(v0)−An(v0) (51)

determined the total difference of the areas of the undistorted and distorted hori-

zons. The total area of undistorted horizon is An
H = rngSn.

The relative change of the horizon area ∆n = ∆An(v0)/A
n
H is

∆n =
Pn[1]− Pn[x]

Bn
, Bn =

∫ π

0

dθ sinn−1(θ) . (52)

Omitting technical details, we just present here the results of the numerical

calculations of the quantity ∆n for the physically most interesting case n = 4

(D = 4). For a small absolute value of negative v0 ∆2 is an increasing function of

|v0|. Its values are: 0.2 for v0 = −0.01; 0.35 for v0 = −0.05; and 0.41 for v0 = −0.1.

Near v0 ≈ −0.2 ∆2 reaches the maximum ≈ 0.43 and it further decreases again:

0.36 for v0 = −0.5; 0.28 for v0 = −1.0; and 0.1 for v0 = −2.0.

If we relate the black hole entropy to its surface area according to (2), we would

arrive to the following conclusion. In the above described gedanken experiment

with a wormhole, the black hole entropy depends on the advanced time v. At first

it decreases. At some moment v < 0 it reaches the minimal value and after this

increases again. The black hole entropy returns back to its original value at the

moment of advanced time v = 0, when the inner mouth of the wormhole is crashed

in the singularity. The maximal decrease of the entropy reaches 43% of its original

value. Similar results are valid for higher dimensional black hole.
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We found the above described situation rather paradoxical. Even in the presence

of a tiny mass wormhole, which practically does not change the mass and gravita-

tional field of the black hole, there exists a process in which the black hole entropy

decreases by 43% of its original value. The time scale of this process is ∼ rg/c. It is

natural to relate this change of the entropy to the fact that during the time when

the inner mouth is falling in the black hole interior, the information about the black

hole interior becomes available to the external observer. At any rate, this dramatic

decrease of the entropy is not expected in the ”normal” thermodynamical system,

without a dramatic change of their parameters. There might exist an interesting

possible resolution of this ”paradox”. In 1990 Jacob Bekenstein discussed quantum

limitations on the storage and transmission of information53 . It might happen

that the above assumption that by using of the wormhole with mouths of arbitrary

small size one can extract all the information from a spacetime domain, which ge-

ometrically became available, is wrong. If the rate of the information extraction is

limited by the geometric characteristics of the wormhole, this idealization would be

oversimplified. An interesting question is how to measure the black hole entropy in

a situation when the area of the black hole changes fast, and what are requirements

on the devices used in such measurements.
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