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Abstract

This article is divided into three parts. First, a systematic derivation of the Hawking

radiation is given in three different ways. The information loss problem is then discussed

in great detail. The last part contains a concise discussion of black hole thermodynamics.

This article was published as chapter 6 of the IOP book ”Lectures on General Relativity,

Cosmology and Quantum Black Holes” (July 2017).
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1 Introduction and Summary

String theory provides one of the most deepest insights into quantum gravity. Its single

most central and profound result is the AdS/CFT correspondence or gauge/gravity duality [1].

See [9,10] for a pedagogical introduction. As it turns out, this duality allows us to study in novel

ways: i) the physics of strongly coupled gauge theory (QCD in particular and the existence of

Yang-Mills theories in 4 dimensions), as well as ii) the physics of black holes (the information

loss paradox and the problem of the reconciliation of general relativity and quantum mechanics).

String theory reduces therefore for us to the study of the AdS/CFT correspondence.
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Indeed, the fundamental observation which drives the lectures in this chapter is that: “BFSS

matrix model [2] and the AdS/CFT duality [1,3,4] relates string theory in certain backgrounds

to quantum mechanical systems and quantum field theories” which is a quotation taken from

Polchinski [5]. The basic problem which is of paramount interest to quantum gravity is Hawk-

ing radiation of a black hole and the consequent evaporation of the hole and corresponding

information loss [6, 7]. The BFSS and the AdS/CFT imply that there is no information loss

paradox in the Hawking radiation of a black hole. This is the central question we would like to

understand in great detail.

Towards this end, we need to understand first quantum black holes, before we can even

touch the AdS/CFT correspondence, which requires in any case a great deal of conformal field

theory and string theory as crucial ingredients. Thus, in this last chapter of this book we will

only worry about black hole radiation, black hole thermodynamics and the information problem

following [5, 11–13].

The main reference, guideline and motivation behind these lectures is the lucid and elegant

book by Susskind and Lindesay [11]. The lectures by Jacobson [19] and Harlow [13] played also

a major role in many crucial issues throughout. We have also benefited greatly from the books

by Mukhanov [18] and Carroll [15]. The reference list at the end of these lectures is very limited

and only include articles that were actually consulted by the author in the preparation of this

chapter. A far more extensive and exhaustive list of references can be found in Harlow [13] and

Jacobson [19].

We summarize the content of this article as follows

A systematic derivation of the Hawking radiation is given in three different ways. By em-

ploying the fact that the near-horizon geometry of Schwarzschild black hole is Rindler spacetime

and then applying the Unruh effect in Rindler spacetime. Secondly, by considering the eternal

black hole geometry and studying the properties of the Kruskal vacuum state with respect to

the Schwarzschild observer. Thirdly, by considering a Schwarzschild black hole formed by grav-

itational collapse and deriving the actual incoming state known as the Unruh vacuum state.

Although, the actual quantum state of the black hole is pure, the asymptotic Schwarzschild ob-

server registers a thermal mixed state with temperature TH = 1/(8πGM). Indeed, a correlated

entangled pure state near the horizon gives rise to a thermal mixed state outside the horizon.

The information loss problem is then discussed in great detail. The black hole starts in a

pure state and after its complete evaporation the Hawking radiation is also in a pure state.

This is the assumption of unitarity. Thus, the entanglement entropy starts at zero value then it

reaches a maximum value at the so-called Page time then drops to zero again. The Page time

is the time at which the black hole evaporates around one half of its mass and the information

starts to get out with the radiation. Before the Page time only energy gets out with the

radiation with little or no information. The behavior of the entanglement entropy with time is

called the Page curve and a nice rough derivation of this curve using the so-called Page theorem

is outlined.

The last part contains a discussion of the black hole thermodynamics. The thermal entropy

is the maximum amount of information contained in the black hole. The entropy is mostly
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localized near the horizon, but quantum field theory (QFT) gives a divergent value, instead of

the Bekenstein-Hawking value S = A/4G. QFT must be replaced by quantum gravity (QG)

near the horizon and this separation of the QFT and QG degrees of freedom can be implemented

by the stretched horizon which is a time like membrane, at a distance of one Planck length

lP =
√
G~ from the actual horizon, and where the temperature gets very large and most of the

black hole entropy accumulates.

2 Rindler Spacetime and General Relativity

2.1 Rindler Spacetime

We start with Minkowski spacetime with metric and interval

ηµν = (−1,+1,+1,+1) , ds2 = ηµνdx
µdxν . (2.1)

We recall the Planck length

lP =

√
~G
c3
. (2.2)

Usually we will use the natural units ~ = c = 1.

We will first construct the so-called Rindler spacetime, i.e. a uniformly accelerating (non-

inertial) reference frame with respect to (say) Minkowski spacetime. This is characterized by

an artificial gravitational field which can be removed (the only known case of its kind) by a

coordinates transformation. We will follow the presentation by ’t Hooft [8].

Let us consider an elevator in the vicinity of the Earth in free fall. The elevator is assumed

to be sufficiently small so that the gravitational field inside can be taken to be uniform. By

the equivalence principle all objects inside the elevator will accelerate in the same way. Thus,

during the free fall of the elevator the observer inside will not experience any gravitational field

at all since he is effectively weightless.

We consider the opposite situation in which an elevator in empty space, where there is no

gravitational field, is uniformly accelerated upward. The observer inside will feel pressure from

the floor as if he is near the Earth or any other planet. In other words, this observer will be

experiencing an artificial uniform gravitational field given precisely by the constant acceleration.

The question now is how does this observer inside the elevator sees spacetime?

Let ξµ be the coordinates system inside the elevator which is uniformly accelerated outward

in the x direction in outer space with an acceleration a. The motion of the elevator is given by

the functions xµ = xµ(ξ) where xµ are the coordinates of Minkowski spacetime. At time τ = 0,

as measured by the observer inside the elevator, the two systems coincide. We take the origin

to be at the middle floor of the elevator.

During an infinitesimal time dτ the elevator can be assumed to have a constant velocity

v = adτ . In other words, the motion of the elevator within this time is approximately inertial
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given by the Lorentz transformation

ξ0 = γ(x0 − v

c
x1)⇒ dτ ' x0 − adτx1

ξ1 = γ(x1 − v

c
x0)⇒ ξ1 ' x1 − adτx0

ξ2 = x2

ξ3 = x3. (2.3)

We write this as (by suppressing the transverse directions)(
x0

x1

)
−
(
dτ

0

)
=

(
1 adτ

adτ 1

)(
0

ξ1

)
. (2.4)

This relates the coordinates (~ξ, dτ) as measured by the observer in the elevator to the coor-

dinates (~x, t) as measured by the Minkowski observer. The above transformation looks like

a Poincaré transformation, i.e. a combination of a Lorentz transformation and a translation

which is here in time. In many cases Poincaré transformations can be rewritten as Lorentz

transformations with respect to a properly chosen reference point as the origin. The reference

point here is given by

Aµ = (0, 1/a, 0, 0). (2.5)

Indeed, (
dτ

0

)
=

(
0 adτ

adτ 0

)(
0

1/a

)
. (2.6)

Thus (
x0

x1 + 1/a

)
=

(
1 adτ

adτ 1

)(
0

ξ1 + 1/a

)
. (2.7)

We rewrite then the Lorentz transformation (2.4) as(
x0

~x+ ~A

)
= (1 + δL)

(
0

~ξ + ~A

)
, δL =

(
0 adτ

adτ 0

)
. (2.8)

We repeat this N times. In other words, at time τ = Ndτ the Minkowski coordinates xµ = (t, ~x)

are related to the elevator coordinates ξµ = (τ, ~ξ) by(
x0

~x+ ~a/a2

)
= L(τ)

(
0

~ξ + ~a/a2

)
, L(τ) = (1 + δL)N . (2.9)

Then we have

L(τ + dτ) = (1 + δL)L(τ). (2.10)
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The solution can be put in the form (suppressing again transverse directions)

L(τ) =

(
A(τ) B(τ)

B(τ) A(τ)

)
. (2.11)

The initial condition is

L(0) = 1↔ A(0) = 1 , B(0) = 0. (2.12)

We have then the differential equation

δL.L(τ) = L(τ + dτ)− L(τ) = dτ

(
dA
dτ

dB
dτ

dB
dτ

dA
dτ

)
. (2.13)

Equivalently

dA

dτ
= aB ,

dB

dτ
= aA. (2.14)

The solution is then

A = cosh aτ , B = sinh aτ. (2.15)

Finally we get the coordinates

x0 = sinh aτ.(ξ1 +
1

a
)

x1 = cosh aτ.(ξ1 +
1

a
)− 1

a
x2 = ξ2

x3 = ξ3. (2.16)

We compute immediately

−(dx0)2 + (dx1)2 = −a2(ξ1 +
1

a
)2dτ 2 + (dξ1)2. (2.17)

Thus, the metric in Rindler spacetime is given by (with ξ0 = τ)

ds2 = gµνdξ
µdξν = −a2(ξ1 +

1

a
)2dτ 2 + d~ξ2. (2.18)

This is one of the simplest Riemann spacetimes. More on this spacetime in the following

discussion.
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2.2 Review of General Relativity

We consider a Riemannian (curved) manifold M with a metric gµν . A coordinates trans-

formation is given by

xµ −→ x
′µ = x

′µ(x). (2.19)

The vectors and one-forms on the manifold are quantities which are defined to transform under

the above coordinates transformation respectively as follows

V
′µ =

∂x
′µ

∂xν
V ν . (2.20)

V
′

µ =
∂xν

∂x′µ
Vν . (2.21)

The spaces of vectors and one-forms are the tangent and co-tangent bundles.

A tensor is a quantity with multiple indices (covariant and contravariant) transforming in

a similar way, i.e. any contravariant index is transforming as (2.20) and any covariant index is

transforming as (2.21). For example, the metric gµν is a second rank symmetric tensor which

transforms as

g
′

µν(x
′
) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x). (2.22)

The interval ds2 = gµνdx
µdxν is therefore invariant. In fact, all scalar quantities are invariant

under coordinate transformations. For example, the volume element d4x
√
−detg is a scalar

under coordinate transformation.

The derivative of a tensor does not transform as a tensor. However, the so-called covariant

derivative of a tensor will transform as a tensor. The covariant derivatives of vectors and

one-forms are given by

∇µV
ν = ∂µV

ν + ΓναµV
α. (2.23)

∇µVν = ∂µVν − ΓαµνVα. (2.24)

These transforms indeed as tensors as one can easily check. Generalization to tensor is obvious.

The Christoffel symbols Γαµν are given in terms of the metric gµν by

Γαµν =
1

2
gαβ
(
∂µgνβ + ∂νgµβ − ∂βgµν

)
. (2.25)

There exists a unique covariant derivative, and thus a unique choice of Christoffel symbols, for

which the metric is covariantly constant, viz

∇µgαβ = 0. (2.26)
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The straightest possible lines on the curved manifolds are given by the geodesics. A geodesic

is a curve whose tangent vector is parallel transported along itself. It is given explicitly by the

Newton’s second law on the curved manifold

d2xµ

dλ
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0. (2.27)

The λ is an affine parameter along the curve. The time like geodesics define the trajectories

of freely falling particles in the gravitational field encoded in the curvature of the Riemannian

manifold. The Riemann curvature tensor Rα
µνβ is defined in terms of the covariant derivative

by

(∇µ∇ν −∇ν∇µ)tα = −Rα
µνβt

β. (2.28)

The metric is determined by the Hilbert-Einstein action given by

S =
1

16πG

∫
d4x
√
−detgR, (2.29)

where the Ricci scalar R is defined from the Ricci tensor Rµν by

R = gµνRµν . (2.30)

Rµν = Rα
µαν . (2.31)

The Riemann tensor is given explicitly by

Rα
µνρ = ∂νΓ

α
µρ − ∂ρΓαµν + ΓασνΓ

σ
µρ − ΓαρσΓσµν . (2.32)

Indeed, the Euler-Lagrange equations which follows from the above action are precisely the

Einstein equations in vacuum, viz

δS =
1

16πG

∫
d4x
√
−detg(Rµν −

1

2
gµνR)δgµν = 0⇒ Rµν −

1

2
gµνR = 0. (2.33)

If we add matter action Smatter we obtain the full Einstein equations of motion, viz

Rµν −
1

2
gµνR = 8πGTµν . (2.34)

The energy-momentum tensor is defined by the equation

Tµν = − 2√
−detg

δSmatter

δgµν
. (2.35)

The cosmological constant is one of the simplest matter action that one can add to the Hilbert-

Einstein action. It is given by

Scc = − 1

8πG

∫
d4x
√
−detgΛ. (2.36)

In this case the energy-momentum tensor and the Einstein equations read

Tµν = − Λ

8πG
gµν . (2.37)

Rµν −
1

2
gµνR + Λgµν = 0. (2.38)
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3 Schwarzschild Black Holes

3.1 Schwarzschild Black Holes

Without further ado we present our first (eternal) black hole. The Schwarzschild black hole

is given by the metric

ds2 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 + r2dΩ2. (3.1)

The powerful Birkhoff’s theorem states that the Schwarzschild metric is the unique vacuum

solution (static or otherwise) to Einstein’s equations which is spherically symmetric.

The Schwarzschild radius is given by

rs = 2GM. (3.2)

This is the event horizon. We remark that the Schwarzschild metric is apparently singular at

r = 0 and at r = rs. However, only the singularity at r = 0 is a true singularity of the geometry.

For example we can check that the scalar quantity RµναβRµναβ is divergent at r = 0 whereas it

is perfectly finite at r = rs since [14]

RµναβRµναβ =
48G2M2

r6
. (3.3)

Indeed, the divergence of the Ricci scalar1 or any other higher order scalar such as RµνRµν ,

RµναβRµναβ, etc at a point is a sufficient condition for that point to be singular. We say that

r = 0 is an essential singularity. The Schwarzschild radius r = rs is not a true singularity of

the metric and its appearance as such only reflects the fact that the chosen coordinates are

behaving badly at r = rs. We say that r = rs is a coordinate singularity. Indeed, it should

appear like any other point if we choose a more appropriate coordinates system.

The Riemann tensor encodes the effect of tidal forces on freely falling objects. Thus, the

singularity at r = 0 corresponds to infinite tidal forces.

The motion of test particles in (Schwarzschild or otherwise) spacetime is given by the

geodesic equation

d2xρ

dλ2
+ Γρ µν

dxµ

dλ

dxν

dλ
= 0. (3.4)

The Schwarzschild metric is obviously invariant under time translations and space rotations.

There will therefore be 4 corresponding Killing vectors Kµ and 4 conserved quantities (energy

and angular momentum) given by

Q = Kµ
dxµ

dλ
. (3.5)

1Actually R = 0 for the Schwarzschild metric.
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The metric is independent of x0 and φ and hence the corresponding Killing vectors are

Kµ = (∂x0)
µ = δµ0 = (1, 0, 0, 0) , Kµ = gµ0 = (−(1− Rs

r
), 0, 0, 0). (3.6)

Rµ = (∂φ)µ = δµφ = (0, 0, 0, 1) , Rµ = gµφ = (0, 0, 0, r2 sin2 θ). (3.7)

The corresponding conserved quantities are the energy and the magnitude of the angular mo-

mentum given by

E = −Kµ
dxµ

dλ
= (1− rs

r
)
dx0

dλ
. (3.8)

L = Rµ
dxµ

dλ
= r2 sin2 θ

dφ

dλ
. (3.9)

There is an extra conserved quantity along the geodesic given by (use the geodesic equation

and the fact that the metric is covariantly constant)

ε = −gµν
dxµ

dλ

dxν

dλ
. (3.10)

Clearly,

ε = 1 , massive particle. (3.11)

ε = 0 , massless particle. (3.12)

This extra conserved quantity leads to the radial equation of motion

1

2

(dr
dλ

)2
+ V (r) = E , E =

1

2
(E2 − ε). (3.13)

The potential is given by

V (r) = −εGM
r

+
L2

2r2
− GML2

r3
. (3.14)

This is the equation of a particle with unit mass and energy E in a potential V (r). In this

potential only the last term is new compared to Newtonian gravity. Clearly when r −→ 0 this

potential will go to −∞ whereas if the last term is absent (the case of Newtonian gravity) the

potential will go to +∞ when r −→ 0.

For a radially (vertically) freely object we have dφ/dλ = 0 and thus the angular momentum

is 0, viz L = 0. The radial equation of motion becomes(dr
dλ

)2 − 2GM

r
= E2 − 1. (3.15)
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This is essentially the Newtonian equation of motion. The conserved energy is given by

E = (1− 2GM

r
)
dt

dλ
. (3.16)

We also consider the situation in which the particle was initially at rest at r = ri, viz

dr

dλ
|r=ri = 0. (3.17)

This means in particular that

E2 − 1 = −2GM

ri
. (3.18)

The equation of motion becomes(dr
dλ

)2
=

2GM

r
− 2GM

ri
. (3.19)

We can identify the affine parameter λ with the proper time for a massive particle. The proper

time required to reach the point r = rf is

τ =

∫ τ

0

dλ = −(2GM)−
1
2

∫ rf

ri

dr

√
rri
ri − r

. (3.20)

The minus sign is due to the fact that in a free fall dr/dλ < 0. By performing the change of

variables r = ri(1 + cosα)/2 we find the closed result

τ =

√
r3
i

8GM
(αf + sinαf ). (3.21)

This is finite when rf −→ rs = 2GM . Thus, a freely falling object will cross the Schwarzschild

radius in a finite proper time.

We consider now a distant stationary observer hovering at a fixed radial distance r∞. His

proper time is

τ∞ =

√
1− 2GM

r∞
t. (3.22)

By using equations (3.15) and (3.16) we can find dr/dt. We get

dr

dt
= −E

1
2
dλ

dt
(E − dλ

dt
)
1
2

= − 1

E
(1− 2GM

r
)

(
E2 − 1 +

2GM

r

) 1
2

. (3.23)

Near r = 2GM we have

dr

dt
= − 1

2GM
(r − rs). (3.24)
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The solution is

r − rs = exp(− t

2GM
). (3.25)

Thus when r −→ rs = 2GM we have t −→∞.

We see that with respect to a stationary distant observer at a fixed radial distance r∞
the elapsed time τ∞ goes to infinity as r −→ 2GM . The correct interpretation of this result

is to say that the stationary distant observer can never see the particle actually crossing the

Schwarzschild radius rs = 2GM although the particle does cross the Schwarzschild radius in a

finite proper time as seen by an observer falling with the particle.

3.2 Near Horizon Coordinates

A proper distance from the horizon can be defined by the formula

ρ =

∫ r

rs

√
grr(r

′)dr
′

=

∫ r

rs

dr
′√

1− rs/r

=
√
r(r − rs) + rs sinh

√
r

rs
− 1. (3.26)

In terms of ρ the metric becomes

ds2 = −(1− rs
r(ρ)

)dt2 + dρ2 + r2(ρ)dΩ2. (3.27)

Very near the horizon we write r = rs + δ and thus ρ = 2
√
rsδ. We get then the metric

ds2 = −ρ2 dt
2

4r2
s

+ dρ2 + r2
sdΩ2. (3.28)

The first two terms correspond to two-dimensional Minkowski flat space. Indeed, ρ and

ω = t/2rs are radial and hyperbolic angle variables for Minkowski spacetime. The Minkowski

coordinates X and T are defined by

X = ρ cosh
t

2rs
, T = ρ sinh

t

2rs
. (3.29)

The metric becomes

ds2 = −dT 2 + dX2 + r2
sdΩ2. (3.30)

If we are only interested in small angular region of the horizon around θ = 0 we can replace

the angular variables by Cartesian coordinates as follows

Y = rsθ cosφ , Z = rsθ sinφ. (3.31)
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We have then the metric

ds2 = −ρ2dω2 + dρ2 + dY 2 + dZ2

= −dT 2 + dX2 + dY 2 + dZ2. (3.32)

By comparing with (2.18), we recognize the first line to be the Rindler metric with the identi-

fication aτ ↔ ω and ξ1 + 1/a↔ ρ. The time ω is called Rindler time and the time translation

ω −→ ω+c corresponds to a Lorentz boost in Minkowski spacetime. This approximation of the

black hole near-horizon geometry (valid for r ' rs and small angular region) by a Minkowski

spacetime is called the Rindler approximation. It shows explicitly that the event horizon is

locally non-singular and in fact it is indistinguishable from flat Minkowski spacetime.

The relation between the Minkowski coordinates X = ρ coshω and T = ρ sinhω and the

Rindler coordinates ρ and ω can also be rewritten as

ρ2 = X2 − T 2 ,
T

X
= tanhω. (3.33)

Obviously we must have X > |T |. This is called quadrant I or Rindler spacetime. This is the

region outside the black hole. The lines of constant ρ are hyperbolae while the lines of constant

ω are straight lines through the origin. The horizon lies at the point ρ = 0 or T = X = 0. The

horizon is actually a two-dimensional surface located at r = rs since g00 = 0 there and as a

consequence this surface has no time extension. See figure (1).

Figure 1: Rindler spacetime.
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4 Kruskal-Szekres Diagram

4.1 Kruskal-Szekres Extension and Einstein-Rosen Bridge

In this lecture we will follow [15]. The above Schwarzschild geometry can be maximally

extended as follows. For a radial null curve, which corresponds to a photon moving radially in

Schwarzschild spacetime, the angles θ and φ are constants and ds2 = 0, and thus

0 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2. (4.1)

In other words,

dt

dr
= ± 1

1− 2GM
r

. (4.2)

We integrate the above equation as follows

t = ±
∫

dr

1− 2GM
r

= ±
(
r + 2GM log(

r

2GM
− 1)

)
+ constant

= ±r∗ + constant. (4.3)

We call r∗ the tortoise coordinate which makes sense only for r > 2GM . The event horizon

r = 2GM corresponds to r∗ −→ ∞. We compute dr∗ = rdr/(r − 2GM) and as a consequence

the Schwarzschild metric becomes

ds2 = (1− 2GM

r
)(−dt2 + dr2

∗) + r2dΩ2. (4.4)

Next we define v = t+ r∗ and u = t− r∗. Then

ds2 = −(1− 2GM

r
)dvdu+ r2dΩ2. (4.5)

For infalling radial null geodesics we have t = −r∗ or equivalently v = constant whereas for

outgoing radial null geodesics we have t = +r∗ or equivalently u = constant. For every point

in spacetime we have two solutions:

• For points outside the event horizon there are two solutions one infalling and one outgoing.

• For points inside the event horizon there are two solutions which are both infalling.

• For points on the event horizon there are two solutions one infalling and one trapped.

Next, we will give a maximal extension of the Schwarzschild solution by constructing a coordi-

nate system valid everywhere in Schwarzschild spacetime. We start by noting that the radial

coordinate r should be given in terms of u and v by solving the equations

1

2
(v − u) = r + 2GM log(

r

2GM
− 1). (4.6)
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The event horizon r = 2GM is now either at v = −∞ or u = +∞. The coordinates of the

event horizon can be pulled to finite values by defining new coordinates u
′

and v
′

as

v
′

= exp(
v

4GM
)

=

√
r

2GM
− 1 exp(

r + t

4GM
). (4.7)

u
′

= − exp(− u

4GM
)

= −
√

r

2GM
− 1 exp(

r − t
4GM

). (4.8)

The Schwarzschild metric becomes

ds2 = −32G3M3

r
exp(− r

2GM
)dv

′
du
′
+ r2dΩ2. (4.9)

It is clear that the coordinates u and v are null coordinates and thus u
′

and v
′

are also null

coordinates. However, we prefer to work with a single time like coordinate while we prefer the

other coordinate to be space like. We introduce therefore new coordinates T and R defined for

r > 2GM by

T =
1

2
(v
′
+ u

′
) =

√
r

2GM
− 1 exp(

r

4GM
) sinh

t

4GM
. (4.10)

R =
1

2
(v
′ − u′) =

√
r

2GM
− 1 exp(

r

4GM
) cosh

t

4GM
. (4.11)

Clearly, T is time like while R is space like. This can be confirmed by computing the metric.

This is given by

ds2 =
32G3M3

r
exp(− r

2GM
)(−dT 2 + dR2) + r2dΩ2. (4.12)

We see that T is always time like while R is always space like since the sign of the components

of the metric never get reversed.

We remark that

T 2 −R2 = v
′
u
′

= − exp
v − u
4GM

= − exp
r + 2GM log( r

2GM
− 1)

2GM

= (1− r

2GM
) exp

r

2GM
. (4.13)

The radial coordinate r is determined implicitly in terms of T and R from this equation, i.e.

equation (4.13). The coordinates (T,R, θ, φ) are called Kruskal-Szekres coordinates. Remarks

are now in order:
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• The radial null curves in this system of coordinates are given by

T = ±R + constant. (4.14)

All light cones are at ±45 degrees. This 45-degree property means in particular that

the radial light cone in the Kruskal-Szekeres diagram has the same form as in special

relativity.

• The horizon defined by r −→ 2GM is seen to appear at T 2 − R2 −→ 0, i.e. at (4.14) in

the new coordinate system. This shows in an elegant way that the event horizon is a null

surface.

• The surfaces of constant r are given from (4.13) by T 2−R2 = constant which are hyper-

bolae in the R− T plane.

• For r > 2GM the surfaces of constant t are given by T/R = tanh t
4GM

= constant which

are straight lines through the origin. In the limit t −→ ±∞ we have T/R −→ ±1 which

is precisely the horizon r = 2GM .

The above solution defines region I of the so-called the Kruskal-Szekres diagram. This solution

can be extended to the interior region of the black hole r < 2GM (region II of the Kruskal-

Szekres diagram) as follows:

• For r < 2GM we have

T =
1

2
(v
′
+ u

′
) =

√
1− r

2GM
exp(

r

4GM
) cosh

t

4GM
. (4.15)

R =
1

2
(v
′ − u′) =

√
1− r

2GM
exp(

r

4GM
) sinh

t

4GM
. (4.16)

The metric and the condition determining r implicitly in terms of T and R do not change

form in the (T,R, θ, φ) system of coordinates and thus the radial null curves, the horizon

as well as the surfaces of constant r are given by the same equation as before.

• For r < 2GM the surfaces of constant t are given by R/T = tanh t
4GM

= constant which

are straight lines through the origin.

• It is clear that the allowed range for R and T is (analytic continuation from the region

T 2 − R2 < 0 (r > 2GM) to the first singularity which occurs in the region T 2 − R2 < 1

(r < 2GM))

−∞ ≤ R ≤ +∞ , T 2 −R2 < 1. (4.17)
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The Kruskal-Szekres diagram gives the maximal extension of the Schwarzschild solution. A

Kruskal-Szekres diagram is shown on figure (2). Every point in this diagram is actually a

2−dimensional sphere since we are suppressing θ and φ and drawing only R and T . The

Kruskal-Szekres diagram represents the entire Schwarzschild spacetime. It can be divided into

4 regions:

• Region I: Exterior of black hole with r > 2GM (R > 0 and T 2 −R2 < 0). Clearly future

directed time like (null) worldlines will lead to region II whereas past directed time like

(null) worldlines can reach it from region IV. Regions I and III are connected by space

like geodesics.

• Region II: Inside of black hole with r < 2GM (T > 0, 0 < T 2 − R2 < 1). Any future

directed path in this region will hit the singularity. In this region r becomes time like

(while t becomes space like) and thus we can not stop moving in the direction of decreasing

r in the same way that we can not stop time progression in region I.

• Region III: Parallel exterior region with r > 2GM (R < 0, T 2 − R2 < 0). This is

another asymptotically flat region of spacetime which we can not access along future or

past directed paths. The Kruskal-Szekres coordinates inside this region are

T = −
√

r

2GM
− 1 exp(

r

4GM
) sinh

t

4GM
. (4.18)

R = −
√

r

2GM
− 1 exp(

r

4GM
) cosh

t

4GM
. (4.19)

• Region IV: Inside of white hole with r < 2GM (T < 0, 0 < T 2 − R2 < 1). The white

hole is the time reverse of the black hole. This corresponds to a singularity in the past

at which the universe originated. This is a part of spacetime from which observers can

escape to reach us while we can not go there.
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Figure 2: Kruskal-Szekres diagram.

The full metric describes therefore two asymptotically flat universes, regions I and III, which

are connected by a non-traversable Einstein-Rosen bridge (a whormhole). This is easiest seen at

t = T = 0 in figure (3). However, for constant T 6= 0, it is seen that the two asymptotically flat

universes disconnect and the wormhole closes up, and thus any time like observer can not cross

from one region to the other. The singularity r = 0 is equivalently given by the hyperboloid

T 2 − R2 = 1 which consists of two connected components in regions II (black hole) and IV

(white hole) which are called future and past interiors respectively. The regions I and III are

precisely the exterior regions.
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Figure 3: The Einstein-Rosen bridge.

4.2 Euclidean Black Hole and Thermal Field Theory

By analytic continuation to Euclidean time tE = it we obtain

ds2 = ρ2dt
2
E

4r2
s

+ dρ2 + r2
sdΩ2. (4.20)

The first two terms correspond to two-dimensional flat space, viz

X = ρ cos
tE
2rs

, Y = ρ sin
tE
2rs

. (4.21)

The metric becomes

ds2 = dX2 + dY 2 + r2
sdΩ2. (4.22)
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In order for the Euclidean metric to be smooth the Euclidean time tE must be periodic with

period β = 4πrs otherwise the metric has a conical singularity at ρ = 0.

In quantum mechanics, the transition amplitude between point q at time t and point q
′

at

time t
′

is given by

< q
′
, t
′|q, t >=< q

′ | exp(−iH(t
′ − t))|q >=

∑
n

ψn(q
′
)ψ∗n(q) exp(−iEn(t

′ − t)). (4.23)

This can also be given by the path integral

< q
′
, t
′|q, t >=

∫
Dq(t) exp(iS[q(t)]). (4.24)

The action S is given in terms of Lagrangian L by the formula

S =

∫
dtL(q, q̇). (4.25)

We perform Wick rotation to Euclidean time tE = it with β = t
′
E − tE = i(t

′ − t) and we

consider closed paths q
′

= q(tE + β) = q = q(tE). We get immediately the thermodynamical

partition function

Z = exp(−βF ) = Tr exp(−βH)

=

∫
dq < q| exp(−βH)|q >

=

∫
dq < q, t

′ |q, t > . (4.26)

The corresponding path integral is (with iS = −SE)

Z =

∫
q(tE+β)=q(tE)

Dq(t) exp(−SE[q(t)]). (4.27)

The Euclidean action is given in terms of the Lagrangian LE = −L by the formula

S =

∫ β

0

dtELE(q, q̇). (4.28)

Thus, a path integral with periodic Euclidean time generates the thermodynamic partition

function Tr exp(−βH). This very general and very remarkable result can also be stated by

saying that thermal equilibrium is equivalent to summing over all periodic configurations q(tE+

β) = q(tE) in Euclidean time.

The path integral for quantum fields in Euclidean Schwarzschild black hole geometry cor-

responds to a periodic Euclidean time tE −→ tE + β with β = 4πrs and thus it describes a gas

in equilibrium with the black hole at temperature

TH =
1

4πrs
. (4.29)

The Schwarzschild black hole is thus at equilibrium at the temperature TH and hence it must

emits as much particles as it absorbs.
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5 Density Matrix and Entanglement

This section is taken mostly from [11] and [16] but we also found the lecture of [17] on the

density matrix very useful.

5.1 Density Matrix: Pure and Mixed States

We consider a system consisting of two subsystems A and B. The wave function of this

system is written

Ψ = Ψ(α, β). (5.1)

The α and β are two sets of commuting variables relevant for the subsystems A and B separately.

If we are only interested in the subsystem A then its complete description is encoded in the

density matrix or density operator

ρA(α, α′) =
∑
β

Ψ∗(α, β)Ψ(α′, β). (5.2)

The expectation value of an A−operator a is given by the rule

〈a〉 = TraρA. (5.3)

A density matrix ρ satisfies: I) Trρ = 1 (sum of probabilities is 1), II) ρ = ρ+, III) ρi ≥ 0. The

eigenvalue ρi is the probability that the system A is in the eigenstate |i〉. The density matrix

ρA describes therefore a mixed state of the subsystem A, i.e. a statistical ensemble of several

quantum states, which arises from the entanglement of the two subsystems A and B, and thus

our lack of knowledge of the exact state in which the subsystem A will be found.

This should be contrasted with pure states which are represented by single vectors in Hilbert

space. The density matrix associated with a pure state |i〉 is simply given by |i〉〈i|. The complete

system formed by A and B is in a pure system although the subsystems A and B are both

in mixed states due to entanglement. Another example of a pure state is the case when the

density matrix ρA has only one non-zero eigenvalue (ρA)j which can only arise from a state of

the form

Ψ(α, β) = ΨA(α)ΨB(β). (5.4)

In general, we can write the density matrix corresponding to a mixed state as a convex sum,

i.e. a weighted sum with
∑

i pi = 1, of pure state density matrices as follows

ρmixed
A =

∑
i

piρ
pure
i =

∑
i

pi|ψi〉〈ψi|. (5.5)

The states |ψi〉 do not need to be orthogonal. This density matrix satisfies the Liouville-Von

Neumann equation

∂ρ

∂t
= − i

~
[H, ρ]. (5.6)
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It is better to take an example here. Let us consider a spin 1/2 system. A general pure state

of this system is given by

|ψ〉 = cos
θ

2
|+〉+ exp(iφ) sin

θ

2
|−〉. (5.7)

This state is given by the point on the surface of the unit 2−sphere defined by the vector

~a = (sin θ cosφ, sin θ sinφ, cos θ). (5.8)

The corresponding density matrix is

ρpure = |ψ〉〈ψ| = 1

2

(
1 + cos θ exp(−iφ) sin θ

exp(iφ) sin θ 1− cos θ

)
=

1

2
(12 + ~a.~σ). (5.9)

This is a projector operator, viz

ρ2
pure = ρpure. (5.10)

The vector ~a is called the Bloch vector and the corresponding sphere is called the Bloch sphere.

This vector is precisely the expectation value of the spin, viz

~a = 〈ρpure~σ〉. (5.11)

Mixed states are given by points inside the Bloch sphere. The corresponding density matrices

are given by

ρmixed =
1

2
(12 + ~a.~σ) 6= ρ2

mixed , ~a
2 < 1. (5.12)

We have then the criterion

Trρ2 = 1 , pure state. (5.13)

0 < Trρ2 =
1 + ~a2

2
< 1 , mixed state. (5.14)

The quantity Trρ2 is called the purity of the state.

For example, a totally mixed state can have a 50 per cent probability that the electron is in

the state |+〉 and 50 per cent probability that the electron is in the state |−〉. This corresponds

to a completely unpolarized beam, viz ~a = 0. The corresponding density matrix is

ρmixed =
1

2
|+〉〈+|+ 1

2
|−〉〈−|

=
1

2
12. (5.15)
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This decomposition is not unique. For example, another totally mixed state can have a 50

per cent probability that the electron is in the state |+〉x and 50 per cent probability that the

electron is in the state |−〉x, viz

ρmixed =
1

2
|+〉x〈+|x +

1

2
|−〉x〈−|x

=
1

2

|+〉+ |−〉√
2

〈+|+ 〈−|√
2

+
1

2

|+〉 − |−〉√
2

〈+| − 〈−|√
2

=
1

2
12. (5.16)

Thus a single density matrix can represent many, infinitely many in fact, different state mix-

tures.

A partially mixed state for example can have a 50 per cent probability that the electron is

in the state |+〉 and 50 per cent probability that the electron is in the state (|+〉 + |−〉)/
√

2,

viz

ρmixed =
1

2
|+〉〈+|+ 1

2
(
|+〉+ |−〉√

2
)(
〈+|+ 〈−|√

2
. (5.17)

A pure state |Φc〉 = (|+〉 − |−〉)/
√

2 for example is given by the density matrix

ρpure =
|+〉 − |−〉√

2

〈+| − 〈−|√
2

. (5.18)

Again this decomposition is not unique. This can be rewritten also as

ρpure =
|+〉x − |−〉x√

2

〈+|x − 〈−|x√
2

, (5.19)

since |Φc >= −(|+〉x − |−〉x)/
√

2. Thus the density matrix allows many, possibly infinitely

many, different states of the subsystems on the diagonal. This freedom is expected since,

by recalling the experiments of Aspect et al which showed that this nonseparable quantum

correlation given by the state |Φc〉 violates Bell’s inequalities, we can conclude that: The pure

states of the system described by |Φc〉 are not just unknown but in fact can not exist before

measurement [16].

It is clear from these examples that the relative phases between the basis states in a mixed

state are random as opposed to coherent superpositions (pure states). This point is explained

in more detail in the following.

A coherent superposition of two states |ψ1〉 and |ψ2〉 is given by the density matrix

ρc = |α|2|ψ1〉〈ψ1|+ |β|2|ψ2〉〈ψ2|+ αβ∗|ψ1〉〈ψ2|+ α∗β|ψ2〉〈ψ1|. (5.20)

However, in the above preceding discussion the mixing is a statistical mixture as opposed to a

coherent superposition. A statistical mixture of a state |ψ1〉 with a probability p1 = |α|2 and

state |ψ2〉 with a probability p2 = |β|2 is given by the density operator

ρr = p1|ψ1〉〈ψ1|+ p2|ψ2〉〈ψ2|. (5.21)
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In other words, it is either |ψ1〉 or |ψ2〉 whereas in a coherent superposition it is both |ψ1〉
and |ψ2〉 at the same time. In the first case there is no interference effect (behave as classical

probability distribution) while in the second case there is quantum interference. Mixed states

are relevant when the exact initial quantum state is not known.

Remark that in the statistical superposition we can change α −→ exp(iθ)α and β −→
exp(iθ′)β without changing the density matrix for θ and θ′ arbitrary. In the coherent superpo-

sition we must have θ = θ′.

The probability of obtaining the eigenvalue an in the measurement of the observable A is

then given by

p(an) = p1|〈an|ψ1〉|2 + p2|〈an|ψ2〉|2 = Trρ|an〉〈an|. (5.22)

In fact, mixed states are incoherent superpositions. The diagonal elements of the density matrix

give the probabilities to be in the corresponding states. The off diagonal elements measure the

amount of coherence between the states. The off diagonal elements are called coherences.

Coherence is maximized in a pure state when for every m and n we have

ρmnρnm = ρmmρnn. (5.23)

A partially mixed state is such that for at least one pair of m and n we have

0 < ρmnρnm < ρmmρnn. (5.24)

A totally mixed state is such that for at least one pair of m and n we have

ρmn = ρnm = 0 , ρmmρnn 6= 0. (5.25)

Coherent superposition means interference whereas incoherent (mixed) superposition means

absence of superposition. Let us take an example. We consider a system described by a

coherent superposition of two momentum states k and −k given by the pure state

|ψ〉 =
1√
2

(|k〉+ | − k〉). (5.26)

This quantum coherent superposition corresponds to sending particles through both slits at

once. The density matrix is

ρ = |ψ〉〈ψ| = 1

2
|k〉〈k|+ 1

2
| − k〉〈−k|+ 1

2
|k〉〈−k|+ 1

2
| − k〉〈k|. (5.27)

The probability of finding the system at x is

P (x) = Trρ|x〉〈x| = 1 + cos 2kx. (5.28)

These are precisely the fringes (information). If the system is in a mixed (incoherent) state

given for example by the density matrix

ρ =
1

2
|k〉〈k|+ 1

2
| − k〉〈−k|. (5.29)
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This corresponds to the classical case of sending particles at random, i.e. at 50 per cent chance,

through either one of the slits (totally mixed state). We get now the probability

P (x) = Trρ|x〉〈x| = 1. (5.30)

So there are no fringes in this case, i.e. the incoherent mixed superposition is characterized by

the absence of interference (no information). In a totally mixed state all interference effects are

eliminated.

5.2 Entanglement, Decoherence and Von Neumann Entropy

We are now in a position to understand better our original definitions (5.1), (5.2), (5.3).

The state Ψ(α, β) corresponds to a pure state |Ψ〉, viz 〈α, β|Ψ〉 = Ψ(α, β). The corresponding

density matrix is ρ = |ψ〉〈ψ|. We consider an A−observable OA ≡ OA ⊗ 1B. The expectation

value of OA is given by

〈OA〉 = TrρOA ⊗ 1B

=
∑
α,µ

ρA(α, µ)〈µ|OA|α〉

= TrAρAOA. (5.31)

The reduced density matrix ρA is precisely given by

ρA(α, µ) =
∑
β

Ψ∗(α, β)Ψ(µ, β). (5.32)

To finish this important point we consider a system which is initially in a pure state and

decoupled from the environment. The initial state of system+environment is then

|ψ〉(s,e) = (
∑
s

cs|s〉(s))⊗ |φ〉(e). (5.33)

The coupling between the system and the environment is given by a unitary operator U (s,e), viz

|ψ′〉(s,e) = U (s,e)|ψ〉(s,e). (5.34)

We will assume that the interaction is non-dissipative, i.e. the system does not decay to lower

energy states, viz

U (s,e)|s〉(s) ⊗ |φ〉(e) = |s〉(s) ⊗ |φs〉(e). (5.35)

Also we assume that the interaction is such that the different system states |s〉 drive the

environment into orthogonal states |φs(t)〉(e), viz

〈φs|φs′ 〉(e) = δs,s′ . (5.36)
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The state of the system+environment becomes

|ψ′〉(s,e) =
∑
s

cs|s〉(s) ⊗ |φs〉(e). (5.37)

This is a pure state with a corresponding density matrix ρ(s,e) = |ψ′〉〈ψ′ |(s,e). However, due to

entanglement the state of the system is mixed given by tracing over the degrees of freedom of

the environment which gives the reduced density matrix

ρ(s) = Treρ
(s,e)

=
∑
s

|cs|2|s〉〈s|s. (5.38)

The probability of obtaining the system in the state |s〉 is |cs|2 which is the Born’s rule. Hence,

entanglement seems to give rise to collapse. The density matrix undergoes therefore the decrease

of information ρ(s,e) −→ ρ(s), called also decoherence, through interaction with the environment.

From the above result, entanglement seems also to give rise to decoherence which is actually

what is at the origin of the collapse. Indeed, the above state is totally mixed and thus fully

decohered since the off diagonal elements of the density matrix, which are responsible for

quantum correlations, are zero. The environment kills therefore the coherence of the state as

measured by the off diagonal elements of the density matrix. The original pure state of the

system has evolved into a mixed state because it is an open system, as opposed of being closed,

and as such it does not obey the simple form (5.6) of the Liouville-Von Neumann equation, but

it satisfies instead the so-called master equation which has additional terms, viz

∂ρ

∂t
= − i

~
[H, ρ] + .... (5.39)

The extra terms can be given for example by those found in equation (17) of [16].

We define the Von Neumann entropy or the entanglement entropy by the formula

S = −Trρ ln ρ = −
∑
i

ρi ln ρi. (5.40)

For a pure state, i.e. when all eigenvalues with the exception of one vanish, we get S = 0. For

mixed states we have S > 0. For example, in the case of a totally incoherent mixed density

matrix in which all the eigenvalues are equal to 1/N where N is the dimension of the Hilbert

space we get the maximum value of the Von Neumann entropy given by

S = Smax = lnN. (5.41)

In the case that ρ is proportional to a projection operator onto a subspace of dimension n we

find

S = lnn. (5.42)
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In other words, the Von Neumann entropy measures the number of important states in the

statistical ensemble, i.e. those states which have an appreciable probability. This entropy is

also a measure of the degree of entanglement between subsystems A and B and hence its other

name entanglement entropy.

The Von Neumann entropy is different from the thermodynamic Boltzmann entropy given

by the formula

Sthermal = −TrρMB ln ρMB, (5.43)

where ρMB is the usual Maxwell-Boltzmann probability distribution given in terms of the Hamil-

tonian H and the temperature T = 1/β by the formula

ρMB =
1

Z
exp(−βH) , Z = Tr exp(−βH). (5.44)

6 Rindler Decomposition and Unruh Effect

This lecture is based on [11,13].

6.1 Rindler Decomposition

We consider quantum field theory in Minkowski spacetime. We introduce Rindler decom-

position of this spacetime. The quadrant I is Rindler spacetime. Quadrants II and III have

no causal relations with quadrant I. Quadrant IV provides initial data for Rindler spacetime.

Indeed, signals from region IV must cross the surface t = −∞ (ω = −∞) in order to reach

region I.

We will work near the horizon with the metric (with ω = t/4MG, T = ρ sinhω, Z =

ρ coshω)

ds2 = ρ2dω2 − dρ2 − dX2 − dY 2

= dT 2 − dZ2 − dX2 − dY 2. (6.1)

The light cone is at X = ±T or ρ = 0, ω = ±∞. This also corresponds to the event horizon

separating between r < 2GM and r > 2GM . Remark that ω −→ ∞ corresponds to t −→ ∞
since an observer falling into the black hole is never seen actually crossing it. Since the Rindler

space is only valid near the horizon we have r ' rs or δ ' 0 and thus ρ ' 0. The Horizon is

actually at ρ ' 0.

The surface T = 0 is divided into two halves. The first half in region I and the second half

in region III. The fields in region I (Z > 0) act in the Hilbert space HL and those in region III

(Z < 0) act in the Hilbert space HR. We have then

φ(X, Y, Z) = φL(X, Y, Z) , Z > 0. (6.2)
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φ(X, Y, Z) = φR(X, Y, Z) , Z < 0. (6.3)

The general wave functional of interest is

Ψ = Ψ(φL, φR). (6.4)

This is a pure state. But we want to compute the density matrix used by the fiducial observers

called FIDOS (static observers at fixed (X, Y, Z) which all measure the time T ) in the Rindler

quadrant (quadrant I) to describe the system. In other words, we need to compute the re-

duced density matrix ρR which corresponds to the Minkowski vacuum to the FIDOS in Rindler

quadrant I.

We have obviously translation invariance along the X and Y axes and thus the reduced

density matrix is expected to commute with the momentum operators in theX and Y directions,

viz

[ρR, PX ] = [ρR, PY ] = 0. (6.5)

Recall also that a translation in the Rindler time ω −→ ω + c corresponds to a Lorentz boost

along the Z direction in Minkowski spacetime. The reduced density matrix ρR, since it repre-

sents the Minkowski vacuum in quadrant I, must be invariant under Lorentz boosts in quadrant

I. In other words, we must have

[ρR, HR] = 0. (6.6)

HR is the generator of the Lorentz boosts ω −→ ω + c in quadrant I. This is precisely the

Hamiltonian in quadrant I given by

HR =

∫ ρ=∞

ρ=0

ρdρdXdY T 00(ρ,X, Y ). (6.7)

T 00 is the Hamiltonian density with respect to the Minkowski observer given for example for a

scalar field by

T 00(ρ,X, Y ) =
1

2
π2 +

1

2
(∇φ)2 + V (φ). (6.8)

Recall that in the T − X plane the lines of constant ω are straight lines through the origin.

The proper time separation between these lines is δτ = ρδω. This is the origin of the ρ factor

multiplying T 00. Since π = φ̇, the above Hamiltonian corresponds to the action

I =

∫
d3xdT [

1

2
φ̇2 − 1

2
(∇φ)2 − V (φ)]. (6.9)

After Euclidean rotation T −→ iX0 we get

IE =

∫
d4X[

1

2
(∂Xφ)2 + V (φ)]. (6.10)
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The original Lorentz invariance is now four dimensional rotation invariance. In particular, the

ω−translation, which is actually a boost in the Z−direction, becomes a rotation in the (Z,X0)

plane.

Ψ(φL, φR) is the ground state of the Minkowski Hamiltonian which can be computed using

Euclidean path integrals. We write this as Ψ(φL, φR) = 〈φ|Ω〉. The ground state |Ω〉 can be

obtained from any other state |χ〉 by the action of the Hamiltonian as follows

|Ω〉 =
1

〈Ω|χ〉
LimT−→∞ exp(−TH)|χ〉. (6.11)

Thus

〈φ|Ω〉 =
1

〈Ω|χ〉
LimT−→∞〈φ| exp(−TH)|χ〉

∝
∫ φ̂(tE=0)=φ

φ̂(tE=−∞)=0

Dφ̂ exp(−IE). (6.12)

The boundary condition at tE = 0, viz φ̂(tE = 0) = φ, corresponds to the state |φ〉 = |φL〉|φR〉,
because the states φL and φR correspond to tE = 0. The boundary condition at tE = −∞ is a

choice. We could have chosen instead [11]

〈φ|Ω〉 ∝
∫ φ̂(tE=+∞)=0

φ̂(tE=0)=φ

Dφ̂ exp(−IE). (6.13)

Let θ be the angle in the Euclidean plane (Z,X0) corresponding to the Rindler time ω. We

divide the region T < 0 into infinitesimal wedges as in figure (4).

Figure 4: Rindler decomposition.
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We integrate from the field φL at θ = 0 to the field φR at θ = π. The boost operator Kx in

the Euclidean plane generates rotations in the (Z,X0) plane. The restriction of this generator

to the right Rindler wedge is given precisely by the Hamiltonian HR. Thus we can write 〈φ|Ω〉
as a transition matrix element between initial state |φL〉 and final state |φR〉. In order to convert

|φL〉 back to a final state we act on it with the CPT operator Θ defined by

Θ+φ(X0, Z,X, Y )Θ = Φ+(−X0,−Z,X, Y ). (6.14)

This is an antiunitary operator which provides a map between the Hilbert spaces HL and HR.

The transfer matrix in an infinitesimal right wedge is G = exp(−δθHR) but we have n =

π/δθ wedges in total so the total transfer matrix is Gn = exp(−πHR). In summary we have

the result

Ψ(φL, φR) = 〈φR|〈φL|Ω〉
∝ 〈φR| exp(−πHR)Θ|φL〉. (6.15)

This element is a transition matrix element in the right wedge. Let |iR〉 be the eigenstates of

HR with eigenvalues Ei. By inserting a complete set of such eigenstates we get

Ψ(φL, φR) = 〈φR|〈φL|Ω〉
∝

∑
i

e−πEi〈φR|iR〉〈iR|Θ|φL〉. (6.16)

Θ is an anti-unitary operator satisfying 〈Θx|Θy〉 = 〈y|x〉 which should be contrasted with the

unitarity property 〈Θx|AΘy〉 = 〈x, y〉. Thus we must have 〈x|Θ+|y〉 = 〈y|Θ|x〉. We define the

state

Θ+|iR〉 = |i∗L〉. (6.17)

We get then the transition matrix element

Ψ(φL, φR) = 〈φR|〈φL|Ω〉
∝

∑
i

e−πEi〈φR|iR〉〈φL|i∗L〉. (6.18)

In other words, we get the ground state

|Ω〉 =
1√
Z

∑
i

e−πEi |iR〉|i∗L〉. (6.19)

The entanglement between the left and right wedges is now fully manifest.

We can define immediately the reduced matrix ρR by the relation

ρR(φR, φ
′

R) =

∫
Ψ∗(φL, φR)Ψ(φL, φ

′

R)dφL

=
1

Z

∑
i

e−2πEi〈iR|φR〉〈φ
′

R|iR〉

=
1

Z
〈φ′R|e−2πH |φR〉. (6.20)
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In the second line we have used the identities∫
|φL〉〈φL| = 1 , 〈i∗L|j∗L〉 = δij. (6.21)

We get then the reduced density matrix

ρR =
1

Z
e−2πH . (6.22)

Thus the fiducial observers FIDOS see the vacuum as a thermal ensemble with a Maxwell-

Boltzmann distribution at a temperature

TR =
1

2π
. (6.23)

This is the Unruh effect.

Another derivation is as follows. The state |Ω〉 is a pure state. The corresponding density

matrix is |Ω〉〈Ω|. By integrating over the degrees freedom of the left wedge we obtain a mixed

state corresponding precisely to the reduced density matrix ρR, viz

ρR =
∑
i

〈i∗L|Ω〉〈Ω|i∗L〉. (6.24)

But

〈i∗L|Ω〉 =
1√
Z
e−πEi |iR〉 , 〈Ω|i∗L〉 =

1√
Z
e−πEi〈iR|. (6.25)

We get then

ρR =
1

Z

∑
i

e−2πEi |iR〉〈iR|. (6.26)

6.2 Unruh Temperature

The temperature TR is dimensionless. We suppose a thermometer at rest with respect to

the fiducial observer FIDOS at position ρ, i.e. it has the proper acceleration a(ρ) = 1/ρ (recall

that ρ ↔ ξ3 + 1/a and ω ↔ aτ). The thermometer is also assumed to be in equilibrium with

the quantum fields at temperature TR = 1/2π. If εi are the energy levels of the thermometer

at rest then ρεi are the Rindler energy levels of the thermometer. This is almost obvious from

the form of the metric ds2 = −ρ2dω2 + dρ2 + dX2 + dY 2. We conclude therefore that the

temperature measured by the thermometer is given by

T (ρ) =
1

2πρ
=
a(ρ)

2π
. (6.27)

Thus the FIDOS experiences a temperature which increases to infinity as we move towards

the horizon at ρ = 0. This temperature corresponds to virtual vacuum fluctuations given by
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particle pairs. Some of these virtual loops are conventional loops created in region I, some of

them are of no importance to the FIDOS in region I since they are created in region III, but

others are created around the horizon at ρ = 0, and thus they are partly in region I partly in

region III, and as a consequence cause non trivial entanglement between the degrees of freedom

in regions I and III, which leads to a mixed density matrix in region I. Thus, the horizon behaves

as a membrane which constantly emits and reabsorbs particles. This membrane is essentially

the so-called stretched horizon.

7 Quantum Field Theory in Curved Spacetime

In this part we will follow briefly [15,18,20,21].

The action of a real scalar field coupled to the metric minimally is given by

SM =

∫
d4x
√
−detg

(
− 1

2
gµν∇µφ∇νφ− V (φ)

)
. (7.1)

If we are interested in an action which is at most quadratic in the scalar field then we must

choose V (φ) = m2φ2/2. In curved spacetime there is another term we can add which is quadratic

in φ namely Rφ2 where R is the Ricci scalar. The full action should then read (in arbitrary

dimension n)

SM =

∫
dnx
√
−detg

(
− 1

2
gµν∇µφ∇νφ−

1

2
m2φ2 − 1

2
ζRφ2

)
. (7.2)

The choice ζ = (n − 2)/(4(n − 1)) is called conformal coupling. At this value the action with

m2 = 0 is invariant under conformal transformations defined by

gµν −→ ḡµν = Ω2(x)gµν(x) , φ −→ φ̄ = Ω
2−n
2 (x)φ(x). (7.3)

The equation of motion derived from this action are (we will keep in the following the metric

arbitrary as long as possible) (
∇µ∇µ −m2 − ζR

)
φ = 0. (7.4)

Let φ1 and φ2 be two solutions of this equation of motion. We define their inner product by

(φ1, φ2) = −i
∫

Σ

(
φ1∂µφ

∗
2 − ∂µφ1.φ

∗
2

)
dΣnµ. (7.5)

dΣ is the volume element in the space like hypersurface Σ and nµ is the time like unit vector

which is normal to this hypersurface. This inner product is independent of the hypersurface Σ.

Indeed let Σ1 and Σ2 be two non intersecting hypersurfaces and let V be the four-volume

bounded by Σ1, Σ2 and (if necessary) time like boundaries on which φ1 = φ2 = 0. We have

from one hand

i

∫
V

∇µ
(
φ1∂µφ

∗
2 − ∂µφ1.φ

∗
2

)
dV = i

∮
∂V

(
φ1∂µφ

∗
2 − ∂µφ1.φ

∗
2

)
dΣµ

= (φ1, φ2)Σ1 − (φ1, φ2)Σ2 . (7.6)
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From the other hand

i

∫
V

∇µ
(
φ1∂µφ

∗
2 − ∂µφ1.φ

∗
2

)
dV = i

∫
V

(
φ1∇µ∂µφ

∗
2 −∇µ∂µφ1.φ

∗
2

)
dV

= i

∫
V

(
φ1(m2 + ξR)φ∗2 − (m2 + ξR)φ1.φ

∗
2

)
dV

= 0. (7.7)

Hence

(φ1, φ2)Σ1 − (φ1, φ2)Σ2 = 0. (7.8)

There is always a complete set of solutions ui and u∗i of the equation of motion (7.4) which are

orthonormal in the inner product (7.5), i.e. satisfying

(ui, uj) = δij , (u∗i , u
∗
j) = −δij , (ui, u

∗
j) = 0. (7.9)

We can then expand the field as

φ =
∑
i

(aiui + a∗iu
∗
i ). (7.10)

We now canonically quantize this system. We choose a foliation of spacetime into space like

hypersurfaces. Let Σ be a particular hypersurface with unit normal vector nµ corresponding to

a fixed value of the time coordinate x0 = t and with induced metric hij. We write the action

as SM =
∫
dx0LM where LM =

∫
dn−1x

√
−detg LM . The canonical momentum π is defined by

π =
δLM
δ(∂0φ)

= −
√
−detg gµ0∂µφ

= −
√
−deth nµ∂µφ. (7.11)

We promote φ and π to hermitian operators φ̂ and π̂ and then impose the equal time canonical

commutation relations

[φ̂(x0, xi), π̂(x0, yi)] = iδn−1(xi − yi). (7.12)

The delta function satisfies the property∫
δn−1(xi − yi)dn−1y = 1. (7.13)

The coefficients ai and a∗i become annihilation and creation operators âi and â+
i satisfying the

commutation relations

[âi, â
+
j ] = δij , [âi, âj] = [â+

i , â
+
j ] = 0. (7.14)

The vacuum state is given by a state |0〉u defined by

âi|0u〉 = 0. (7.15)
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The entire Fock basis of the Hilbert space can be constructed from the vacuum state by repeated

application of the creation operators â+
i .

The solutions ui, u
∗
i are not unique and as a consequence the vacuum state |0〉u is not

unique. Let us consider another complete set of solutions vi and v∗i of the equation of motion

(7.4) which are orthonormal in the inner product (7.5). We can then expand the field as

φ =
∑
i

(bivi + b∗i v
∗
i ). (7.16)

After canonical quantization the coefficients bi and b∗i become annihilation and creation opera-

tors b̂i and b̂+
i satisfying the standard commutation relations with a vacuum state given by |0〉v

defined by

b̂i|0v〉 = 0. (7.17)

We introduce the so-called Bogolubov transformation as the transformation from the set {ui, u∗i }
(which are the set of modes seen by some observer) to the set {vi, v∗i } (which are the set of

modes seen by another observer) as

vi =
∑
j

(αijuj + βiju
∗
j). (7.18)

By using orthonormality conditions we find that

αij = (vi, uj) , βij = −(vi, u
∗
j). (7.19)

We can also write

ui =
∑
j

(α∗jivj − βjiv∗j ). (7.20)

The Bogolubov coefficients α and β satisfy the normalization conditions∑
k

(αikαjk − βikβjk) = δij ,
∑
k

(αikβ
∗
jk − βikα∗jk) = 0. (7.21)

The Bogolubov coefficients α and β transform also between the creation and annihilation op-

erators â, â+ and b̂, b̂+. We find

âk =
∑
i

(αikb̂i + β∗ikb̂
+
i ) , b̂k =

∑
i

(α∗kiâi − β∗kiâ+
i ). (7.22)

Let Nu be the number operator with respect to the u-observer, viz Nu =
∑

k â
+
k âk. Clearly

〈0u|Nu|0u〉 = 0. (7.23)

We compute

〈0v|â+
k âk|0v〉 =

∑
i

βikβ
∗
ik. (7.24)

Thus

〈0v|Nu|0v〉 = trββ+. (7.25)

In other words with respect to the v-observer the vacuum state |0u〉 is not empty but filled with

particles. This opens the door to the possibility of particle creation by a gravitational field.
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8 Hawking Radiation

8.1 The Unruh Effect Revisited

In this first part we will follow mostly [15]. We consider 2−dimensional spacetime with

metric

ds2 = −dt2 + dx2. (8.1)

We consider a uniformly accelerated, i.e. a Rindler, observer in this spacetime with acceleration

α. The trajectory of the Rindler observer is given by the equations (set ξ1 = 0 in (2.16) and

discard the constant term 1/a in x1, i.e. the Rindler does not coincide with Minkowski at τ = 0)

t =
1

α
sinhατ , x =

1

α
coshατ. (8.2)

The trajectory is then a hyperboloid given by

x2 = t2 +
1

α2
. (8.3)

Thus the Rindler observer moves from the past null infinity x = −t to the future null infinity

x = +t as opposed to the motion of geodesic observers which reaches timelike infinity.

Figure 5: Rindler space in two dimensions.
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We introduce coordinates in Rindler space (quadrant or wedge I in figure (5)) by

t =
1

a
exp(aξ) sinh aη , x =

1

a
exp(aξ) cosh aη , x > |t| , −∞ < η, ξ < +∞. (8.4)

The trajectory of the Rindler observer in these coordinates read

η =
α

a
τ , ξ =

1

a
ln
a

α
. (8.5)

In other words,

a = α⇒ η = τ , ξ = 0. (8.6)

The metric in Rindler space reads

ds2 = exp(2aξ)(−dη2 + dξ2). (8.7)

The metric is independent of η and thus ∂η is a Killing vector. This is given explicitly by

∂η = a(x∂t + t∂x). (8.8)

This is then obviously the Killing field associated with a boost in the x−direction. This extends

to regions II and III where it is spacelike while in region IV it is timelike past-directed 2. The

horizons x = ±t are actually Killing horizons. Every Killing horizon is associated with an

acceleration called the surface gravity κ which is here given exactly by

κ = a. (8.9)

We will also need the coordinates η and ξ in the quadrant IV. They are given by

t = −1

a
exp(aξ) sinh aη , x = −1

a
exp(aξ) cosh aη , x < |t|. (8.10)

The Klein-Gordon equation in Rindler space is (with m2 = ζ = 0)

0 = ∇µ∇µφ

=
1√
−detg

∂µ

(√
−detg∂µφ

)
= e−2aξ(−∂2

η + ∂2
ξ )φ. (8.11)

A positive frequency normalized plane wave solution in region I is given by

g
(1)
k =

1√
4πω

exp(−iωη + ikξ) , I

g
(1)
k = 0 , IV. (8.12)

2The lables III and IV are reversed here as compared with the previous discussion.
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Indeed,

∂ηg
(1)
k = −iωg(1)

k , ω = |k|. (8.13)

∂η is a future-director timelike Killing vector in region I. But it is a past-directed timelike

Killing vector in region IV. Thus in region IV we should consider the Killing vector ∂−η = −∂η
which is future-directed there. A positive frequency normalized plane wave solution in region

II is thus given by

g
(2)
k = 0 , I

g
(2)
k =

1√
4πω

exp(iωη + ikξ) , IV. (8.14)

Indeed,

∂−ηg
(2)
k = −iωg(2)

k , ω = |k|. (8.15)

These two sets of positive frequency modes, together with their negative frequency conjugates,

provide a complete set of basis elements for the expansion of any solution of the Klein-Gordon

wave equation through spacetime. We denote the associated annihilation operators by b̂
(1)
k and

b̂
(2)
k . A general solution of the Klein-Gordon equation takes then the form

φ =

∫
k

(
b̂

(1)
k g

(1)
k + b̂

(2)
k g

(2)
k + h.c

)
. (8.16)

This should be contrasted with the expansion of the same solution in terms of the Minkowski

modes fk ∝ exp(−i(ωt− kx)) with ω = |k| which we will write as

φ =

∫
k

(
âkfk + h.c

)
. (8.17)

The above Rindler modes g
(1)
k and g

(2)
k are normalized according to the inner product (7.5), viz

(φ1, φ2) = −i
∫

Σ

(
φ1∂µφ

∗
2 − ∂µφ1.φ

∗
2

)
dΣnµ. (8.18)

dΣ is the volume element in the spacelike hypersurface Σ and nµ is the timelike unit vector

which is normal to this hypersurface. Thus dΣ =
√

detγdn−1x. In our case, the timelike surface

η = 0 has a unit vector nµ such as gµνn
µnν = −1 and thus n0 = exp(−aξ). Also we have√

detγ = exp(aξ) and x↔ ξ. Hence the inner product becomes

(φ1, φ2) = −i
∫ (

φ1∂ηφ
∗
2 − ∂ηφ1.φ

∗
2

)
dξ. (8.19)

We compute for example

(g
(1)
k1
, g

(1)
k2

) = − i

4π
√
ω1ω2

∫ (
iω2e

−iω1η+ik1ξeiω2η−ik2ξ + iω1e
−iω1η+ik1ξeiω2η−ik2ξ

)
dξ

=
1

4π
.4πδ(k1 − k2). (8.20)
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We also show

(g
(2)
k1
, g

(2)
k2

) = δ(k1 − k2). (8.21)

(g
(1)
k1
, g

(2)
k2

) = 0. (8.22)

The Minkowski vacuum |0M〉 and the Rindler vacuum |0R〉 are defined obviously by

âk|0M〉 = 0. (8.23)

b̂
(1)
k |0R〉 = b̂

(2)
k |0R〉 = 0. (8.24)

However, the Hilbert space is the same. For the Rindler observer the Minkowski vacuum |0R〉
is seen as a multi-particle state since she is traveling in Minkowski spacetime with a uniform

acceleration, i.e. she is not an inertial observer. The expectation value of the Rindler number

operator in the Minkowski vacuum can be calculated using the Bogolubov coefficients as we

explained in the previous section.

An alternative method due to Unruh consists in extending the positive frequency modes g
(1)
k

and g
(2)
k to the entire spacetime and thus replacing the corresponding annihilation operators

b̂
(1)
k and b̂

(2)
k by new annihilation operators ĉ

(1)
k and ĉ

(2)
k which annihilate the Minkowski vacuum

|0M >.

First, the coordinates (t, x) and (η, ξ) are related by

−t+ x =
1

a
ea(ξ−η) ⇒ e−a(η−ξ) = a(−t+ x) , I. (8.25)

t− x =
1

a
ea(ξ−η) ⇒ e−a(η−ξ) = a(t− x) , IV. (8.26)

Similarly,

ea(η+ξ) = a(t+ x) , I. (8.27)

ea(η+ξ) = a(−t− x) , IV. (8.28)

Thus if we choose k > 0 we have in region I (x > 0)

√
4πωg

(1)
k = exp(−iω(η − ξ))

= ei
ω
a (−t+ x)i

ω
a . (8.29)

In region IV (x < 0) we should instead consider

√
4πωg

(2)∗
−k = exp(−iω(η − ξ))

= ei
ω
a (t− x)i

ω
a

= ei
ω
a e

πω
a (−t+ x)i

ω
a . (8.30)
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Thus for all x, i.e. along the surface t = 0, we should consider for k > 0 the combination
√

4πω
(
g

(1)
k + e−

πω
a g

(2)∗
−k
)

= ei
ω
a (−t+ x)i

ω
a . (8.31)

We get the same result for k < 0. A normalized analytic extension to the entire spacetime of

the positive frequency modes g
(1)
k is given by the modes

h
(1)
k =

1√
2 sinh πω

a

(
e
πω
2a g

(1)
k + e−

πω
2a g

(2)∗
−k
)
. (8.32)

Similarly, a normalized analytic extension to the entire spacetime of the positive frequency

modes g
(2)
k is given by the modes

h
(2)
k =

1√
2 sinh πω

a

(
e
πω
2a g

(2)
k + e−

πω
2a g

(1)∗
−k
)
. (8.33)

The field operator can then be expanded in these modes as

φ =

∫
k

(
ĉ

(1)
k h

(1)
k + ĉ

(2)
k h

(2)
k + h.c

)
. (8.34)

The relation between the annihilation operators b̂ and the annihilation operators ĉ is given by

the same relation between the modes h and the modes g, viz

b̂
(1)
k =

1√
2 sinh πω

a

(
e
πω
2a ĉ

(1)
k + e−

πω
2a ĉ

(2)+
−k
)
. (8.35)

b̂
(2)
k =

1√
2 sinh πω

a

(
e
πω
2a ĉ

(2)
k + e−

πω
2a ĉ

(1)+
−k
)
. (8.36)

The modes h
(1)
k and h

(2)
k are positive frequency modes defined on the entire spacetime and thus

they can be expressed entirely in terms of the positive frequency modes of Minkowski spacetime

given by the plane waves fk ∝ exp(−i(ωt − kx)), ω = |k|, where k > 0 correspond to right

moving modes and k < 0 correspond to left moving modes. In other words, the modes h
(1)
k and

h
(2)
k share with fk the same Minkowski vacuum |0M〉, viz

ĉ
(1)
k |0M〉 = ĉ

(2)
k |0M〉 = 0. (8.37)

The Rindler number operator in region I is defined by

N̂
(1)
R (k) = b̂

(1)+
k b̂

(1)
k . (8.38)

We can now immediately compute the expectation value of the Rindler number operator in

region I in the Minkowski vacuum to find

〈0M |N̂ (1)
R (k)|0M〉 = 〈0M |b̂(1)+

k b̂
(1)
k |0M〉

=
e−

πω
a

2 sinh πω
2

〈0M |ĉ(2)
−kĉ

(2)+
−k |0M〉

=
1

e
2πω
a − 1

δ(0). (8.39)
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This is a blackbody Planck spectrum corresponding to the temperature

T =
a

2π
. (8.40)

Indeed, this spectrum corresponds to a thermal radiation, i.e. to a mixed state, without any

correlations. This is the Unruh effect: A uniformly accelerated observer in the Minkowski

vacuum observes a thermal spectrum [25].

8.2 From Quantum Scalar Field Theory in Rindler Background

We follow in this section the presentation of [11]. We consider Schwarzschild metric in

tortoise coordinates, viz

ds = F (r∗)(−dt2 + dr2
∗) + r2dΩ2

F (r∗) = 1− 2GM

r

r∗ = r + 2GM log(
r

2GM
− 1). (8.41)

We consider the action of a massless scalar field φ in this background given by (with ψ = rφ)

I =

∫ √
−detgd4x

1

2
∂µφ∂

µφ

=

∫
Fr2 sin θdtdr∗dθdφ

1

2

(
− 1

F
(∂tφ)2 +

1

F
(∂r∗φ)2 +

1

r2
(∂θφ)2 +

1

r2 sin2 θ
(∂φφ)2

)
=

∫
sin θdtdr∗dθdφ

1

2

(
− (∂tψ)2 + (∂r∗ψ − ∂r∗ ln r.ψ)2 +

F

r2
(∂θψ)2 +

F

r2 sin2 θ
(∂φψ)2

)
=

∫
sin θdtdr∗dθdφ

1

2

(
− (∂tψ)2 + (∂r∗ψ − ∂r∗ ln r.ψ)2 +

F

r2
ψL2ψ

)
,

(8.42)

where we have used

−L2 =
1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂2

∂φ2
. (8.43)

We expand now in spherical coordinates as

ψ =
∑
lm

ψlmYlm. (8.44)

We get then

I =

∫
dtdr∗

1

2

∑
lm

ψ∗lm

(
∂2
t ψlm − ∂2

r∗ψlm +
(
∂2
r∗ ln r + (∂r∗ ln r)2

)
ψlm +

F

r2
l(l + 1)ψlm

)
=

∫
dtdr∗

1

2

∑
lm

ψ∗lm

(
∂2
t ψlm − ∂2

r∗ψlm + V (r∗)ψlm

)
. (8.45)
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The potential is given by

V (r∗) = ∂2
r∗ ln r + (∂r∗ ln r)2 +

F

r2
l(l + 1)

=
1

r

∂2r

∂r2
∗

+
F

r2
l(l + 1)

=
r − 2GM

r

(
2GM

r3
+
l(l + 1)

r2

)
. (8.46)

The equation of motion reads

∂2
t ψlm = ∂2

r∗ψlm − V (r∗)ψlm. (8.47)

The stationary solutions are ψlm = exp(iνt)ψ̃lm such that

−∂̃2
r∗ψ̃lm + V (r∗)ψ̃lm = ν2ψ̃lm. (8.48)

The potential vanishes at the horizon r = 2GM (where the solutions are given by free plane

waves) and also vanishes at infinity. Thus it must pass through a maximum given by the

condition

dV

dr
=

1

r5

(
− 2l(l + 1).r2 − 6GM(1− l(l + 1)).r + 16G2M2

)
= 0. (8.49)

We get the solutions

r± = 3GM

(
1

2
− 1

2l(l + 1)
± 1

2

√
1 +

7l2 + 7l + 4

4l2(l + 1)2

)
. (8.50)

Obviously, the physical solution is

rmax = 3GM

(
1

2
− 1

2l(l + 1)
+

1

2

√
1 +

7l2 + 7l + 4

4l2(l + 1)2

)
. (8.51)

Thus

rmax(l =∞) = 3GM. (8.52)

For very large angular momentum l the maximum of the potential lies at 3GM . For r >> 3GM

the potential is repulsive, given by a generalization of the centrifugal potential l(l + 1)/r2,

whereas for r < 3GM (the region of thermal atmosphere) gravity dominates and the potential

becomes attractive. Thus any particle in this region with a zero initial velocity will spiral into

the horizon eventually.

The above equation is effectively Schrodinger equation with potential V and energy ν2.

Thus an s-wave (l = 0) approaching the barrier r = 3GM from the inside (horizon) with

energy satisfying ω > Vmax will be able to escape whereas if approaching from the outside it
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will be able to penetrate the barrier and reach the horizon. For energy ω < Vmax the wave

needs to tunnel through the barrier.

For higher angular momentum the maximum of the potential is very large proportional to

l2 and thus it is more difficult to escape or penetrate the barrier.

Near horizon geometry is given by the metric (with u = ln ρ the tortoise coordinate in this

case)

ds2 = −ρ2dω2 + dρ2 + dY 2 + dZ2

= e2u(−dω2 + du2) + dY 2 + dZ2. (8.53)

The action of a scalar field is given immediately by

I =

∫
dωdudY dZ

1

2

(
− (∂ωφ)2 + (∂uφ)2 + e2u(∂Y φ)2 + e2u(∂Zφ)2

)
. (8.54)

We expand the field into transverse plane waves as

φ =

∫
dk2

2π

dk3

2π
ei(k2Y+k3Z)ψ(k2, k3, ω, u). (8.55)

We get then the action

I =

∫
dωdu

1

2
ψ∗
(
∂2
ωψ − ∂2

uψ + e2u~k2ψ

)
. (8.56)

The potential is then given by

V = e2u~k2. (8.57)

This is proportional to l2 since l = |k|r = |k|.2MG and thus this approximation is not expected

to work for small angular momentum. Thus in approximating sums over l and m by integrals

over k we should for consistency employ the infrared cutoff |k| ∼ 1/MG.

The Rindler potential V = ρ2~k2, for |k| 6= 0, is confining to the region near the horizon.

This is also the situation in the Schwarzschild black hole where the potential confines parti-

cles to the region near the horizon. However, in the Schwarzschild black hole the potential

becomes repulsive for r > 3MG which is equivalent to ρ > MG. Thus the potential barrier

for Schwarzschild black hole is cutoff for ρ > MG as opposed to Rindler space which keeps

increasing without bound as ρ2.

Since (1) a Schwarzschild black hole near the horizon will appear as Rindler, and (2) the

Rindler observer will see the Minkowski vacuum as a thermal canonical ensemble with a tem-

perature given by T = 1/2π, it is expected that an identical thermal effect should be observed

near the horizon of the Schwarzschild black hole.

However, there is a crucial difference. In the case of Rindler the thermal atmosphere is fully

confined by the potential (8.57) as opposed to the case of the Schwarzschild black hole where

the thermal atmosphere is not fully confined by the potential (8.46). This means in particular
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that particles leak out of the thermal atmosphere in the case of the Schwarzschild black hole

and as a consequence the black hole evaporates.

Let us find the temperature as seen by the Schwarzschild observer. The Rindler time ω is

related to the Schwarzschild time t by the relation

ω =
t

4GM
. (8.58)

This leads immediately to the fact that frequency as measured by the Schwarzschild observer

ν is red shifted compared to the frequency νR measured by the Rindler observer given by

νR = 4GM.ν ⇒ ν =
νR

4GM
. (8.59)

Hence the temperature as measured by the Schwarzschild observer is also red shifted as

TR = 4GM.T ⇒ T =
TR

4GM
=

1

8πGM
. (8.60)

This is precisely Hawking temperature.

Next we show how the black hole can radiate particles. The potential (8.46) is not fully

confining and it contains only a barrier around r ' 3GM . The height of the barrier for modes

with angular momentum l = 0, which corresponds to rmax(l = 0) = 8GM/3, is given by

Vmax(l = 0) =
27

1024G2M2
. (8.61)

The energy in the potential (8.46) is E = ν2. Thus the modes l = 0 will escape the potential

barrier coming from the horizon if

E ≥ Vmax(l = 0)⇒ ν ≥ 3π
√

3

4
T. (8.62)

However, these modes since they are in a thermal state with temperature T = 1/8πMG, their

energies is of the order of T , and hence they can quite easily escape the potential barrier. The

height of the barrier for modes with higher angular momentum l goes as l2/G2M2, i.e. it is

very high compared to the thermal scale set by Hawking radiation, and hence these modes do

not escape as easily as the zero modes. This is Hawking radiation.

8.3 Summary

In summary, since

• (1) a Schwarzschild black hole near the horizon will appear as Rindler, and

• (2) the Rindler observer will see the Minkowski vacuum as a thermal canonical ensemble

with a temperature given by T = 1/2π (Unruh effect),
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an identical thermal effect is observed near the horizon of the Schwarzschild black hole.

Indeed, to a distant observer the Schwarzschild black hole appears as a body with energy

given by its mass M and a temperature T given by Hawking temperature

T =
1

8πGM
.

However, there is a crucial difference between Rindler space and Schwarzschild black hole. In

the case of Rindler the thermal atmosphere (the particles near the horizon) is fully confined by

the Rindler potential as opposed to the case of the Schwarzschild black hole where the thermal

atmosphere is not fully confined by the Schwarzschild potential. This means in particular that

particles leaks out of the thermal atmosphere in the case of the Schwarzschild black hole and

as a consequence the black hole evaporates. The particles which can escape the black hole have

zero angular momentum for which the height of the potential barrier at around r ' 3MG is

of the same order as the thermal scale set by Hawking temperature while particles with larger

angular momentum can not escape because for them the height of the potential barrier is much

larger than the thermal scale. See figure (6).

Figure 6: Schwarzschild potential.
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The thermodynamical entropy S is related to the energy and the temperature by the formula

dU = TdS. Thus we obtain for the black hole the entropy

dS =
dM

T
= 8πGMdM ⇒ S = 4πGM2. (8.63)

However, the radius of the event horizon of the Schwarzschild black hole is rs = 2MG, and thus

the area of the event horizon (which is a sphere) is

A = 4π(2MG)2. (8.64)

By dividing the above two equations we get

S =
A

4G
. (8.65)

The entropy of the black hole is proportional to its area. This is the famous Bekenstein-Hawking

entropy formula.

9 Hawking Radiation from QFT in Schwarzschild Back-

ground

The original derivation of the Hawking radiation is found in [6,7]. In here we will follow [5,18]

and to a lesser degree [19,22–24].

9.1 Kruskal and Schwarzschild (Boulware) Observers and Field Ex-

pansions

Let us start by recalling some formulas. The metric is

ds2 = −(1− 2GM

r
)dt2 +

dr2

1− 2GM
r

+ r2dΩ2. (9.1)

We define the Kruskal ingoing and outgoing null coordinates U and V (scaled versions of our

previous u
′

and v
′
) in region I as

U = rsu
′
= −

√
rs(r − rs)e

r−t
2rs , V = rsv

′
=
√
rs(r − rs)e

r+t
2rs . (9.2)

They satisfy

UV = rs(rs − r)e
r
rs ,

U

V
= −e−

t
rs . (9.3)

The metric becomes

ds2 = −4rs
r
e−

r
rs dUdV + r2dΩ2. (9.4)
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This form is valid throughout the spacetime and not only in region I.

We consider now an inertial observer falling through the horizon rs = 2GM . This freely

falling observer will cross the horizon in a finite proper time given by (with rs = ri(1+cosαs)/2)

τ =

√
r3
i

4rs
(αs + sinαs). (9.5)

However, with respect to the Schwarzschild observer the radius r of the freely falling object is

related to its time t by the formula (near the horizon)

r − rs = e−
t
rs . (9.6)

A distant inertial observer assumed to be hovering at a fixed radial distance r∞ will observe a

proper time τ∞ related to Schwarzschild time t by the equation

τ∞ =

√
1− rs

r∞
t. (9.7)

Thus, this distant observer will then measure τ∞ −→∞ as r −→ rs, i.e. she will never see the

falling object actually crossing the horizon. Thus this observer may be interpreted as ending

at the horizon.

The discrepancy between the worldviews of the above two inertial observers (the freely

falling and the asymptotic fixed observer) is what is at the source of Hawking radiation and all

its related paradoxes [5].

We reduce the problem to 2 dimensions, viz

ds2 = −(1− 2GM

r
)dt2 +

dr2

1− 2GM
r

= −4rs
r
e−

r
rs dUdV. (9.8)

The tortoise coordinate (corresponding to a conformally flat metric) is defined by

dr = (1− rs
r

)dr∗ → r∗ = r − rs + rs ln(
r

rs
− 1). (9.9)

We will also work with the ingoing and outgoing null coordinates u and v defined only in

quadrant I given by

u = t− r∗
= t− r − rs ln(

r

rs
− 1) + rs

= −2rs ln(
−U
rs

) + rs. (9.10)

v = t+ r∗

= t+ r + rs ln(
r

rs
− 1)− rs

= 2rs ln(
V

rs
)− rs. (9.11)
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The metric in this system is

ds2 = −(1− 2GM

r
)dudv = −rs

r
e
v−u
2rs e−

r−rs
rs dudv. (9.12)

We will expand the field in modes as usual. The following important points should be taken

into consideration.

• For the asymptotic inertial observer the modes will be denoted by the frequencies ω and

they are clearly associated with the Schwarzschild time t or equivalently u = t− r∗. This

what corresponds to the exterior degrees of freedom.

• For the freely falling inertial observer the time is obviously given by the proper time τ .

From equation (3.19) (with λ = τ) and (3.24) we obtain near the horizon

dτ

dt
∼ r − rs ∼ exp(−t/rs)⇒ dτ ∼ exp(−t/rs)dt⇒ τ ∼ −rs exp(−t/rs) + τ0. (9.13)

We get then near the horizon

U ∼ 1
√
rs

exp(r/2rs)(τ − τ0) , V ∼
√
rs exp(r/2rs). (9.14)

Thus U −→ 0 and V −→ constant. Also we conclude that the proper time τ is equiv-

alent to the coordinate U with frequencies denoted by ν. Since U is defined throughout

spacetime the frequency ν is what corresponds to the interior degrees of freedom.

• We know already that in the Schwarzschild geometry the solutions of the equation of

motion are spherically symmetric which read

ψ =
∑
lm

Ylmψlm. (9.15)

The ψlm solves schrödinger equation, viz

(∂2
t − ∂2

r∗ + V (r∗))ψlm = 0, (9.16)

with a potential function in the tortoise coordinates r∗ of the form

V (r∗) =
r − rs
r

(
rs
r

+
l(l + 1)

r2
). (9.17)

In the limit r −→ ∞ (the asymptotically flat spacetime limit) the tortoise coordinate

behaves as r∗ −→ ∞ and the potential goes to zero as V ' l(l + 1)/r2. The particle

is therefore free in this limit. Similarly, in the near horizon limit r −→ rs the tortoise

coordinate behave as r∗ −→ −∞ and the potential goes to zero again but now as V '
(r − rs)/r ∼ exp((r∗ − r)/rs). The particle is also free in this regime.

Thus near infinity and near the horizon the solutions are plane waves of the form exp(ik(t±
r∗) or equivalently exp(iku) and exp(ikv).
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• The scalar field action is

I =
1

2

∫
d2x
√
−detggµν∂µφ∂νφ

= −
∫
dUdV ∂Uφ∂V φ

= −
∫
dudv∂uφ∂vφ =

1

2

∫
dtdr∗

(
− (∂tφ)2 + (∂r∗φ)2

)
. (9.18)

The equation of motion is

∂u∂vφ = ∂U∂V φ = 0. (9.19)

The solution is

φ = φL(u) + φR(v)

= φL(U) + φR(V ). (9.20)

We will only consider the right moving part.

• We consider a particular foliation of the near horizon geometry. For example, the coor-

dinates u and v in region I are replaced by η = t = (u + v)/2 and ξ = r∗ = −(u − v)/2

where η is time. These coordinates near the horizon in region I define the metric of

Rindler quadrant with acceleration given formally by a = 1/2rs, viz

ds2 = exp(2aξ)(−dη2 + dξ2). (9.21)

Thus, the Klein-Gordon inner product is precisely given by the formula (8.19), viz

(φ1, φ2) = −i
∫ (

φ1∂ηφ
∗
2 − ∂ηφ1.φ

∗
2

)
dξ. (9.22)

We can check immediately that

(φ1, φ2) = −(φ∗2, φ
∗
1) , (φ∗1, φ

∗
2) = −(φ1, φ2)∗. (9.23)

The positive frequency normalized modes in region I have been already computed. They

are given by (8.12)

g
(1)
k =

1√
4πΩ

exp(−iΩη + ikξ) , Ω = |k|. (9.24)

The right moving part of this positive frequency mode corresponds to k > 0 and it is

given explicitly by

g
(1)
k =

1√
4πΩ

exp(−iΩu). (9.25)
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The right moving part with negative frequency corresponds therefore to g
(1)∗
k . A right

moving field will then be expanded as

φR(u) =

∫ ∞
0

dk

(
bk√
4πΩ

exp(−iΩu) +
b+
k√

4πΩ
exp(iΩu)

)
. (9.26)

After a change of variable ω = k and bk = bω/
√

2π we get

φR(u) =

∫ ∞
0

dω

2π

(
bω√
2ω

exp(−iωu) +
b+
ω√
2ω

exp(iωu)

)
. (9.27)

Since g
(1)
k are normalized such that (g

(1)
k , g

(1)

k′
) = δ(k − k′) the annihilation and creation

operators bk and b+
k must satisfy [bk, b

+

k′
] = δ(k − k′) and thus [bω, b

+

ω′
] = 2πδ(ω − ω′).

• From the above considerations, the field operator in the Schwarzschild tortoise coordinates

(t, r∗) is given by the formula

φ(t, r∗) =

∫ +∞

−∞

dk

2π

(
bk√
2|k|

exp(−i|k|t+ ikr∗) +
b+
k√
2|k|

exp(i|k|t− ikr∗)
)
. (9.28)

[bk, b
+
k′ ] = 2πδ(k − k′). (9.29)

The frequency is ω = |k| and t is the proper time at infinity where Schwarzschild becomes

Minkowski. The momentum operator is

π(t, r∗) =
∂L

∂(∂tφ)
= ∂tφ(t, r∗)

=

∫ +∞

−∞

dk

2π

(
−i|k|bk√

2|k|
exp(−i|k|t+ ikr∗) +

i|k|b+
k√

2|k|
exp(i|k|t− ikr∗)

)
.

(9.30)

We compute immediately

[φ(t, r∗), π(t, r′∗)] = i

∫ +∞

−∞

dk

2π
eik(r∗−r′∗) = iδ(r∗ − r′∗). (9.31)

This confirms our normalization.

The vacuum with respect to the inertial asymptotic tortoise Schwarzschild observer, also

called the Boulware vacuum, is given by

bk|0T >= 0 , ∀k. (9.32)

• For an obvious reason, the mode expansion in the Kruskal coordinates (U, V ), with proper

time given by T = (U + V )/2 and space like coordinate given by X = −(U − V )/2, is

similar to the above expansion, viz

φ(T,X) =

∫ +∞

−∞

dk

2π

(
ak√
2|k|

exp(−i|k|T + ikX) +
a+
k√
2|k|

exp(i|k|T − ikX)

)
.

(9.33)
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The frequency here is ν = |k| and U is equivalent to the proper time τ of an infalling

observer. The Kruskal vacuum is defined by

ak|0K >= 0 , ∀k. (9.34)

• The field decomposes into right moving field and left moving field or in the terminology

of four dimensions into ingoing and outgoing fields. The right moving (outgoing) field

corresponds to k > 0 and the left moving (ingoing) field corresponds to k < 0. We write

the field as

φ(T,X) =

∫ +∞

0

dν

2π

(
aν√
2ν

exp(−iνU) +
a−ν√

2ν
exp(−iνV ) + h.c

)
. (9.35)

Similarly,

φ(t, r∗) =

∫ +∞

0

dω

2π

(
bω√
2ω

exp(−iωu) +
b−ω√

2ω
exp(−iωv) + h.c

)
. (9.36)

9.2 Bogolubov Coefficients

Let us summarize our main points. We have two observers: the asymptotic Schwarzschild

tortoise observer and the freely falling Kruskal observer. The Schwarzschild observer defined for

r > rs is the analogue of the accelerating Rindler observer with acceleration given by a = 1/2rs,

whereas the Kruskal observer corresponds to the inertial Minkowski observer defined throughout

the spacetime manifold.

The asymptotic observer at fixed r (r > rs) expands the right moving field in terms of the

modes vω as

φR(u) =

∫ ∞
0

dω(vωbω + v∗ωb
†
ω) , vω =

1√
4πω

exp(−iωu). (9.37)

We have the normalization

(vω1 , vω2) = δ(ω1 − ω2) , [bω, b
+
ω′ ] = δ(ω − ω′). (9.38)

This observer sees the Schwarzschild tortoise vacuum

bω|0T >= 0. (9.39)

The freely falling observer expands the right moving field in terms of the modes uν as

φR(U) =

∫ ∞
0

dν(uνaν + u∗νa
†
ν) , uν =

1√
4πν

exp(−iνU). (9.40)

We have the normalization

(uν1 , uν2) = δ(ν1 − ν2) , [aν , a
+
ν′ ] = δ(ν − ν ′). (9.41)
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This observer sees the Kruskal vacuum

aν |0K >= 0. (9.42)

The asymptotic and freely falling objects are related through the Bogolubov transformations

vω =

∫ ∞
0

dν(αωνuν + βωνu
∗
ν) , uν =

∫ ∞
0

dω(α∗ωνvω − βωνv∗ω). (9.43)

aν =

∫ ∞
0

dω(αωνbω + β∗ωνb
†
ω) , bω =

∫ ∞
0

dν(α∗ωνaν − β∗ωνa†ν). (9.44)

The first equation should be corrected by the introduction of the interior degrees of freedom

(see next lecture). Nevertheless, the Bogolubov coefficients are

αων = (vω, uν) , βων = −(vω, u
∗
ν). (9.45)

We calculate immediately

αων = (vω, uν) = −i
∫

2

4π
√
ων

(iω∂ηu)e−iωueiνUdr∗

= −
∫ +∞

−∞

du

2π

√
ω

ν
e−iωueiνU ⇒ α∗ων = −

√
ω

ν
F (ω, ν). (9.46)

Similarly,

βων = −(vω, u
∗
ν)

=

∫ +∞

−∞

du

2π

√
ω

ν
e−iωue−iνU ⇒ −β∗ων = −

√
ω

ν
F (ω,−ν). (9.47)

The function F is given by (with U = U0e
−au where U0 = −

√
e/2a)

F (ω, ν) =

∫ +∞

−∞

du

2π
eiωue−iνU =

∫ +∞

−∞

du

2π
eiωu−iνU0e−au . (9.48)

This is the Euler gamma function. Indeed, if we make the change of variable u −→ z = iνU0e
−au

we immediately reach the formula

F (ω, ν) =
1

2πa
exp(

iω

a
ln iνU0)

∫ +∞

0

e−
iω
a
−1e−zdz =

1

2πa
exp(

iω

a
ln iνU0)Γ(−iω

a
).

(9.49)

The number of b particles of frequency ω as seen by the Schwarzschild asymptotic fixed observer

is given by the expectation value of the number operator Nω = b+
ω bω. Obviously, the expectation

value of this number operator in the tortoise vacuum is zero, viz 〈0T |Nω|0T 〉 = 0. However, the
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actual vacuum state of lowest energy of the quantum scalar field in the presence of a classical

black hole is given by the freely falling Kruskal vacuum |0K〉. This is because Schwarzschild is

the analogue of Rindler whereas Kruskal is the analogue of Minkowski. See the nice discussion

in [18]. Also, in consideration of the gravitational collapse of a star onto a black hole it has been

shown that before the collapse the vacuum state is that of Minkowski and after the collapse

the vacuum state becomes that of Kruskal [6, 7]. Thus, the vacuum state is |0K〉 and it does

actually contain b particles as seen by the asymptotic Schwarzschild observer since

〈0K |Nω|0K〉 = 〈0K |b+
ω bω|0K〉

=

∫ ∞
0

dν|βων |2. (9.50)

Figure 7: The contour of integration.

9.3 Hawking Radiation and Hawking Temperature

The Bogolubov coefficient can be expressed in terms of Euler gamma function as shown

above and then integrated over. However, the method outlined in [18] is more illuminating.

We deform the u integral from −∞ to +∞ to the t integral from −∞− iπ/a to +∞− iπ/a
where u = t + iπ/a. See figure (7). The integral is not changed because (i) the integrand has

no poles which is obvious, (i) the lateral segments are limited in length which is also obvious

and (i) the integrand vanishes for t −→ ±∞− iα where 0 < α < π/a. The last point is shown
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as follows. Firstly,

limt−→−∞−iαRe

(
iνU0e

−at
)

= limu−→−∞Re

(
iνU0e

iaαe−au
)

= −limt−→−∞Re

(
νU0 sin aαe−au

)
= −∞. (9.51)

For the limit t −→ +∞− iα the integral diverges and we need to regularize it for example as

F (ω, ν) =

∫ +∞

−∞

du

2π
eiωu−iνU0e−aue−bu

2

, b > 0. (9.52)

This integral then for b positive is zero in the limit t −→ +∞− iα. Since there are no poles

inside the closed contour formed by the original contour and the shifted one as in the figure

below we conclude immediately that F can be given by the integral

F (ω, ν) =

∫ +∞− iπ
a

−∞− iπ
a

dt

2π
eiωt−iνU0e−at

= exp(
ωπ

a
)F (ω,−ν). (9.53)

This result should be understood in the sense of distribution. The exhibited contour is the

unique possibility allowed to us since we can not deform the contour to u = t − i(π + 2πn)/a

with n 6= 0 because the sin aα in (9.51) will change sign.

We use now the last formula (9.53) to compute the expectation value of the Schwarzschild

asymptotic observer number operator Nω in the Kruskal (black hole) vacuum |0〉 as follows.

We start from the normalization condition

δ(ω − ω′) = (vω, vω′)

=

∫ ∞
0

dν
[
αων(uν , vω′) + βων(u

∗
ν , vω′)

]
=

∫ ∞
0

dν

[
αωνα

∗
ω′ν − βωνβ∗ω′ν

]
=

∫ ∞
0

dν

√
ωω′

ν

[
F ∗(ω, ν)F (ω′, ν)− F ∗(ω,−ν)F (ω′,−ν)

]
=

(
e
π(ω+ω′)

a − 1

)∫ ∞
0

dν

√
ωω′

ν
F ∗(ω,−ν)F (ω′,−ν). (9.54)

We write this equation as∫ ∞
0

dν

√
ωω′

ν
F ∗(ω,−ν)F (ω′,−ν) =

δ(ω − ω′)
e
π(ω+ω′)

a − 1
. (9.55)

For ω = ω
′

we get precisely the desired result∫ ∞
0

dν
ω

ν
|F (ω,−ν)|2 =

δ(0)

e
2πω
a − 1

. (9.56)
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In other words,

〈0K |Nω|0K〉 = 〈0K |b+
ω bω|0K〉

=

∫ ∞
0

dν|βων |2

=
δ(0)

exp(2πω
a

)− 1
. (9.57)

The density of b particles in the black hole vacuum state |0K > is therefore given by 3

nω =
1

2π

1

exp(2πω
a

)− 1
. (9.58)

This a blackbody Planck spectrum with the temperature

TH =
a

2π
=

1

4πrs
=

1

8πGM
. (9.59)

By inserting SI units we obtain

TH =
~c3

8πGMkB
. (9.60)

This is the famous Hawking temperature. The black hole as seen by a distant observer is

radiating energy, thus its mass decreases, and as a consequence its temperature increases, i.e.

the black hole becomes hotter, which indicates a negative specific heat.

10 The Unruh vs Boulware Vacua: Pure to Mixed

We will follow here the excellent pedagogical presentation of [19].

The first type of information loss is by falling across the event horizon. The second type

which is intimately related concerns Hawking radiation and is equivalent to the evolution of

pure states to mixed states which is a process forbidden by quantum mechanics.

10.1 The Adiabatic Principle and Trans-Planckian Reservoir

We start with the Rindler space (which is the cleanest of the two cases) where we have

obtained the Unruh effect by two methods. By computing the density matrix and also the flux

formula with respect to the Rindler observer. By using quantum information, we have found

that we can put the density matrix into the form

ρR =
1

Z
exp(−2π

a
HR) =

1

Z

∑
i

exp(−2π

a
Ei)|iR〉〈iR|. (10.1)

3In 1 + 3 dimensions using box normalization we have (2π)3δ3(0) = V where V is the volume of spacetime.

In the current 1 + 1 dimensional case we have (2π)δ(0) = L.
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This is a mixed (thermal,random) state obtained by integrating out the left wedge degrees of

freedom in the vacuum pure (entangled, correlated) state

|Ω〉 =
1√
Z

∑
i

exp(−πEi)|iR〉|i∗L〉. (10.2)

On the other hand, by using QFT in curved backgrounds we calculated the number of particles

with energy ω = |k| seen by the Rindler observer in the vacuum Minkowski state |0M〉 ≡ |Ω〉
to be given by the blackbody spectrum

〈0M |N̂ (1)
R (k)|0M〉 =

1

exp(2πω
a

)− 1
δ(0). (10.3)

Since the near horizon geometry of the Schwarzschild black hole is Rindler a similar result is

expected to hold in the Schwarzschild black hole geometry. Indeed, this is the result of [26]

which we will try to derive here following [19].

In discussing the Hawking radiation so far we have omitted several points. First, we have

only considered the exterior region. Second, we did not talk about greybody factors and

furthermore we have not mentioned at all the underlying adiabatic approximation or the trans-

Planckian problem and its so-called nice-slice resolution. All these issues can be remedied

somewhat by considering black holes as forming from collapsing shell of matter in some pure

quantum state |ψ〉.
We consider therefore a black hole which had formed during gravitational collapse in a

quantum state |ψ〉. The out state corresponds to an outgoing Killing null wave packet P

centered around some positive frequency ω with support only at large radii r at late times t −→
+∞. Recall that ω, r and t relate to the Schwarzschild tortoise coordinates. Obviously, this

wave packet is a solution of the Klein-Gordon equation which behaves at infinity as exp(−iωt)
and thus near the horizon it can only depend on the outgoing (right moving) coordinates

u = t − r∗, viz P ∝ exp(−iωu). This wave packet P corresponds to an annihilation operator

a(P ) given in terms of the field operator φ, which solves the Klein-Gordon equation, by the

Klein-Gordon inner product

a(P ) = (φ, P ). (10.4)

We run this wave packet backwards in time towards the black hole. A reflected part R will

scatter off the black hole and return to large radii and a transmitted part T with support only

immediately outside the event horizon. We write

P = R + T. (10.5)
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Figure 8: The wave packets P , R and T near the horizon.

The wave packets R and T have the same positive Killing frequency with respect to the

asymptotic Schwarzschild observer as the outgoing wave packet P because the black hole metric

is stationary. But with respect to a freely falling observer who intersects the trajectory of the

transmitted wave packet T at the event horizon both positive and negative frequency modes

will be seen in T . The annihilation operator a(P ) decomposes in an almost obvious way as

a(P ) = a(R) + a(T ). (10.6)

Since the reflected wave packet R has only support in the asymptotic flat region very far outside

the black hole and since |ψ〉 contains no positive frequency incoming excitation the annihilation
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operator a(R) annihilates the state |ψ〉 exactly

a(R)|ψ〉 = 0. (10.7)

If the state |ψ〉 were also annihilated by T it would have been identical with the Boulware

vacuum or tortoise vacuum |0T 〉 introduced in the previous lecture. But T contains positive

frequencies as well as negative frequencies with respect to the proper time of the freely falling

observer. Thus we decompose it as follows

T = T+ + T− ⇒ a(T ) = a(T+) + a(T−). (10.8)

By using the property of the Klein-Gordon inner product (φ1, φ2)∗ = −(φ∗1, φ
∗
2) we derive

immediately that a†(T̄−) = −a(T−). Thus

a(T ) = a(T+)− a†(T̄−). (10.9)

We already know that T has only support near the horizon where it behaves as T ∼ exp(−iωu).

But near the horizon we have r − rs = exp(−t/rs) and u ∼ 2t ∼ −2rs ln−(τ − τ0)/rs. Thus

the behavior of T is of the general form (a = κ = 1/2rs)

T ∼ exp(i
ω

a
ln(−τ)) , τ < 0

. T = 0 , τ > 0. (10.10)

Thus near the horizon T consists of rapid oscillations which means in particular that T+ and

T̄− are positive high frequency modes. Initially, the black hole state |ψ〉 does not contain these

high energy modes. We say that these modes are in their ground states.

As we evolve backward in time the frequencies blueshift (increase) in the same way that

when evolving forward in time they will redshift (decrease). Thus, as we approach the horizon

the frequency increases, with respect to the freely falling observer, until it becomes infinitely

blueshifted on the horizon. In other words, these modes seem to arise deep in the UV region

which is what we call the trans-Planckian reservoir. This could be a problematic issue as dis-

cussed in [19] with a proposed resolution which goes under the name of the nice-slice argument

given in [28]. Both the potential problem and the proposed resolution are not very essential

to us here. Indeed, we are only using the above fact regarding the very large blueshift on

the horizon to conclude that the modes T+ and T̄− remain high energy modes as we evolve

them backward in time. Furthermore, the earlier the infalling observer meets the mode with

frequency ω the higher its proper frequency ν will be since the Schwarzschild frequency ω is

redshifted with respect to the free fall frequency ν as ν = 2rsω.

Hence, by looking at the black hole after it had formed at times t << rs, where the

Schwarzschild radius rs measures the time scale of the collapse process, the high frequency

modes with ω >> 1/rs (ν >> 2) are not excited, which means in particular that the modes T+

and T̄− remain unexcited, i.e. they remain in their ground states. We conclude that the black

hole state |ψ〉 does not contain positive high frequency modes throughout, viz

a(T+)|ψ〉 = a(T̄−)|ψ〉 = 0. (10.11)
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This is essentially the adiabatic principle. The geometry during the gravitational collapse is

obviously time dependent with a time scale given by the Schwarzschild time rs. Thus, the modes

with frequencies ω >> 1/rs see the change of the geometry adiabatically, i.e. very slowly, and

hence they remain unexcited.

10.2 The Unruh Method Revisited and Grey Body Factor

If we consider now the expectation value of the number operator N = a†(P )a(P ) in the

black hole state |ψ〉 we find immediately

〈ψ|N |ψ〉 = 〈ψ|a†(P )a(P )|ψ〉
= 〈ψ|a†(T )a(T )|ψ〉
= 〈ψ|a(T̄−)a†(T̄−)|ψ〉
= 〈ψ|[a(T̄−), a†(T̄−)]|ψ〉. (10.12)

However, we can explicitly expand the field operator in a positive frequency basis {fi} as

φ =
∑
i

(aifi + a†if
∗
i ). (10.13)

Also, the positive frequency wave packet T̄− can be expanded similarly as

T̄− =
∑
i

t∗i fi. (10.14)

The annihilation operator a(T̄−) is then given explicitly by

a(T̄−) =
∑
i

aiti. (10.15)

We compute then

〈ψ|[a(T̄−), a†(T̄−)]|ψ〉 = 〈ψ
∑
i

∑
j

tit
∗
j [ai, a

†
j]|ψ〉

=
∑
i

tit
∗
i

= (T̄−, T̄−)

= −(T−, T−). (10.16)

Thus the expectation value of the number operator becomes

〈ψ|N |ψ〉 = −(T−, T−). (10.17)

The transmitted wave packet is given by

T (τ) = exp(i
ω

a
ln(−τ)) , τ < 0

. T = 0 , τ > 0. (10.18)
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Since τ < 0 this is defined only outside the horizon. Thus this function contains positive and

negative frequency modes with respect to the freely falling observer (recall that T is a positive

frequency mode with respect to the Schwarzschild observer). This is the analogue of g
(1)
k in

the case of Rindler which was defined as a positive frequency solution only with respect to the

Rindler observer in quadrant I but with respect to the Minkowski observer it contains both

positive and negative frequencies. As we did in reaching equations (8.32) and (8.33) in the

Rindler case, by using the method of [25], we will now extend the solution (10.18) to the region

inside the horizon (τ > 0) and obtain in the course the positive frequency and the negative

frequency extensions T+ and T−.

First, recall that a positive frequency mode can be expanded in terms of exp(−iωτ), ω > 0.

The functions exp(−iωτ) clearly vanishes in the limit |τ | −→ ∞ in the lower half complex τ

plane for ω > 0. Thus the positive frequency extension of T should be obtained by analytic

continuation in the lower half complex plane. This extension of T from τ < 0 to τ > 0 is

obtained by analytic continuation of ln(−τ) from τ < 0 to τ > 0 in the lower half complex

plane provided the branch cut of the logarithm is chosen in the upper half complex plane. This

continuation of ln(−τ) with τ < 0 is given by ln τ + iπ with τ > 0 4. By replacing in T (τ) with

τ < 0 we get T (−τ) exp(−πω/a) with τ > 0. The wave packet solution inside the horizon is

then given by

T̃ (τ) = T (−τ) = exp(i
ω

a
ln(τ)) , τ > 0

. T̃ = 0 , τ < 0. (10.19)

The total wave packet

T+ = c+(T + T̃ exp(−πω
a

)) (10.20)

is clearly analytic in the lower half complex plane and bounded as |τ | −→ ∞ and as such it can

only contain positive frequencies. In other words, T+ is the desired positive frequency extension

of T .

The negative frequency extension of T should be obtained by analytic continuation in the

upper half complex plane. This extension of T from τ < 0 to τ > 0 is obtained by analytic

continuation of ln(−τ) from τ < 0 to τ > 0 in the upper half complex plane provided the

branch cut of the logarithm is chosen in the lower half complex plane. This continuation of

4The function ln z is multi-valued in the complex plane. To get a single-valued function we introduce a cut

line between its two branch points z = 0 and z =∞.

For positive frequency modes we will need to extend in the lower half complex plane and choose the branch

cut in the upper half complex plane. The function ln(−τ) with τ < 0 is analytically continued to τ > 0 by

writing z = −τ exp(iθ). Since the branch cut is in the upper half complex plane we can only go from z = τ to

z = −τ counter clockwise in the lower half plane, i.e. from θ = π to θ = 2π. At θ = π we have z = τ < 0 and

ln z − iπ = ln(−τ) whereas at θ = 2π we have z = −τ = τ ′ > 0 and ln z − iπ = ln z′ + iπ. Thus the analytic

continuation of ln(−τ), τ < 0, in the lower half complex plane is given by ln τ + iπ, τ > 0, if the branch cut is

in the upper half complex plane.
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ln(−τ) with τ < 0 is given by ln τ − iπ with τ > 0 5. By replacing in T (τ) with τ < 0 we get

T (−τ) exp(πω/a) with τ > 0. The total wave packet

T− = c−(T + T̃ exp(
πω

a
)) (10.21)

is clearly analytic in the upper half complex plane and bounded as |τ | −→ ∞ and as such it

can only contain negative frequencies. In other words, T− is the desired negative frequency

extension of T .

The boundary conditions are given by

T+ + T− = T , τ < 0⇒ c+ + c− = 1

T+ + T− = 0 , τ > 0⇒ c+ exp(−πω
a

) + c− exp(
πω

a
) = 0. (10.22)

This gives immediately

c+ =
1

1− exp(−2πω
a

)
, c− =

1

1− exp(2πω
a

)
. (10.23)

By using now the negative frequency extension T− we can immediately compute the expectation

value of the number operator to be given by (using also (T, T ) = −(T̃ , T̃ ) and (T, T̃ ) = 0)

〈ψ|N |ψ〉 =
(T, T )

exp(2πω
a

)− 1
. (10.24)

This is again a blackbody spectrum with the Hawking temperature TH = a/2π = 1/4πrs.

However, this result is actually reduced by the so-called greybody factor

Γ = (T, T ). (10.25)

This has the normal quantum mechanical interpretation of being the transmission probability,

i.e. the probability that the wave packet P when evolved backward in time will become squeezed

up against the event horizon.

10.3 Unruh Vacuum State |U〉
We will look now at the vacuum conditions a(T+)|ψ〉 = 0, a(T̄−)|ψ〉 = 0 more closely. We

have (using (φ, T ) = a(T ), −(φ, T̄ ) = a†(T ), (φ, T̃ ) = a(T̃ ), −(φ, ¯̃T ) = a†(T̃ ))

a(T+) = (φ, T+) = c+a(T ) + c+e
−πω

a a(T̃ ). (10.26)

5For negative frequency modes we will need to extend in the upper half complex plane and choose the branch

cut in the lower half complex plane. The function ln(−τ) with τ < 0 is again analytically continued to τ > 0 by

writing z = −τ exp(iθ). Since the branch cut now is in the lower half complex plane we can only go from z = τ

to z = −τ counter anti-clockwise in the upper half plane, i.e. from θ = π to θ = 0. At θ = π we have z = τ < 0

and ln z − iπ = ln(−τ) as before whereas at θ = 0 we have z = −τ = τ ′ > 0 and ln z − iπ = ln z′ − iπ. Thus

the analytic continuation of ln(−τ), τ < 0, in the upper half complex plane is given by ln τ − iπ, τ > 0, if the

branch cut is in the lower half complex plane.
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a(T̄−) = (φ, T̄−) = −c−a†(T )− c−e
πω
a a†(T̃ ). (10.27)

But T̃ is a negative norm solution. Thus, a(T̃ ) = −a†( ¯̃T ) and a†(T̃ ) = −a( ¯̃T ). The vacuum

conditions a(T+)|ψ〉 = 0, a(T̄−)|ψ〉 = 0 become(
a(T )− e−

πω
a a†( ¯̃T )

)
|ψ〉 = 0. (10.28)

(
− a†(T ) + e

πω
a a( ¯̃T )

)
|ψ〉 = 0. (10.29)

The operator a(T ) is the analogue of the operator bω in (9.44) which is the exterior annihilation

operator. The operator a(T̃ ) is therefore the interior annihilation operator which we will denote

by b̃ω. The first equation in (9.44) should then be corrected as

aν =

∫ ∞
0

dω(αωνbω + β∗ωνb
†
ω + α̃ων b̃ω + β̃∗ων b̃

†
ω). (10.30)

The equations (10.28) and (10.29) define the so-called Unruh vacuum |U〉. As noted before, the

Boulware vacuum which we will denote here by |B〉 should be annihilated by the transmission

annihilation operators a(T ) and a( ¯̃T ), viz

a(T )|B〉 = a( ¯̃T )|B〉 = 0. (10.31)

This state is different from the initial black hole state |ψ〉. By using the facts [a(T ), a†(T )] = 1

and [a( ¯̃T ), a†( ¯̃T )] = 1 (we are assuming that the wave packets T and ¯̃T are normalized) we

can represent the annihilation operators as a(T ) = ∂/∂a†(T ) and a( ¯̃T ) = ∂/∂a†( ¯̃T ) and as a

consequence we can rewrite equations (10.28) and (10.29) in the form

a(T )|U〉 = e−
πω
a a†( ¯̃T )|U〉 ⇒ ∂

∂a†(T )
|U〉 = e−

πω
a a†( ¯̃T )|U〉. (10.32)

a( ¯̃T )|U〉 = e−
πω
a a†(T )|U〉 ⇒ ∂

∂a†( ¯̃T )
|U〉 = e−

πω
a a†(T )|U〉. (10.33)

A solution is immediately given by the so-called squeezed state

|U〉 = N exp

(
e−

πω
a a†(T )a†( ¯̃T )

)
|B〉 (10.34)

Thus the vacuum state of the black hole is the Unruh vacuum |U〉 and not the Boulware

vacuum |B〉. The Unruh vacuum |U〉 should be though of as the in state in the same way that

the original black hole state |ψ〉 should be thought of as the out state.

This squeezed state |U〉 is a 2-mode entangled state. The modes correspond to T (outside

horizon) and T̃ (inside horizon). Since the black hole background is invariant under time
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translations the Hamiltonian must commute with a†(T )a†( ¯̃T ). The Killing vector outside the

event horizon corresponds to the usual time translation generator and thus a†(T ) must raise

the Killing energy in the usual way, viz [H, a†(T )] = ωa†(T ) where ω is positive. But inside the

black hole the Killing vector reverses signature and it becomes like a momentum and thus its

sign can be either positive or negative. We can check that a†( ¯̃T ) must in fact lower the energy

as [H, a†( ¯̃T )] = −ωa†( ¯̃T ) if we want [H, a†(T )a†( ¯̃T )] = 0 which is required by invariance under

time translations. This can also be seen from the fact that the interior mode enters through
¯̃T , which has a negative frequency, and not through T̃ , which has a positive frequency as the

exterior mode T . In conclusion, the total Killing energy of the entangled particle pair T and T̃

is zero.

The Unruh vacuum is an entangled pure state which can also be rewritten, by expanding

the exponential, as follows

|U〉 = N
∑
n

1

n!
e−

nπω
a (a†(T ))n(a†( ¯̃T ))n|B〉

'
∑
n

e−
nπω
a |nR〉|nL〉. (10.35)

The states |nR〉 and |nL〉 are the level n-excitations of the exterior modes T and the interior

modes ¯̃T given respectively by

|nR〉 '
1√
n!

(a†(T ))n|BR〉 , |nL〉 '
1√
n!

(a†( ¯̃T ))n|BL〉. (10.36)

Hence, this pure state if reduced to the outside of the event horizon we end up with a mixed

state given by the density matrix

ρR = TrL|U〉〈U |
=

∑
n

e−
2nπω
a |nR〉〈nR|. (10.37)

This is a thermal canonical ensemble. This the most precise statement, in my opinion, of the

information loss problem: a correlated entangled pure state near the horizon gives rise to a

thermal mixed state outside the horizon.

11 The Information Problem in Black Hole Hawking Ra-

diation

The best presentation of the information problem remains that of Page [12]. This is a very

difficult and mysterious topic and we will follow the pedagogical presentation of [13] and the

elegant book [11]. We also refer to [5, 27].
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11.1 Information Loss, Remnants and Unitarity

The transition from a pure state to a mixed state observed in the Hawking radiation and

black hole evaporation can be quantified as follows. We start with the Schrödinger equation

i
∂

∂t
|ψ >= H|ψ > . (11.1)

The integrated form of this equation reads in terms of the unitary scattering matrix

|ψfinal〉 = S|ψinitial〉 ⇒ ψfinal
n = Snmψ

initial
m . (11.2)

The Schrödinger equation will evolve pure quantum states to pure quantum states. However,

black hole radiation takes the pure state (10.35) to the mixed state (10.37). Thus it takes an

initial pure state of the form

ρinitial = |ψinitial〉〈ψinitial| (11.3)

to a final mixed state of the form

ρfinal =
∑
i

pi|ψfinal〉〈ψfinal|. (11.4)

This can be expressed in terms of the so-called dollar matrix $ as follows

ρfinal
mm′ = $mm′,nn′ρ

initial
nn′ . (11.5)

In the case of the Schrödinger equation we have

$mm′,nn′ = SmnS
∗
n′m′ , (11.6)

whereas in the case of the black hole radiation we have a general dollar matrix which takes pure

states to mixed states.

The opinions regrading whether or not black hole radiation corresponds to information loss

divides into three possibilities:

• Information Loss: This is the original stand of Hawking which is based on the conclusion

that (10.37) is correct and that the black hole will evaporate completely. In this case, the

dollar matrix $ is not given by Schrödinger equation and there is indeed information loss

due to pure states (gravitational collapse and black hole formation) evolving into mixed

states (Hawking radiation and black hole evaporation). Since the outgoing Hawking

radiation is largely independent of the initial state, i.e. different initial states result in

the same final state, black hole evaporation does not conserve information.

If information is really lost then quantum mechanics must be changed in some way. How-

ever, there are tight constraints on quantum gravity effects arising from the modification

of the axioms of field theory [29], and furthermore any such modification will lead to

violation of either locality or energy-momentum conservation [30].
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• Unitarity: The other possibility is therefore information conservation, i.e. there is a

unitary map between the initial state of the collapse to the final state of the outgoing

radiation. The black hole will also evaporate completely but (10.37) is only correct in a

coarse-grained sense. This means that the final state of the radiation becomes purified

and information is carried out with the Hawking radiation in subtle quantum correlations

between late and early particles. The final pure state of the radiation is presumably very

complicated that any subsystem will look thermal and as a consequence equation (10.37)

is a good approximation [13].

These pure states are the microstates of the black hole and their counting is given by the

exponential of the Bekenstein-Hawking formula.

The black hole microstates may also be identified with the states of the field (or infalling

matter) accumulating on the nice-slice, which is a spacelike surface interpolating between

a fixed t surface outside the black hole to a fixed r surface inside the black hole, and

which gets longer on the inside as the black hole gets older [5].

This solution, in which unitarity is maintained and information is conserved, if correct

implies, however, a breakdown of the semi-classical description and the machinery of

effective field theory.

• Remnant: In this case black hole evaporation stops when the decreasing black hole

size becomes Planckian. The remaining Planck-sized object is what we call a remnant.

This must be characterized by an extremely large entanglement entropy in order for the

total state to remain pure. Thus, this is an object with a finite energy but effectively an

infinite number of states and thus the connection between Bekenstein-Hawking entropy

and number of states is lost.

This situation is the black hole information problem.

11.2 Information Conservation Principle

In this section we will only follow the beautiful presentation of [11].

• Von Neumann Entropy: Information is conserved in classical mechanics (Liouville’s

theorem)6 and in quantum mechanics (unitarity of the S-matrix)7. As we have already

discussed, the Von Neumann entropy is the measure of information (or lack of it) which

is defined by

S = −
∫
dpdqρ(p, q) ln ρ(p, q). (11.7)

6The volume of the initial phase space region representing the largely unknown state of the system is

conserved in time under Hamilton’s equations.
7In quantum mechanics the initial state of the system if unknown will be represented by a projector on

some subspace. The dimension of this subspace, i.e. the rank of the projector, is conserved under Schrödinger

equation.
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If ρ = 1/V , where V the volume of some region in phase space, then S = lnV , i.e.

V = exp(S). In quantum mechanics we use instead the definition

S = −Trρ ln ρ. (11.8)

If ρ = P/TrP , where P is a projector of rank n, then S = lnn. In other words, the

number of states is given by the exponential of the entropy, viz

n = exp(S). (11.9)

• Pure States: We will generally need to separate the system into two subsystems A

and B with quantum correlations, i.e. entanglement, between them. The total system is

assumed in a pure state ψ(α, β). Thus the Von Neumann entropy is zero identically, viz

SA+B = 0. (11.10)

The subsystems considered separately are described by the corresponding density matrices

ρA(α) and ρB(β) in which the degrees of freedom of the other system are integrated out.

These are generally not pure states.

The density matrix ρA is such that: i) It is Hermitian ρ†A = ρA, ii) It is positive semi-

definite, viz (ρA)i ≥ 0, ii) It is normalized, viz TrρA = 1.

Thus, if just one of the eigenvalues of ρA is 1 the rest will vanish identically. In this case

the subsystem A is in a pure state which means that the total system pure state factorizes

as

ψ(α, β) = ψA(α)ψB(β). (11.11)

The subsystem B is then also in a pure state.

• Entanglement Entropy: A far more important identity for us here is the equality of the

Von Neumann entropies of the two subsystems A and B if the total system is described

by a pure state, viz

SA = SB = SE. (11.12)

SE is precisely the entanglement entropy.

Proof: The density matrix ρA is given explicitly by

(ρA)αα′ =
∑
β

ψ?(α, β)ψ(α′, β). (11.13)

Let φ be an eigenvector of ρA with eigenvalue λ, viz

(ρA)αα′φ(α′) =
∑
β

ψ?(α, β)ψ(α′, β)φ(α′) = λφ(α). (11.14)



All rights reserved to Badis Ydri 67

We will assume that λ 6= 0. Similarly, we write explicitly the density matrix ρB as

(ρB)ββ′ =
∑
α

ψ?(α, β)ψ(α, β′). (11.15)

We propose the eigenvector of ρB to be of the form

χ(β′) =
∑
α′

ψ?(α′, β′)ψ?(α′). (11.16)

Indeed, we compute∑
β′

(ρB)ββ′χ(β′) =
∑
β′

∑
α

∑
α′

ψ?(α, β)ψ(α, β′)ψ?(α′, β′)φ?(α′)

=
∑
α

∑
α′

(ρA)α′αψ
?(α, β)φ?(α′)

= λ
∑
α

ψ?(α, β)φ?(α)

= λχ(β). (11.17)

In the above we have also used the result that (ρA)α′αφ
?(α′) = λφ?(α). Thus ρA and ρB

have the same non-zero eigenvalues. Immediately we conclude that

SA = −
∑
i

(ρA)i ln(ρA)i = −
∑
i

(ρB)i ln(ρB)i = SB. (11.18)

Since SA+B = 0 and SA + SB = 2SE this shows explicitly that the Von Neumann entan-

glement entropy is not additive. It is a fundamental microscopic fine grained entropy as

opposed to the thermodynamic Boltzmann entropy.

• Thermal Entropy: The thermodynamic entropy is additive and it can be defined as

follows. Let us assume a total system Σ divided into many subsystems σi, i.e. a coarse

graining. Again we will assume that the total system is in a pure state with vanishing

entropy. The subsystems σi are supposed to be thermal, i.e. with matrix densities ρi
given by the Blotzmann distribution

ρi =
e−βHi

Zi
, (11.19)

where Hi and Zi are the Hamiltonian and the partition function of the subsystem σi.

This is the distribution which maximizes the entropy. The thermodynamic coarse grained

entropy of the total system is then given by the sum of the entropies of the subsystems

σi, viz

Stherm =
∑
i

Si. (11.20)
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This coarse grained entropy Stherm as opposed to the fine grained entropy is not conserved.

To see this we assume that initially the pure state of the total system factorizes completely,

i.e. the subsystems are in a pure state. Then in this case Si = 0 and hence Stherm = 0.

After interaction the pure state of the total system will fail to factorize, i.e. Si 6= 0 and

hence Stherm 6= 0.

Another important property is the fact that the thermodynamic entropy of a subsystem

Σ1 is always larger than its entanglement entropy, viz

Stherm(Σ1) =
∑
i

Si ≥ S(Σ1) = −Trρ ln ρ. (11.21)

This is almost obvious since from one hand Si ≥ 0 and thus Stherm ≥ 0, while from the

other hand as Σ1 −→ Σ the entanglement entropy approaches zero.

• Information: The amount of information in a subsystem Σ1 is defined as the difference

between the coarse grained entropy (thermodynamic) and the fine grained entropy (Von

Neumann), viz

I = Stherm(Σ1)− S(Σ1) =
∑
i

Si + Trρ ln ρ. (11.22)

As an example we take Σ1 to be the total system Σ. In this case S(Σ) = 0 and thus

the information is given by the thermodynamic entropy. But for a very small subsystem

Σ1 = σi we get I = 0 since obviously Stherm = S for such a system. In fact this is true

for all subsystems which are smaller than one half the total system. A nice calculation

which attempts to convince us of this result is found in [11].

Let us assume that the total system is composed of two subsystems Σ1 and Σ − Σ1.

Immediately, we conclude that the Von Neumann entropies are equal, viz

S(Σ− Σ1) = S(Σ1). (11.23)

The amounts of information contained in Σ1 and Σ− Σ1 are given by

I(Σ1) = Stherm(Σ1)− S(Σ1) , I(Σ− Σ1) = Stherm(Σ− Σ1)− S(Σ− Σ1). (11.24)

If Σ1 << Σ/2 then

I(Σ1) = Stherm(Σ1)− S(Σ1) = 0. (11.25)

If Σ1 >> Σ/2 then Σ− Σ1 << Σ/2 and as a consequence I(Σ− Σ1) = Stherm(Σ− Σ1)−
S(Σ−Σ1) = 0, i.e. there is no information in the smaller subsystem Σ−Σ1. Also we will

have in this case (with f being the fraction of the total degrees of freedom contained in
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Σ1)

I(Σ1) = Stherm(Σ1)− S(Σ1)

= Stherm(Σ1)− S(Σ− Σ1)

= Stherm(Σ1)− Stherm(Σ− Σ1)

= fStherm(Σ)− (1− f)Stherm(Σ)

= (2f − 1)Stherm(Σ). (11.26)

This result can be clearly continued from f ' 1 to f = 1/2. It vanishes identically for

Σ1 = Σ/2, i.e. f = 1/2. Since the amount of information vanishes also for Σ1 << Σ we

conclude, again by continuity, that indeed I = 0 for all Σ1 ≤ Σ/2.

• Bomb in a Box: We conclude this section by the illuminating example of [11]. We

consider a system Σ1 consisting of a bomb placed in a box B with reflecting walls and

a hole from which electromagnetic radiation can escape. The system Σ − Σ1 is obvi-

ously the environment which will be denoted by A. The bomb will explode and we will

watch the system+environment until all thermal radiation inside the box leaks out to the

environment. In order to simplify tracking the evolution we will divide it into four stages:

– Before the explosion of the bomb, the systems A and B are in their ground (pure)

states. The Von Neumann fine grained entropies as well as the Boltzmann thermal

coarse grained entropies all vanish identically and thus the entanglement entropy

and the information in the outside radiation also vanish identically, viz

S(A) = S(B) = SE = 0 , Stherm(A) = Stherm(B) = 0⇒ I(A) = 0. (11.27)

– The bomb explodes and thermal radiation fills the box (no photon has leaked out

yet). The thermal entropy inside increases. All others are still zero identically, viz

S(A) = S(B) = SE = 0 , Stherm(A) = 0 , Stherm(B) 6= 0 ↑⇒ I(A) = 0. (11.28)

The initial information is

I(B) = Stherm(B). (11.29)

– The photons start to leak out. The Von Neumann entropies increase and thus the

entanglement entropy increases, i.e. entanglement between A and B increases. The

thermal entropy of the Box clearly decreases while that of the environment increases.

But information in the outside radiation remains negligible.

S(A) = S(B) = SE 6= 0 , Stherm(A) 6= 0 ↑ , Stherm(B) 6= 0 ↓⇒ I(A) = 0. (11.30)

At some point the thermal entropies become equal. This is called the information

retention time. This is the time where the entanglement between A and B becomes
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decreasing and the information starts increasing, i.e. it is the time at which infor-

mation starts coming out with the radiation. Before the information retention time

only energy has come out with the radiation with no or little information. At the

information retention time around one half of the radiation inside the box has come

out which corresponds to one bit (ln 2) of information encoded in the initial state.

– When all photons are out the inside thermal entropy vanishes and since there is no

entanglement anymore the Von Neumann entropies vanish, viz

S(A) = S(B) = SE = 0 , Stherm(A) 6= 0 , Stherm(B) = 0⇒ I(A) = Stherm(A).

(11.31)

From the second law of thermodynamics the final value of the outside thermal entropy

must be larger than the initial value of the interior thermal entropy, viz Stherm(A) >

Stherm(B), i.e. the information in the outgoing radiation is more than the information

in the initial state of the box.

– Throughout the process the entanglement entropy is always smaller than the thermal

entropy of A or B. This can be seen as follows. At the beginning most information

is in the thermal entropy of B. The information in A is zero which means that the

entanglement entropy is equal to the thermal entropy of A which is less than the

thermal entropy of B. At the end we have the reverse situation. Most information

is in the thermal entropy of A. The information in B is zero which means that the

entanglement entropy is equal to the thermal entropy of B which is less than the

thermal entropy of A. In summary, we have

SE ≤ Stherm(A) or Stherm(B). (11.32)

Thus information is conserved which means in particular that the final state of the radi-

ation outside the box is pure although it might look thermal at smaller scales. This very

clear physical picture is summarized in the figure (9).
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Figure 9: The information retention time, the entanglement entropy and the information in the

”bomb in a box” problem.

11.3 Page Curve and Page Theorem

We have a quantum system consisting of a black hole and its corresponding Hawking radi-

ation. We split the outgoing Hawking radiation into early and late with corresponding Hilbert

spaces HR and HBH, viz

Hout = HR ⊗HBH. (11.33)

The notation HBH indicates explicitly that the late Hawking radiation is nothing else but the

remaining black hole. The plot of the entanglement entropy SE of the early radiation as a

function of time is called the Page curve [31,32]. Obviously, SE = S(R) = S(BH).

The initial state of the black hole is pure. Initially the thermal entropy of the black hole

is non-zero, i.e. Stherm(BH) = 0, the entanglement entropy is zero, viz SE = 0, and the

information in the Hawking radiation I(R) is zero, i.e. I(R) = 0. Hawking radiation starts

coming out. The entanglement entropy SR between the Hawking radiation and the black hole

starts increasing, the thermal entropy of the black hole Stherm(BH) decreases while the thermal

entropy of the radiation Stherm(R) increases.

At the retention time, also called Page time, the two thermal entropies become identical,
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viz

Stherm(BH) = Stherm(R). (11.34)

At this time the entanglement reaches its maximum and starts decreasing, and the information

I(R) at the Page time starts increasing, i.e. it starts coming out in the Hawking radiation. The

final state is a pure state of the radiation with vanishing entanglement entropy and information

at its maximum value.

The expected picture is shown in the second figure of (9). However, this is only a sketch of

the actual physics by assuming unitarity while the actual calculation of the Page curve remains

a major challenge.

Indeed, as reported concisely by Harlow in his lectures [13] he says that ”Andy Strominger

has argued that being able to compute the Page curve in some particular theory is what it

means to have solved the black hole information problem; even in AdS/CFT or the BFSS

model we are far (Harlow stating) from being able to really do this”.

The above picture can however be fleshed out a little more by using the elegant Page

theorem [37]. This says that for a given bipartite system HAB = HA ⊗HB with |A| = dimA <

|B| = dimB a randomly chosen pure state ρAB in HAB is likely to be very close to a maximally

entangled state if |A| << |B|. In other words, if |A| << |B|, the pure state ρAB will correspond

to a totally mixed state ρA = TrBρAB, i.e. ρA ∝ 1A.

More precisely, we write this theorem as the inequality∫
dU ||ρA(U)− 1A

|A|
||1 ≤

√
|A|2 − 1

|A||B|+ 1
. (11.35)

The norm ||..||1 is the L1 operator trace norm defined by ||M ||1 = Tr
√
M †M . The integration

over the Haar measure represents a randomly chosen pure state |ψ(U)〉 = U |ψ〉, i.e. ρAB(U) =

|ψ(U)〉〈ψ(U)| and ρA(U) = TrB|ψ(U)〉〈ψ(U)|. It is clear from the above equation that if

|A| << |B| then ρA is very close to a totally mixed state and as a consequence |ψ〉 or equivalently

ρAB is a maximally entangled pure state.

Let us compute the behavior of the entanglement entropy. We have (with ∆ρA = ρA−1A/|A|
and Tr∆ρA = 0) ∫

dUSA = −
∫
dUTrρA ln ρA

= ln |A| − 1

2
|A|
∫
dUTr∆ρ2

A +O(∆ρ3). (11.36)

The remaining integral over U can be done exactly using unitary matrix technology (see equa-

tion (5.13) of [13]) to find for |A| << |B| the result∫
dUSA = ln |A| − 1

2

|A|
|B|

+ .... (11.37)



All rights reserved to Badis Ydri 73

We now apply this theorem to the entanglement entropy of the black hole.

We know that Hawking radiation consists mostly of s-wave quanta, i.e. modes with l = 0.

These can be described by a 1 + 1 dimensional free scalar field at a Hawking temperature

TH = 1/4πrs. These modes can escape the black hole because the Schwarzschild potential is

not fully confining as in the Rindler case. Indeed, the barrier height for s-wave particles is of

the same order of magnitude as the Hawking temperature. Thus, each particle which escapes

is carrying energy given by Hawking temperature ν ∼ TH = 1/(8πGM).

Further, we will assume that one single quanta will escape (since l = 0) per one unit of

Rindler time ω = t/2rs. Thus, 1/2rs quanta per unit Schwarzschild time will escape the

barrier. The total energy carried out of the black hole per unit Schwarzschild time is then given

by 1/(8πGM)× 1/2rs ∼ 1/G2M2. We write this as

dER
dt

=
C

G2M2
. (11.38)

By energy conservation the energy per unit Schwarzschild time lost by the black hole is imme-

diately given by

dM

dt
= − C

G2M2
⇒ Cdt = −G2M2dM. (11.39)

In the above two equations C is some constant of proportionality.

In order to apply Page’s theorem we will first need to assume that the pure state of the

Hawking (early) radiation R and the black hole (late radiation) BH is random. Obviously, at

early times |R| << |BH|. The entanglement entropy is then given immediately by the theorem

to be given by

SE = SR ∼ ln |R|. (11.40)

On the other hand, the energy carried by the radiation during a small time interval t is obtained

by integrating equation (11.38) assuming that the mass M remains constant. This gives

ER =
C

G2M2
t. (11.41)

However, from equations (12.42) and (12.43) below, the entropy and energy of the radiation

are related by

ER
SR
∼ 1

rs
. (11.42)

By taking the ratio of the above two results we obtain

SR ∼ tT. (11.43)

This should be valid only for times such that SR << SBH ∼ M2, i.e. t << M3. During these

times it is also expected that SBH ∼ ln |BH|. At early times we have then the linear behavior

of the entanglement entropy as a function of time, viz

SE ∼ tT , t << M3. (11.44)
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After the Page time tPage defined by

ln |R| ∼ ln |BH|, (11.45)

we should apply Page’s theorem in the opposite direction since we can assume now that

|BH| << |R|. Thus in this case

SE = SBH ∼ ln |BH|. (11.46)

However, by integrating equation (11.38) between t and tevap we obtain

C

∫ tevap

t

dt′ = −G2

∫ 0

M

M ′2dM ′ ⇒ (tevap − t)2/3 ∼M2. (11.47)

However, for the black hole the entropy is proportional to the area which is proportional to its

mass squared, thus we obtain immediately

SBH ∼ (tevap − t)2/3. (11.48)

At late times we have then the behavior of the entanglement entropy as a function of time given

by

SE ∼ (tevap − t)2/3 , tPage ≤ t ≤ tevap. (11.49)

12 Black Hole Thermodynamics

Again we will follow [13] and the book [11].

12.1 Penrose Diagrams

The idea of Penrose diagrams relies on the theorem that any two conformally equivalent

metrics will have the same null geodesics and thus the same causal structure. Thus, Penrose

diagrams represent essentially the causal structure of spacetimes and they involve the so-called

conformal compactification. Let us take the example of flat Minkowski spacetime given by the

metric

ds2 = −dt2 + dr2 + r2dΩ2. (12.1)

The light cone is defined by dt = ±dr. The form of the light cone is therefore preserved if we

transform t and r to T and R such that

Y + = T +R = f(t+ r) , Y − = T −R = f(t− r). (12.2)

We can map the Minkowski plane 0 ≤ r ≤ ∞ and −∞ ≤ t ≤ +∞ to a finite region of the

plane with boundaries at finite distance by choosing F to be the function tanh, viz

Y + = tanh(t+ r) , Y − = tanh(t− r). (12.3)
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We have the limiting behaviors

Y + = +1 , Y − = −1 , r −→∞ , ∀t. (12.4)

Y + = Y − =
et − e−t

et + e−t
, r −→ 0. (12.5)

Y + = Y − = 1 , t −→ +∞. (12.6)

Y + = Y − = −1 , t −→ −∞. (12.7)

The new coordinates have now the range |T ± R| < 1 and R ≥ 0. The boundary |T ± R| = 1

can be included by dropping the diverging prefactor in the metric when expressed in terms of

T and R (by using the above theorem). In other words, spacetime is compactified. The range

becomes |T ±R| ≤ 1 and R ≥ 0. This is a triangle in the TR plane defined by

Y + = Y − , Y + = +1 , Y − = −1. (12.8)

We can discern the following infinities (see figure (10)):

• The usual future and past time like infinities at t = ±∞ denoted by i− and i+ respectively.

All time like trajectories begin at i− and ends at i+.

• The usual space like infinity at r = ∞ denoted by i0. All space like trajectories end

there. In general relativity, conserved charges such as the energy are written as boundary

integrals at this spatial infinity i0.

• Also we observe two light like infinities at Y − = −1 and Y + = +1 denoted by J− and J+

respectively. All light like trajectories begin at J− (incoming null rays) and end at J+

(outgoing null rays). Thus the S-matrix will map incoming states defined on i− ∪ J− to

outgoing states defined on i+ ∪ J+.
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Figure 10: Penrose diagram of Minkowski spacetime. The infinities i∓ are at t = ∓∞, the

infinity i0 is at r =∞ while the infinities J ∓ are at r =∞.

Let us consider the more interesting example of Schwarzschild geometry given by the

Kruskal-Szekeres metric

ds2 =
32G3M3

r
exp(− r

2GM
)(−dT 2 + dR) + r2dΩ2. (12.9)

The only difference between the Schwarzschild coordinates (T,R,Ω) and the Minkowski co-

ordinates (t, r,Ω) is their range. For the Minkowski coordinates we have 0 ≤ r ≤ ∞ and

−∞ ≤ t ≤ +∞. For Schwarzschild we have instead (in region I)

0 ≤ R ≤ ∞ , −R ≤ T ≤ +R. (12.10)

The horizon is at T = ±R. Thus, as before, we consider the deformation

Y + = T ′ +R′ = tanh(T +R) , Y − = T ′ −R′ = tanh(T −R). (12.11)

We still obtain in the limit R −→ +∞ the two light like infinities J+ (Y + = 1) and J−

(Y − = −1) and the space like infinity i0. We do not now have the boundary Y + = Y − since T

does not take the unrestricted values between −∞ and +∞. Since T takes the values between

−R and +R we have in the limit T −→ R the surface

Y + =
e2R − e−2R

e2R + e−2R
, Y − = 0. (12.12)
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This is the future horizon H+ which is parallel to J− and it varies from Y + = 1 at R −→ ∞
to Y + = 0 at R −→ 0. The time like infinity i+ is at T = R = +∞. Similarly, in the limit

T −→ −R we get the past horizon H− which is parallel to J+. The time like infinity i− is at

T = R = −∞. The Penrose diagram of the full Schwarzschild geometry is shown on figure

(11).

Figure 11: Penrose diagram of Schwarzschild metric. The infinities i∓ are at t = ∓r = ∓∞,

the infinity i0 is at r = ∞ while the infinities J ∓ are at r = ∞, Y ∓ = ∓1. The center of the

diagram is at T = R = Y ± = 0 while the horizons H± are at T = ∓R.

Let us now consider a real black hole as it forms from the gravitational collapse of a thin

spherical shell of massless matter. We start with the Penrose diagram of Minkowski spacetime.

The infalling shell is represented by an incoming light like line which divides the diagram into

region A (interior) and region B (exterior). The incoming light like line starts at the null infinity

J− (r = ∞) and ends at Y + = Y − (r = 0). Region A is physical but region B needs to be

modified in order to take into account the effect of the gravitational field created by the shell

on the spacetime geometry.

By Birkoff’s theorem the geometry outside the spherical shell is nothing else but Schwarzschild

geometry. We consider therefore Penrose diagram of Schwarzschild geometry divided by the

incoming light like into regions A′ (interior) and B′ (exterior). Now, it is the region A′ which

is unphysical and needs to be replaced in a continuous way by the region A above. This is

explained nicely in [11] and the end result is the Penrose diagram in figure (12).

The horizon H in region B
′

coincides with the horizon H+ of Schwarzschild geometry and

thus it is located at r = 2GM . The horizon in region A is however at a value r < 2GM and it

will only reach the value r = 2GM at the end of the collapse.
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Figure 12: Penrose diagram of the formation of a black hole from gravitational collapse. In the

last graph the region A is below the red line (infalling shell) and the region B′ is above the

line. Outside the shell (above the red line) the horizon is at 2GM while inside the shell (below

the red line) the horizon will start at r = 0 and reaches the value r = 2GM at the end of the

collapse. Thus, the horizon is a global concept and not a local one, since it forms before the

shell reaches the center.
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12.2 Bekenstein-Hawking Entropy Formula

To a distant observer the Schwarzschild black hole appears as a thermal body with energy

given by its mass M and a temperature T given by Hawking temperature

T =
1

8πGM
. (12.13)

The thermodynamical entropy S is related to the energy and the temperature by the formula

dU = TdS. Thus we obtain for the black hole the entropy

dS =
dM

T
= 8πGMdM ⇒ S = 4πGM2. (12.14)

However, the radius of the event horizon of the Schwarzschild black hole is rs = 2MG, and thus

the area of the event horizon (which is a sphere) is

A = 4π(2MG)2. (12.15)

By dividing the above two equations we get

S =
A

4G
. (12.16)

The entropy of the black hole is proportional to its area. This is the famous Bekenstein-Hawking

entropy formula.

The Bekenstein-Hawking entropy is a thermodynamical macroscopic coarse-grained entropy

which counts the microstates of the black hole. It should satisfy the so-called generalized second

law of thermodynamics: ”When common entropy goes down a black hole, the common entropy

in the black-hole exterior plus the black-hole entropy never decreases” [33, 34]. But, since the

Bekenstein-Hawking entropy is S = A/4G where A is the area of the event horizon, we can see

that the area of the event horizon can not decrease (if there was no radiation) [35].

Now, the black hole according to general relativity is only characterized by its temperature

and its mass. Thus immediately we conclude that by creating a black hole we loose most of the

information about its past, since clearly the initial state can not be recovered by running the

dynamic backward in time starting from the black hole state which is, as we said, is characterized

only by the mass and the temperature. Thus, the black hole must also be characterized by its

microstates which are counted exactly by the exponential of the Bekenstein-Hawking entropy

formula.

However, black hole also evaporates, and thus the above is not sufficient to maintain the

principle of information conservation (the first law of nature in the words of [11]).

12.3 Brick Wall and Stretched Horizon

In this final section we will follow the presentation of [11, 13].
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We have found that the vacuum of the scalar field in the Schwarzschild geometry is not

given by the vacuum state |B〉, which is annihilated by a(T ) and a( ¯̃T ), but it is given by a

thermal density matrix of the form (with β = 2π/a)

ρR =
⊗
ω,l,m

ρR(ω, l,m)

=
⊗
ω,l,m

[
(1− e−βω)

∑
n

e−nβω|nR〉〈nR|ω,l,m
]
. (12.17)

This is diagonal where n is the occupation number and 1−exp(−βω) is a normalization constant

inserted so that TrρR(ω, l,m) = 1 for each mode. The Hamiltonian is given immediately by

HR =
⊗
ω,l,m

HR(ω, l,m)

=
⊗
ω,l,m

[
(1− e−βω)

∑
n

nωe−nβω|nR〉〈nR|ω,l,m
]
. (12.18)

Thus the energy is given by

E =< HR > = TrρRHR

=
∑
ω,l,m

[
(1− e−βω)

∑
n

nωe−nβω
]

=
∑
ω,l,m

ω

eβω − 1
. (12.19)

The above state corresponds to the canonical ensemble, i.e. ρR can also be rewritten as (see

how this was done in Rindler case)

ρR =
⊗
ω,l,m

e−βH(ω,l,m)

Z(ω, l,m)
. (12.20)

TrρR(ω, l,m) = 1 , Z(ω, l,m) = Tre−βH(ω,l,m) =
∑
n=0

e−βωn =
1

1− e−βω.
(12.21)

The entanglement entropy (this is an entanglement entropy because it was obtained by inte-

grating out the interior modes) is then given immediately by

S = −TrρR ln ρR = −
∑
ω,l,m

ρω,l,m ln ρω,l,m. (12.22)

We use the identities

∂

∂N
(ρi)

N

∣∣∣∣
N=1

= ρi ln ρi. (12.23)
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∂

∂N
e−NβHi

∣∣∣∣
N=1

= −βHie
−βHi . (12.24)

∂

∂N
Z−Ni

∣∣∣∣
N=1

= − lnZi
Zi

. (12.25)

The entropy then takes the form

Si = βEi + lnZi = βEi − βFi. (12.26)

The total entropy, total energy and total free energy are then given simply by

S =
∑
ω,l,m

Sω,l,m , E =
∑
ω,l,m

Eω,l,m , F =
∑
ω,l,m

Fω,l,m. (12.27)

We already have compute E. The entropy is given on the other hand by

S =
∑
ω,l,m

ω

eβω − 1
−
∑
ω,l,m

ln(1− e−βω). (12.28)

This entropy is clearly an entanglement entropy since it arised from a reduced density matrix.

The expressions for the energy and the entropy are IR divergent due to the infinite volume

of space as well as UV divergent due to the presence of the horizon. The r −→∞ IR divergent

is regulated in the usual way by putting the system in a box while the r −→ rs near horizon

UV divergence should be regulated by some new unknown physics at the Planck scale near

the horizon. Following t’Hooft [36] we will regulate this UV behavior by imposing Dirichelet

boundary condition on the scalar field near the horizon, viz

φ = 0 at r = rmin. (12.29)

In terms of the proper distance ρ this minimum distance from the horizon reads

ρ =
√
rmin(rmin − rs) + rs sinh

√
rmin

rs
− 1 ' 2

√
rs(rmin − rs)⇒ rmin = rs +

ρ2

4rs
. (12.30)

This is the so-called brick wall introduced by t’Hooft. In terms of the tortoise coordinate r∗ it

is situated at

r∗min = rmin − rs + rs ln(
rmin

rs
− 1) ' 2rs ln

ρ

2rs
. (12.31)

Recall now that every mode ψlm in the expansion ψ =
∑

lm Ylmψlm is subjected to the Schrodinger

equation

(∂2
t − ∂2

r∗ + V (r∗))ψlm = 0, (12.32)

with a potential function in the tortoise coordinates r∗ of the form

V (r∗) =
r − rs
r

(
rs
r

+
l(l + 1)

r2
). (12.33)



All rights reserved to Badis Ydri 82

We have the behavior

V (r∗) =
l(l + 1)

r2
∗

, r∗ −→∞ , r −→∞. (12.34)

V (r∗) =
l(l + 1) + r2

s

r2
s

exp(
r∗ − rs
rs

) , r∗ −→ −∞ , r −→ rs. (12.35)

The mode ψlm comes from the brick wall at r∗min until it hits the potential at the turning point

r∗tur defined by the condition

l(l + 1) + r2
s

r2
s

exp(
r∗ − rs
rs

) = ω2. (12.36)

Since we are near the horizon, i.e. r∗ −→ −∞, we have ω −→ 0 unless l >> 1. The modes with

small l are also suppressed from entropy consideration, i.e. low degeneracy. Thus, for modes

with l >> 1 we obtain the turning point

r∗tur = 2rs ln
rsω

l
. (12.37)

Each mode then moves between the brick wall r∗min and its own turning point. These are the

zone modes (zero modes with support in the near-horizon region only) which dominates the

canonical statistical ensemble. The IR box corresponds to a length

L = ∆r∗ = r∗tur − r∗min = 2rs ln
2r2

sω

ρl
. (12.38)

The quantization of a particle in a box of size L leads immediately to the quantization condition

kn =
nπ

L
⇒ ωn '

nπ

2rs ln 2r2sωn
ρl

(12.39)

Obviously, the size of the box shrinks as we increase l until it vanishes when l = 2r2
sω/ρ. Since

L now depends on the modes, we should make the usual replacement
∑

ωlm /L −→
∫
dω/2π as

follows ∑
ωlm

f(ω) ' 2

∫ ∞
0

dω

2π
f(ω)

∫ 2r2sω/ρ

0

dl(2l + 1)2rs ln
2r2

sω

ρl
. (12.40)

The factor of 2 in front is due to the fact that we only integrate over positive frequencies. We

get immediately ∑
ωlm

f(ω) ' 2

∫ ∞
0

dω

2π
f(ω)

(
− 16r5

sω
2

ρ2

∫ 1

0

dxx lnx

)
' 8r5

s

ρ2

∫ ∞
0

ω2dω

2π
f(ω). (12.41)
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As we can see most contribution comes from large angular momenta l ∼ 2r2
sω/ρ. The energy

and the entropy are then given by the estimation (with β = 2π/a = 4πrs)

E ' 8r5
s

ρ2

∫ ∞
0

ω3dω

2π
exp(−βω)

' 24r5
s

πρ2β4

' 24rs
πρ2(4π)4

. (12.42)

S ' E +
8r5

s

ρ2

∫ ∞
0

ω2dω

2π
exp(−βω)

' E +
8r5

s

πρ2β3

' 8r2
s

πρ2(4π)3
. (12.43)

In the above equations we are assuming that Hawking temperature TH is very small and thus

β −→ ∞. The energy is proportional to β while the entropy is proportional to β2. We obtain

divergent (as expected) expression in the horizon limit ρ −→ 0. However, if we assume the

existence of a stretched horizon away from the mathematical horizon by a distance of the order

of the Planck length, then

ρ2 ≤ l2P = 8πG. (12.44)

We can fix ρ by demanding that the entropy of the field is equal to the full Bekenstein-Hawking

entropy, viz

S ≡ A

4G
=

8r2
s

πρ2(4π)3
⇒ ρ2 =

G

8π5
. (12.45)

The energy becomes with this choice

E =
3rs
4G

=
3M

2
. (12.46)

Thus, indeed, one should take ρ ≤ lP in order for the field to carry no more energy and entropy

than the black hole itself.

In summary, we have from one hand a divergent entropy in the near-horizon limit ρ −→
0, while from the other hand the entropy must be, without any doubt, finite equal to the

Bekenstein-Hawking value S = A/4G. In other words, quantum free field theory gives an

overestimation of the entropy. As it turns out, adding interaction will not help but in fact it

will make things worse. Indeed, in a 3+1 dimensional interacting scalar field theory the entropy

density is always given by a formula of the form

S(T ) = γ(T )T 3, (12.47)
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where γ(T ) is the effective number of degrees of freedom at the temperature T and it is a

monotonically increasing function of T . Hence, since the proper temperature T (ρ) = 1/2πρ

diverges near the horizon we see that QFT gives always a divergent entropy. Furthermore, since

the local temperature diverges in the limit ρ −→ 0 the entropy is indeed mostly localized on

the horizon.

In the correct quantum theory of gravity it is therefore expected that the number of degrees

of freedom decreases drastically as we approach the horizon. In other words, QFT theory should

only describe the degrees of freedom at distances much greater than a Planck distance away

from the horizon, while at distances less than a Planck distance away from the horizon the

degrees of freedom may become sparse or they may even disappear altogether. This separation

between QFT degrees of freedom and Quantum Gravity degrees of freedom can be achieved by

a stretched horizon, i.e. a physical dynamical membrane, at a distance of one Planck length

lP =
√
G~ from the actual horizon, where the temperature gets very large and most of the

black hole entropy accumulates. Thus the stretched horizon is a time like surface where real

dynamics can take place, and where most of the black hole energy and entropy are localized. It

is in thermal equilibrium with the thermal atmosphere, and thus it absorbs and then re-emits

infalling matter continuously, while evaporation is seen in this case only as a tunneling process.

12.4 Conclusion

We consider a black hole formed by gravitational collapse as given by the Penrose diagram

(12). The Hilbert space Hin of initial states |ψin〉 is associated with null rays incoming from

J − at r = ∞, i.e. Hin = H−. The Hilbert space Hout of final states |ψout〉 is clearly a tensor

product of the Hilbert space H+ of the scattered outgoing radiation which escapes to the infinity

J + and the Hilbert space HS of the transmitted radiation which falls behind the horizon into

the singularity. This is the assumption of locality. Indeed, the outgoing Hawking particle and

the lost quantum behind the horizon are maximally entangled, and thus they are space like

separated, and as a consequence localized operators on J + and S must commute. We have

then

Hin = H− , Hout = H+ ⊗HS. (12.48)

From the perspective of observables at J + (us), the outgoing Hawking particles can only be

described by a reduced density matrix, even though the final state |ψout〉 is obtained from the

initial state |ψin〉 by the action of a unitary S-matrix. This is the assumption of unitarity. This

reduced density matrix is completely mixed despite the fact that the final state is a maximally

entangled pure state. Eventually, the black hole will evaporate completely and it seems that we

will end up only with the mixed state of the radiation. This the information paradox. There

are six possibilities here:

1. Information is really lost which is Hawking original stand.
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2. Evaporation stops at a Planck-mass remnant which contains all the information with

extremely large entropy.

3. Information is recovered only at the end of the evaporation when the singularity at r = 0

becomes a naked singularity. This contradicts the principle of information conservation

with respect to the observe at J + which states that by the time (Page or retention time)

the black hole evaporates around one half of its mass the information must start coming

out with the hawking radiation.

4. Information is not lost during the entire process of formation and evaporation. This is

the assumption of unitarity. But how?

5. Horizon is like a brick wall which can not be penetrated. This contradicts the equivalence

principle in an obvious way.

6. Horizon duplicates the information by sending one copy outside the horizon (as required

by the principle of information conservation) while sending the other copy inside the

horizon (as required by the equivalence principle). This is however forbidden by the

linearity of quantum mechanics or the so-called quantum xerox principle [11].
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