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Abstract

We give a brief overview of the black hole information problem emphasizing fundamental issues and
recent proposals for its resolution. The focus is on broad perspective and providing a guide to current
literature rather than presenting full details. We concentrate on resolutions restoring naive unitarity.
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1 Background

It has been understood since the early 1970’s that black holes behave in many ways like standard thermo-

dynamic systems. In particular, a natural black hole analog of equilibrium state is given by restricting to

black holes with a so-called horizon-generating Killing field, meaning that the black hole spacetime has a

symmetry whose action on the black hole horizon shifts each point in a null direction. The first law of black

hole mechanics states that exchanges of energy dE, charge dQ, and angular momentum dJ with such black

holes satisfy

dE = TdSBH + ΩdJ + ΦdQ, (1)

where T,Ω,Φ may be interpreted as the temperature, angular velocity, and electric potential of the black

hole. The second law states that SBH does not decrease with time. As explained by Bekenstein [1] and

Hawking [2], the quantity SBH should thus be interpreted as an entropy. In the Einstein-Hilbert theory

of gravity one finds SBH = A/4~G in terms of the surface area A of the black hole horizon, though with

appropriate SBH the first and second laws are now understood to hold [3, 4] in very general theories of

gravity.

Up to the normalization of entropy and temperature, these results follow directly from the classical

gravitational field equations. But Hawking’s 1974 quantum field theory analysis [2] showed that black holes

do in fact radiate thermally at a temperature proportional to ~ and set by the above normalization for SBH .

This gives a very physical verification of the thermodynamic nature of black holes, and a striking contrast

from the strictly vanishing temperature of a classical black hole. However, it also leads to the well-publicized

black hole information problem.

Our purpose below is to give a brief overview of this problem, emphasizing both fundamental issues

(section 2) and recent proposals for its resolution (section 3). We will not attempt to be thorough or complete,

but merely to convey some general ideas. Familiarity with the Schwarzschild geometry and basic quantum

field theory is assumed throughout. A much more thorough recent review with an extended introduction to

relevant background material can be found in [5], and an intermediate treatment in [6].

2 Hawking Radiation and the information problem

Despite the above similarities to standard thermal effects, conventional physics implies the Hawking effect

to differ fundamentally from familiar thermal emission from hot objects like stars or burning wood. To

explain this difference, let us first observe that while free null worldlines can skim along a black hole horizon,

such trajectories are inherently unstable. Displacing the worldline toward the outside results in the particle

flying away from the black hole, while a small displacement toward the inside sends the particle into the

singularity. As a result, a thin tube of null particles near the horizon experiences an exponential stretching

in the radial direction as it propagates toward the future. Since all excitations act like null particles at high

energies, the same is true of the near-horizon (short-distance, and thus high energy) part of the state of any
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quantum field. Black holes thus act like cosmic magnifiers, stretching microscopic features of quantum states

to macroscopic scales.

This stretching effect leads to Hawking radiation in a very direct way. First recall that at sufficiently

short distances any state of our quantum field will be well approximated by the vacuum. We must then also

recall that the vacuum of quantum field theory contains divergent ultraviolet correlations between spacelike

separated points. As a result, stretching the vacuum creates sizeable correlations across macroscopic distances

between points outside the black hole and those within. The stretching effect also redshifts these correlations

to low energy; indeed, to the scale set by the above Hawking temperature T , which for 4d Schwarzschild

black holes of radius R turns out to be T = ~c/4πR. We thus learn that – even when they have travelled

far from the black hole – the low energy modes (at scale T ) of the outgoing quantum field outside the black

hole define a mixed quantum state. Indeed, since each outgoing mode at scale T is strongly correlated with

the black hole interior but essentially uncorrelated with other such outgoing modes, the associated density

matrix ρoutgoing must have von Neumann entropy S(ρoutgoing) = −Tr (ρoutgoing ln ρoutgoing) of order one

bit per mode at the scale T . This mixed state cannot be the outgoing vacuum (which is pure), and with

only a small amount of work (see e.g. [7]) can be shown to be precisely thermal in the approximation where

gravitational back-reaction is neglected. In particular, it carries energy to infinity and by energy conservation

will cause the black hole to decrease in mass, and thus in radius. The resulting shrinkage is known as black

hole evaporation. The process begins slowly since T ∝ ~ but – at least in the Schwarzschild case – becomes

more rapid as R decreases and T increases correspondingly.

Now, familiar thermodynamic systems like stars are also characterized by the emission of nearly thermal

radiation at a time-dependent temperature T (t). But for Hawking radiation the above argument turns out to

imply that any correlations between outgoing modes must be small, no matter how long the Hawking process

is allowed to continue. In contrast, in more familiar contexts, starting with a hot object in a pure quantum

state and letting it radiate all of its energy forces the remains to be in the ground state. Typical ground

states are non-degenerate, so at late times the full quantum state |Ψ〉 of the system must be of the form

|Ψ〉 = |0〉object|Ψ̃〉radiation; i.e., the state is a product state, so that the purity of the original state implies

that the radiation is also described by a pure quantum state |Ψ̃〉radiation and thus has vanishing entropy.

While individual photons emitted during early stages of the radiative process may be largely uncorrelated,

strong correlations are thus inevitable over the entire period of radiation to the ground state.

Let us therefore return to the argument for a highly mixed outgoing Hawking state in order to explain

the above-mentioned lack of correlations and to exhibit the assumptions involved. The discussion applies

to any quantum field theory propagating on a classical spacetime background. Quantum corrections to the

classical metric can also be incorporated by expanding gravity perturbatively around a classical black hole

background and treating the result as an effective field theory with a cutoff.

It is useful to phrase the argument for small outgoing Hawking correlations in terms of the monogamy

of quantum entanglement: If system B is strongly entangled with some system A, then its entanglement

with all other qubits must be small. This is a consequence of the famous strong sub-additivity property of

quantum von Neumann entropies SX which states that for independent systems X,Y, Z and their unions
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XY, Y Z,XY Z we have

SXY Z + SY ≤ SXY + SY Z , (2)

and so in particular

SY ≤ SXY + SY Z . (3)

If XY is very pure (and thus SXY � SY ), we must have SY Z & SY for any system Z; i.e., no system Z can

significantly purify Y .

To apply this argument to the Hawking effect, we consider the limit of small back-reaction in which the

spacetime metric evolves parametrically slowly compared with the timescale set by the black hole temperature

T ; e.g., the limit of a large Schwarzschild black hole. As a result, we may approximate the metric as being

time-independent even over appropriate times ∆t � 1/T . And as described above, at late such times the

outgoing part of any state will be thermal and thus highly mixed. Let us denote by system B the outgoing

part of the state with frequency ∼ 1/T that emerges from the near-horizon region over some time interval

1/T � |t− t1| ≤ ∆t, while we call the corresponding part of the state inside the horizon system A. Thus AB

is just the frequency ∼ 1/T part of the vacuum near the horizon in the regime 1/T � |t− t1| ≤ ∆t and can

be regarded as essentially pure (SAB � SB). It then follows from the Araki-Lieb inequality SAB ≤ |SA−SB |
that A itself is also thermal, with SA = SB up to small corrections.

We then choose C and D to be the corresponding outgoing and ingoing parts of the state with frequency

∼ 1/T emerging from the near-horizon region over some other later interval 1/T � |t− t2| ≤ ∆t with, say,

|t2− t1| � ∆t. At least according to the rules of standard quantum field theory, the systems A,B,C,D must

be independent since the degrees of freedom they describe can be localized in spacelike-separated regions

of the spacetime at late time. In particular, both A and D fall far behind the horizon and – despite the

shrinkage of the horizon as the black hole evaporates – become well-separated from B and C.

We now apply (2) to the systems X = D, Y = C, Z = AB. Noting that SXY Z = SABCD and SXY = SCD

are small, this gives SY Z = SABC ≥ SC . Taking this as input and again recalling that SAB is small, we

apply (2) again to the systems X = A, Y = B, Z = C to conclude SBC >∼SB + SC . Significant correlations

between outgoing degrees of freedom at different times are thus forbidden and the entropy of the outgoing

radiation is roughly one bit per outgoing mode at scale T as claimed above. A careful quantitative version

of this argument can be found in [8], which also holds in the presence of small corrections not necessarily

described by quantum field theory; see also [9, 10, 11] and extensions of [8] in [12].

2.1 A straw man information problem

Extrapolating the above semi-classical reasoning to the point where the black hole evaporates completely

leads to the ideas of information loss and non-unitary evolution [13]. The point is simply that, if that black

hole itself has completely disappeared then – at least from the perspective of the outside universe – one is

left only with the above radiation. So even if the universe began in a pure state, it would have evolved into

one that is highly mixed. This is impossible under unitary time evolution on a closed system. And because
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the end state of the radiation would be largely independent of the initial state, knowledge of this final state

would not suffice to deduce the initial state and information would have been lost.

Such behavior is starkly different from that of familiar quantum systems. But this observation is not

yet a serious problem as there are at least two natural ways to attempt to restore unitarity. The first is to

note that during the final stages of its evaporation the black hole would be very small and curvatures at the

horizon would be Planck scale. Thus quantum gravity corrections to the above discussion would naturally

become very large. There is then no reason to expect semi-classical reasoning to be even approximately valid

at that stage of the evolution. In particular, the final state can be pure due to the initial (highly mixed)

radiation being strongly entangled with the whatever results from this late-time evolution. Such ideas have

been traditionally called remnant scenarios [14] with the idea that Hawking radiation might largely turn off

at this stage and leave a more-or-less stable Planck-sized object with high entropy that would take a long

time to decay. However, as noted in [15], they also include the so-called bounce scenarios of [16, 17, 18].

Classic discussions of remnants and their consequences can be found in [19, 20].

The second natural way to restore unitarity is to suppose that there are additional degrees of freedom

not part of what was called ‘the external universe’ above; i.e., that the system being studied was not in fact

closed. The idea here is that the ingoing parts of the quantum field (systems A and D above) in some sense

continue to both exist and to remain separate from the external universe even after the black hole decays

completely. One may think of this as being due to the creation of a new so-called baby universe (though

perhaps one that is intrinsically Planck-scale and very quantum) that separates from the external one due

to the collapse to a singularity of the black hole interior (see e.g. [21]). The idea is then that the evolution

on the entire system (external universe + baby universe) can remain unitary.

2.2 The information problem and the Page time

However, as argued by Page [22], a related problem involving the Bekenstein-Hawking entropy SBH = A/4~G
in fact arises much earlier in the evaporation process. Since SBH satisfies the first and second laws of

thermodynamics, it is natural to assume that number of internal states available to a black hole with given

surface area A is eSBH . In particular, this number should include the states of any baby universes formed

from our black hole thus far, as there is no separate term in either the first or second law to account for such

offspring. Thus SBH would be an upper bound on the von Neumann entropy Tr(ρlogρ) for any black hole.

But interchanging ingoing and outgoing modes above shows that – so long as the black hole remains large

enough for semi-classical reasoning to apply over timescales of order 1/T – the von Neumann entropy of the

black hole must increase by roughly one bit for each emitted Hawking photon.

This is now a real problem. Evaporation causes the black hole to shrink, and thus to reduce its surface

area. So SBH decreases at a steady rate. On the other hand, the actual von Neumann entropy of the black

hole must increase at a steady rate. But the first must be larger than the second. So some contradiction is

reached at a finite time. For a black hole that begins in a pure state, this is readily seen to occur when SBH

has been reduced to half of its initial value. This is known as the Page time tPage. For 4d asymptotically-flat

4



Schwarzschild black holes of initial radius R0 one finds tPage ∼ R3
0/`

2
Planck in terms of the Planck length

`Planck. But in any case one sees that for large R0 the black hole remains far from the Planck scale at tPage

as the area of the black hole has decreased only by a factor of 2. So as opposed to the case in the late-time

regime discussed above, strong quantum corrections before tPage would be a great surprise.

3 Resolutions?

We now comment briefly on various proposals to resolve the above information problem. While constraints

on space prohibit an in-depth discussion of each proposal, or even a complete list of proposals, further details

can be found in the references below. This section ends with a list of remarks in section 3.5 which may be

useful in understanding how certain other parts of the literature relate to the ideas discussed in sections

3.1-3.4.

3.1 No problem in principle?

Page’s argument relies on interpreting SBH as a standard density of states for the black hole. At least

within string theory, strong evidence that this is the case comes both from Strominger-Vafa style counting

of D-brane bound states [23] and – even better – from gauge/gravity duality where (logarithms of) lattice

gauge theory partition functions precisely match free energies F = E−TSBH of bulk black holes [24, 25, 26].

But it remains interesting to ask if there are other options outside string theory. This essentially means

returning to the remnant or baby universe scenarios of section 2.1. While I know of no sharp argument that

absolutely forbids such scenarios, they do raise issues which I briefly mention below, and on which little

progress has been made over the past 30 years. The issues are largely field theoretic in nature, and thus are

not apparent in the toy model of baby universe scenarios discussed in [27].

An important point is that any remnant or baby universe resolution must be quite extreme. Suppose

that a Schwarzschild black hole of macroscopic area A has some finite number of internal states eSA . And

without strong violations of either quantum mechanics or effective field theory, the arguments of section (2)

show that when a black hole evaporates from area A1 to some smaller area A2 its von Neumann entropy

must increase by ∼ (A1 −A2)/4G. So no matter how large we choose SA2
, for A1 � A2 + 4GSA2

we reach

the same contradiction as in section 2.2 when the black hole evaporates down to area A2. As a result, we

must have a truly infinite density of states at fixed black hole area, or equivalently at fixed black hole mass.

Note that the density of states must remain infinite even in the presence of an infra-red (IR) regulator. For

example, resolving the problem for black holes in asymptotically anti-de Sitter (AdS) spaces with reflecting

boundary conditions requires the system to have a strictly infinite number of states at each energy E.

Various questions then follow. A striking example [19] arises when one assumes that the divergent density

of states arises only when a black hole or some other manifest remnant is present in the quantum state. This

in particular occurs if one assumes Hawking radiation to simply turn off once the black hole reaches some

Planck-scale size. Since any effective field theory treatment implies that objects of finite energy with an

infinite density of states are copiously produced in any interaction with sufficient energy, one would expect
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any object larger than a speck of dust (and thus with rest mass energy mc2 larger than the Planck energy)

to rapidly transform itself into such a high-entropy remnant by some quantum tunneling process.

Even dropping the assumption of an effective field theory treatment, one notes that many features of

familiar systems are dictated mainly by state counting. But such counting arguments are ill-defined with

an infinite density of states. For example, what rules would determine the probability of finding a black

hole (or any other object) in a thermal ensemble? To be concrete, we might consider the outgoing Hawking

radiation produced by a large black hole. As described above, this is largely thermal, and has the advantage

that the universal coupling of gravity to all forms of energy can be expected to remove any dependence of

the probability on the object’s internal state. A closely related question (see my comments in [28]) asks why

SBH would appear in (1) if it does not give the black hole density of states.

A classic studies of at least one form of this idea were performed by Giddings and Strominger [29] and

by Coleman [29], who focused on the idea of baby universes and used ideas related to effective field theory.

Despite first appearances, they showed within this framework that such models do not in fact lead to loss

of unitarity in the external universe. Instead, the internal state of the baby universes turns out to define

superselection sectors for the algebra of operators in the external universe. Within each sector, the external

universe evolves unitarily with some fixed Hamiltonian, though with coupling constants that depend on the

choice of sector. It would be interesting to return to this analysis and clarify precisely what assumptions

lead to this conclusion and whether they might be avoided in reasonable models.

Finally, we summarize the (perhaps related) boundary unitarity argument of [30] which also constrains

baby universe scenarios. In essence, the argument there is that (modulo terms that vanish when the equations

of motion hold) in classical gravitational theories the Hamiltonian is given by a flux integral over the spacetime

boundary. Indeed, this is a cherished feature of gravitational physics that is closely related to invariance

under diffeomorphisms. A prime example is the familiar Arnowitt-Deser-Misner Hamiltonian (see e.g. [31])

in asymptotically flat spacetimes, though for simplicity we assume here that the boundary is timelike (as in

asymptotically AdS spacetimes). We similarly assume that the boundary has a time translation symmetry

so that the Hamiltonian is conserved; i.e., H(t) = H(t′) for any t, t′, though the time-dependent case can

also be handled with a bit more work. So if the full theory of quantum gravity is unitary in the above

sense, and if the Hamiltonian remains a boundary term, then the on-shell time evolution operator eiHt

can be constructed using only quantities on any spacetime boundary. And since Heisenberg evolution gives

O(t0) = eiH(t0−t)O(t)e−iH(t0−t), any information that can be obtained from an operator O(t0) on the

boundary at some time t0 can also clearly be obtained from eiH(t0−t)O(t)e−iH(t0−t) at time t. But the latter

is an operator living only on the spacetime boundary at the (perhaps much later) time t. It therefore seems

unnatural to me to say that any information has been “lost to another universe.” Reconciling this argument

with the baby universe scenario requires either a theory of quantum gravity where the Hamiltonian fails to

be given by gravitational flux through the boundary, or a theory where the state of baby universes influences

this flux. The latter is manifestly non-local, and so should be compared with the resolutions in section 3.3

below in which effective field theory also fails but naive unitarity is restored.
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3.2 No problem in practice?

Although taking eSBH to be the number of black hole internal states conflicts with the simultaneous use of

standard quantum kinematics and low energy effective field theory dynamics, it was argued in [32] that such

conflicts might be acceptable if they were not visible to any single observer. In particular, there would be

no tension with any known experimental results.

This idea was called Black Hole Complementarity in analogy with Heisenberg Complementarity in quan-

tum mechanics. In particular, it was conjectured that experiments performed by observers who remain

outside the black hole at all times would be sensitive to the finite density of states while those performed by

observers who fall in would not, and that the results of each set would be separately consistent with known

physics.

However, as shown in [33], with enough sophistication one can in fact find experiments that reveal the

above contradiction to a single observer. While one may attempt to find stronger versions of complementarity

[34, 35] that avoid the problem raised in [33], other single-observer issues remain [36, 37], especially when

one considers suitably generic black holes [38].

3.3 Effective Field Theory Fails?

We thus conclude that taking eSBH to give the black hole density of states requires introducing novel physics

to describe the experiences of single low-energy observers in weakly curved backgrounds. This is a surprise,

as one might have thought physics in this regime to be well understood. Furthermore, due to the magnitude

of the entropy problem described in section 2, one might expect this new physics to have dramatic effects.

Indeed, the authors of [33] expressed a belief that any viable option would require so much drama that one

may as well simply suppose that, after the Page time, quantum fields near black hole horizons are not in

fact well-described by vacuum. At the very least, they would instead be highly excited due to new unknown

physics. The set of excitations was called a “black hole firewall,” and might even be sufficiently strong that

spacetime failed to exist in any recognizable sense in the interior of such black holes2.

Since standard effective field theory leads to vacuum near the horizon as described in section 2, the

creation of a firewall requires strong novel effects; i.e., it would imply a spectacular failure of effective field

theory. Nevertheless, the computations [39, 40, 41, 42] of logarithmic corrections to the density of states for

extremal black holes may be taken as evidence that firewalls are indeed present around generic black holes.

The point here is that the string-theoretic density of states was shown to precisely matches the sum of the

Bekenstein-Hawking entropy SBH of the black hole and the entropy of the surrounding radiation (which,

even at the vanishing temperature of an extremal black hole, turns out to be non-zero due to the infinitely

deep throat near the horizon in which the radiation lives). So interpreting SBH as the entropy of the black

2Our discussion concerns black holes that evolve adiabatically slowly. As a result, to good approximation a region of
spacetime at any time t may be modeled by a corresponding region of a stationary black hole spacetime. The near-horizon
region described above is the region corresponding to spacetime close to the Killing horizon of this comparison stationary
black hole; i.e., near what we may call the “adiabatic horizon” (which becomes sharply defined only in the adiabatic limit).
In particular, there is no reason to associate the firewall directly with the event horizon (whose location at one time can in
contrast be determined only by knowing what will fall into the black hole at all later times).
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hole itself, this agreement implies that generic states have radiation outside the black hole unentangled with

the black hole interior; i.e., that there is a firewall at the edge of the black hole.

However, with an eye toward possible subtleties in this argument, working outside of string theory, or in

an effort to ameliorate the problem for less generic black hole states – say, those formed by rapid collapse

of ‘normal’ matter, whose von Neumann entropy is thus much smaller than SBH – it is clearly of also

interest to ask both whether modifications of effective field theory resolve the information problem without

such dramatic effects. And to further the firewall hypothesis itself it is important to ask whether physical

motivations for such dramatic effects can be found. We briefly comment on both below.

3.3.1 Non-violent Nonlocalty

Giddings has long championed the idea that the information problem requires corrections to standard low-

energy effective field theory but that one should endeavor to make these as mild as possible [43, 44, 45]. In

particular, the corrections should be non-local in order to couple Hawking radiation to degrees of freedom

that fell into the black hole long ago. In terms of the discussion from section 2, the idea is that systems A

and C would then fail to be independent.

The particular approach advocated in [43, 44, 45] is to maintain both smoothness of the state and

approximate validity of standard effective field theory near the horizon, but for the new corrections to allow

the black hole interior to interact with degrees of freedom outside the horizon. Confining these corrections

to a parametrically small region near the horizon would require infalling observers to encounter excitations

of parametrically large energy, so the corrections are instead assumed to extend a sizeable distance outside –

say, at least for Schwarzschild black holes, a proper distance of order the black hole radius R. One would then

expect such corrections to transfer energies of only order 1/R, comparable to the Hawking temperature3.

But there could still be significant effects on radiation with frequency ∼ 1/R, and in particular on the

gravitational wave signals produced by merging black holes.

Such non-violent nonlocality (NVNL) scenarios come in two basic flavors. In the first, the extra NVNL

interaction transfers entanglements to the outgoing Hawking photons once they have reached a distance

of order R from the horizon as described above. As a result, there is an opportunity for some apparatus,

introduced by an intrepid experimenter, to interact with the Hawking modes as they travel from the near-

horizon region to the point of entanglement transfer. Complications then arise [33] if the apparatus absorbs

the Hawking photons (so that the extra interaction at the scale R can act only on the outgoing vacuum),

or even [36] if the apparatus simply transforms the state of the Hawking modes into one other than that

expected from the argument in section 2. Indeed, [36] concludes (see its footnote 14) that contradictions

with unitarity can be avoided only by supposing that any instructions sent to the apparatus from far away

somehow affect the extra NVNL interaction in a compensating manner.

In the second version of NVNL, the original photons are left untouched but the corrections produce an

3Interestingly, the models of such corrections in [46] in fact behave like order-one modifications of the metric. They thus
deflect all null particles through the same angle, and so in fact transfer large momenta to particles of high momentum. One
expects that this can be avoided in more sophisticated models, and [47] suggests that this will be so in the models studied there.
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additional flux of energy which can carry entanglements away from the black hole. The idea is then for this

new flux to decrease the black hole’s von Neumann entropy faster than the original Hawking flux causes it

to increase4.

However, thermodynamics turns out to place fundamental constraints [36] on this second class of scenar-

ios. So it is no surprise that ideas along these lines have been found to require either a black hole density of

states smaller than SBH by a factor of order 1 [50], or a change in the so-called grey body factors to make the

system much more of an ideal black body [51]. We note that the latter scenario leads to correspondingly large

changes in the absorption cross section for radiation of frequency 1/R, and thus perhaps in the gravitational

wave signals mentioned above. The former scenario, and in particular the models in [47], also seem likely to

affect such gravitational wave signals though the relevant calculations have yet to be performed.

Unfortunately, even such effects do not suffice to resolve the information problem for generic black hole

states in equilibrium with their environment [36]. This is essentially due to further fundamental issues in

thermodynamics: When two systems exchange energy, the standard relations between entropy and entan-

glement are consistent only when all modes of energy transfer can in principle transfer entanglement as well.

Indeed, in both versions of the NVNL proposal the fundamental issue appears to be that the transfer of

energy from the black hole (via the normal production of Hawking radiation) is a fundamentally separate

process from the desired transfer of information.

3.3.2 Equating the interior and exterior

Rather than relate the interior and exterior via a dynamical interaction, one might also simply posit new

kinematics in which the systems called A,D in section 2 are somehow controlled by the same degrees of

freedom as those for the outgoing Hawking radiation [34, 52, 53, 54, 35, 55] (though we note that [34]

argued against this idea). In general, this redundancy is visible to infalling observers who see this as a

large departure from known physics. In particular, as discussed in [36], they see phenomena that appear

to constitute quantum cloning (and which are thus forbidden in standard quantum mechanics [56, 57]). In

addition, interacting with radiation already emitted at some time t will generally create a firewall even if

one was not present originally [36]. There are, however, special situations [58] where these pathologies do

not arise. The so-called ER=EPR proposal expresses the hope that these special examples may indicate

more general resolutions of the black hole information problem. But ER=EPR alone cannot resolve the

problem for generic black holes [38], and thus also does not by itself suffice for black holes that have been

evaporating for a Page time. Proponents of ER=EPR thus generally suggest [59] that a full resolution also

requires quantum mechanics to be replaced by some non-linear theory (see e.g. section 3.4 below).

4In 1+1 dimensions, the well-known infra-red (IR) divergences for massless fields imply that the vacuum state of such
fields contains strong entanglements between well-separated low-energy degrees of freedom. These can be used to transfer large
quantities of entanglement with negligible energy [48, 49]. In particular, as described in [15] this effect appears to be involved
in the system analyzed in [16, 17, 18]. But there are no known examples of similar effects in higher dimensions.
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3.3.3 Sources of Drama

If dramatic effects near the horizon are required to resolve the information problem, then it is crucial to

understand whence these might arise. Some ideas [60, 61] are under investigation within string theory, though

they have not yet been clearly shown to suffice. There are also arguments in loop gravity that quantum

gravity does in fact lead to larger departures from effective field theory than one might expect. In particular,

[62, 63, 64] suggest that matter collapsing into a 4d Schwarzschild black holes could undergo a quantum

transitions to a thin shell expanding from a white hole on timescales of order tbounce ∼ R2
0/`Planck that are

much shorter than the Page time tPage.

However, this latter proposal cannot actually resolve the information problem in the form discussed here.

If the above black hole has eSBH internal states with SBH ∼ R2
0/`

2
Planck, then we may suppose that it begins

in a maximally-entangled state with von Neumann entropy ∼ A/4G ∼ R2
0/`

2
Planck. For simplicity, we suppose

that the ancillary system (“the ancilla”) with which it is entangled is far away so we may ignore subtleties

associated with short-distance QFT vacuum entanglement in the region near the black hole. Unitarity then

forbids evolution to a system with smaller entropy without interaction with the ancilla. But if the black

hole evaporates in a time tbounce by emitting normal radiation into the region near a horizon of area ∼ R2
0,

the maximum entropy that can result is given by thermal radiation of total energy E ∼ R0/`
2
Planck filling

a region of volume V ∼ Atbounce ∼ R2
0/`Planck. And in 4 spacetime dimensions this thermal radiation has

entropy S ∼ E3/4V 1/4 ∼ R
7/4
0 `

−7/4
Planck which is much less than SBH ∼ R2

0/`
2
Planck for R0 � `Planck. So if

SBH describes the number of internal black hole states the above transition will be forbidden.

This argument should remind the reader of the thermodynamic constraints on NVNL from section 3.3.1.

Indeed, in many ways the bounce scenario acts like a more violent form of NVNL with extra energy flux. It is

thus subject to the same constraints. In particular, as with some versions of NVNL, proponents of the above

bounce scenario might suppose that the actual number of black hole states is smaller than SBH . But this

leads to issues regarding equilibrium and the first law similar to those described in section 3.1. Furthermore,

having all of the energy come out at the bounce time tbounce gives a highly unstable scenario. The point

here is that gravitational interactions of the outgoing shell from the white hole with even a small amount

of infalling matter (e.g., a photon from the cosmic microwave background) can cause the shell to recollapse

into a new black hole [65]. For stability, the release of energy should be spread as evenly as possible between

tbounce and the initial formation of the black hole, requiring a constant stream of radiation to be emitted

from near the black hole horizon. In particular, it differs from Hawking radiation in that it is not experienced

as vacuum by incoming observers. Indeed, if the emitting region is exponentially close to the horizon as in

[64], infallers will then experience the radiation just now being emitted as being blueshifted to exponentially

high energies. So in the end such scenarios again greatly modify effective field theory and – if they do in

fact follow from full quantum gravity calculations – may be viewed as providing rationales for firewalls.
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3.4 Modify Quantum Mechanics?

The reasoning of section 2.2 made heavy use of the kinematic framework of standard quantum mechanics. It

could thus be that the information problem points to a need to replace this structure with something more

general. There is of course a long history of attempts to modify quantum mechanics, and it is not something

to be undertaken lightly. Indeed, it is the most general framework that satisfies a set of cherished physical

postulates [66].

Neverthless, two proposals for generalizations have been studied in the hopes of resolving the information

problem. The first is the black hole final state proposal [67]. While this proposal allows a system forming a

black hole to be in any density matrix ρinitial, it requires the density matrix ρfinal at the future spacetime

boundary to be pure at the black hole singularity. Probabilities for strings of events (with each event

represented by a projection operators Pi) are then calculated according to the rule

probability = Tr

([∏
Pi

]
ρinitial

[∏
Pi

]†
ρfinal

)
. (4)

In particular, [68] showed that this proposal can avoid the issues raised in [33, 36], though with significant

implications for the experiences of certain infalling observers.

The second proposal makes fundamental changes to the notion of quantum mechanical observable. In

textbook quantum mechanics, observables are Hermitian linear operators on the Hilbert space. But [53, 69,

70, 71, 72, 73] propose5 to replace this structure with what one may call state-dependent operators, where

the choice of linear operator corresponding to a given physical observable is influenced by the quantum state

on which it will act. In effect, this makes quantum mechanical observables non-linear. While it remains

to understand whether a fully consistent framework can be built in this way, it has been shown [80] that

implementations sufficient to resolve the information problem will predict massive violations of the standard

Born rule for computing probabilities. In particular, it requires the existence of normalized states |α〉, |β〉
for which the norm of |α〉− |β〉 is small but where |α〉, |β〉 represent mutually exclusive physical alternatives.

One may then discuss [80, 81] the sense in which such violations are observable.

3.5 Further Remarks

We end with a few brief remarks clarifying how the above points relate to certain parts of the black hole

information literature.

Scrambling: Our treatment has emphasized the Page time tPage, which for for 4d asymptotically-flat

Schwarzschild black holes of initial radius R0 takes the form tPage ∼ R3
0/`

2
Planck. At this time, an initially

pure-state black hole becomes maximally entangled. The black hole itself is then described by a density

matrix equivalent to that of a microcanonical ensemble. According to standard quantum mechanics, we may

thus think of the black hole after this time as being in a randomly selected state.

However, it has been argued [82, 83] that black holes take on some properties of random states at a much

earlier time tscrambling ∼ R0 ln (R0/`Planck). It is thus an interesting question [33] whether the information

5Related ideas appeared in [52, 74, 75] and [76, 77, 78, 79].
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problem and any of its proposed resolutions might manifest themselves on this earlier timescale after a black

hole first forms.

Fuzzballs and Fuzzball Complementarity: The so-called fuzzball program [84, 85, 86, 87, 88, 89, 90]

has been a very active approach to resolving the information problem. The idea is that, in the presence of

would-be black holes, string theory may provide novel physics even at macroscopic distance scales. But in

practice the actual ways that this program might resolve the information problem can be discussed as above.

In particular, let us consider the fuzzball complementarity idea of [91, 92], which suggests that the approach

of an infalling observer creates new regions of empty vacuum from a would-be firewall.

The creation of such vacuum regions entails sizeable corrections to effective field theory dynamics, but

nevertheless is not expected to remove the entire firewall. The new regions of vacuum are associated with

deforming the horizon of the original black hole to the larger one that results after the infaller has entered.

In particular, they remove from the firewall only those modes shorter than the distance scale set by the

growth of the horizon. And since they arise from back-reaction, the new regions of vacuum are small unless

the infaller is very massive. The details may be modeled using calculations like those in [93].

One may thus think of fuzzball complementarity as hybrid proposal combining modifications of effec-

tive field theory with a weakened firewall. The firewall is no longer Planck scale, so in a theory with only

gravitational-strength interactions what remains might be considered a small effect. But it still contains

excitations at energies far greater than those set by spacetime curvature, and a back-of-the envelope calcula-

tion (which, unfortunately, is still too long to include here) based on [93] suggests that with standard model

interactions it would still destroy a human falling into e.g. the black hole at the center of the Milky way

associated with Sagittarius A*.

Soft Graviton Effects: It has been argued that long-wavelength gravitons can give rise to an infinite

number of conserved charges which preserve an infinite amount of information outside black holes [94]. It has

then been proposed that this could give a new perspective on the information problem [95, 96]. But I know

of no suggestion for how precisely this would affect the entanglement issues discussed above. Furthermore,

the arguments in [95] are easily transcribed to the AdS context by using bulk surfaces with timelike segments

that run along the AdS boundary for long times and interpreting the associated conserved charges as values of

appropriate components of the boundary stress tensor of the AdS space. On the other hand, in that context

the AdS scale ` provides an effective infrared cut-off, reducing the effect to a finite amount of information

which is known to be parametrically smaller than the Bekenstein-Hawking entropy (which is parametrically

large in powers of the inverse Planck length). So at least in the AdS context, no such effect can suffice.

4 The future of black hole information

The final resolution of the information problem is difficult to predict. But much has already come from

the search for insight. For example, in addition to the specific ideas described above, we remind the reader

that the AdS/CFT correspondence [97] (and gauge/gravity duality more generally) was discovered through

related work. And more recently the firewall hypothesis helped to motivate connecting such dualities to
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quantum error correction on a code subspace [98], a set of ideas whose implications are now just beginning

to be explored. The sharp focus into which it brings fundamental issues makes black hole information a

powerful catalyst for new ideas, and suggests an exciting future for further studies of gravity, effective field

theory, and quantum information.

Acknowledgements

It is a pleasure to thank Abhay Ashtekar, Ahmed Almheiri, Steve Giddings, Jim Hartle, Daniel Harlow,

Patrick Hayden, Gary Horowitz, Ted Jacobson, David Lowe, Juan Maldacena, Samir Mathur, Don Page,

Kyriakos Papadodimas, John Preskill, Suvrat Raju, Carlo Rovelli, Eva Silverstein, Rafael Sorkin, Mark

Srednicki, Douglas Stanford, Andy Strominger, James Sully, Lenny Susskind, Larus Thorlacius, Bill Unruh,

Erik Verlinde, Hermann Verlinde, Bob Wald, Aron Wall and and many others for countless discussions of

black hole information over many years. I especially thank Joe Polchinski for his part in our collaborations

and for his constant support. This work was funded in part by the U.S. National Science Foundation under

grant number PHY15-04541 and also by the University of California.

References

[1] J. D. Bekenstein, Black holes and entropy, Phys.Rev. D7 (1973) 2333–2346.

[2] S. Hawking, Particle Creation by Black Holes, Commun.Math.Phys. 43 (1975) 199–220.

[3] R. M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D48 (1993) 3427–3431,

[gr-qc/9307038].

[4] A. C. Wall, A Second Law for Higher Curvature Gravity, 1504.08040.

[5] D. Harlow, Jerusalem Lectures on Black Holes and Quantum Information, Rev. Mod. Phys. 88 (2016)

15002, [1409.1231].

[6] J. Polchinski, The Black Hole Information Problem, in Theoretical Advanced Study Institute in

Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015) Boulder, CO, USA,

June 1-26, 2015, 2016. 1609.04036. DOI.

[7] T. Jacobson, Introduction to quantum fields in curved space-time and the Hawking effect, in Lectures

on quantum gravity. Proceedings, School of Quantum Gravity, Valdivia, Chile, January 4-14, 2002,

pp. 39–89, 2003. gr-qc/0308048. DOI.

[8] S. D. Mathur, The Information paradox: A Pedagogical introduction, Class. Quant. Grav. 26 (2009)

224001, [0909.1038].

13

http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://arxiv.org/abs/gr-qc/9307038
http://arxiv.org/abs/gr-qc/9307038
http://arxiv.org/abs/1504.08040
http://dx.doi.org/10.1103/RevModPhys.88.015002
http://dx.doi.org/10.1103/RevModPhys.88.015002
http://arxiv.org/abs/1409.1231
http://arxiv.org/abs/1609.04036
http://dx.doi.org/10.1142/9789813149441_0006
http://arxiv.org/abs/gr-qc/0308048
http://arxiv.org/abs/gr-qc/0308048
http://dx.doi.org/10.1007/0-387-24992-3_2
http://dx.doi.org/10.1088/0264-9381/26/22/224001
http://dx.doi.org/10.1088/0264-9381/26/22/224001
http://arxiv.org/abs/0909.1038


[9] R. D. Sorkin, The statistical mechanics of black hole thermodynamics, in Symposium on Black Holes

and Relativistic Stars (dedicated to memory of S. Chandrasekhar) Chicago, Illinois, December 14-15,

1996, 1997. gr-qc/9705006.

[10] S. B. Giddings, Black hole information, unitarity, and nonlocality, Phys. Rev. D74 (2006) 106005,

[hep-th/0605196].

[11] S. L. Braunstein, S. Pirandola and K. yczkowski, Better Late than Never: Information Retrieval from

Black Holes, Phys. Rev. Lett. 110 (2013) 101301, [0907.1190].

[12] S. B. Giddings and Y. Shi, Quantum information transfer and models for black hole mechanics, Phys.

Rev. D87 (2013) 064031, [1205.4732].

[13] S. W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D14 (1976)

2460–2473.

[14] S. W. Hawking, The Unpredictability of Quantum Gravity, Commun. Math. Phys. 87 (1982) 395–415.

[15] A. Almheiri and J. Sully, An Uneventful Horizon in Two Dimensions, JHEP 02 (2014) 108,

[1307.8149].

[16] A. Ashtekar, V. Taveras and M. Varadarajan, Information is Not Lost in the Evaporation of

2-dimensional Black Holes, Phys. Rev. Lett. 100 (2008) 211302, [0801.1811].

[17] A. Ashtekar, F. Pretorius and F. M. Ramazanoglu, Surprises in the Evaporation of 2-Dimensional

Black Holes, Phys. Rev. Lett. 106 (2011) 161303, [1011.6442].

[18] A. Ashtekar, F. Pretorius and F. M. Ramazanoglu, Evaporation of 2-Dimensional Black Holes, Phys.

Rev. D83 (2011) 044040, [1012.0077].

[19] S. B. Giddings, Constraints on black hole remnants, Phys. Rev. D49 (1994) 947–957,

[hep-th/9304027].

[20] S. B. Giddings, Why aren’t black holes infinitely produced?, Phys. Rev. D51 (1995) 6860–6869,

[hep-th/9412159].

[21] M. A. Markov, PROBLEMS OF A PERPETUALLY OSCILLATING UNIVERSE, Annals Phys. 155

(1984) 333–357.

[22] D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71 (1993) 1291–1294, [gr-qc/9305007].

[23] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B379

(1996) 99–104, [hep-th/9601029].

[24] M. Hanada, Y. Hyakutake, J. Nishimura and S. Takeuchi, Higher derivative corrections to black hole

thermodynamics from supersymmetric matrix quantum mechanics, Phys. Rev. Lett. 102 (2009)

191602, [0811.3102].

14

http://arxiv.org/abs/gr-qc/9705006
http://arxiv.org/abs/gr-qc/9705006
http://dx.doi.org/10.1103/PhysRevD.74.106005
http://arxiv.org/abs/hep-th/0605196
http://arxiv.org/abs/hep-th/0605196
http://dx.doi.org/10.1103/PhysRevLett.110.101301
http://arxiv.org/abs/0907.1190
http://dx.doi.org/10.1103/PhysRevD.87.064031
http://dx.doi.org/10.1103/PhysRevD.87.064031
http://arxiv.org/abs/1205.4732
http://dx.doi.org/10.1103/PhysRevD.14.2460
http://dx.doi.org/10.1103/PhysRevD.14.2460
http://dx.doi.org/10.1007/BF01206031
http://dx.doi.org/10.1007/JHEP02(2014)108
http://arxiv.org/abs/1307.8149
http://dx.doi.org/10.1103/PhysRevLett.100.211302
http://arxiv.org/abs/0801.1811
http://dx.doi.org/10.1103/PhysRevLett.106.161303
http://arxiv.org/abs/1011.6442
http://dx.doi.org/10.1103/PhysRevD.83.044040
http://dx.doi.org/10.1103/PhysRevD.83.044040
http://arxiv.org/abs/1012.0077
http://dx.doi.org/10.1103/PhysRevD.49.947
http://arxiv.org/abs/hep-th/9304027
http://arxiv.org/abs/hep-th/9304027
http://dx.doi.org/10.1103/PhysRevD.51.6860
http://arxiv.org/abs/hep-th/9412159
http://arxiv.org/abs/hep-th/9412159
http://dx.doi.org/10.1016/0003-4916(84)90004-6
http://dx.doi.org/10.1016/0003-4916(84)90004-6
http://dx.doi.org/10.1103/PhysRevLett.71.1291
http://arxiv.org/abs/gr-qc/9305007
http://arxiv.org/abs/gr-qc/9305007
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://arxiv.org/abs/hep-th/9601029
http://arxiv.org/abs/hep-th/9601029
http://dx.doi.org/10.1103/PhysRevLett.102.191602
http://dx.doi.org/10.1103/PhysRevLett.102.191602
http://arxiv.org/abs/0811.3102


[25] M. Hanada, Monte Carlo approach to the string/M-theory, PoS LATTICE2012 (2012) 019,

[1212.2814].

[26] M. Hanada, Does Yang-Mills theory describe quantum gravity?, Fortsch. Phys. 62 (2014) 786–791,

[1407.5322].

[27] W. G. Unruh, Decoherence without Dissipation, Trans. Roy. Soc. Lond. 370 (2012) 4454, [1205.6750].

[28] T. Jacobson, D. Marolf and C. Rovelli, Black hole entropy: Inside or out?, Int. J. Theor. Phys. 44

(2005) 1807–1837, [hep-th/0501103].

[29] S. B. Giddings and A. Strominger, Loss of Incoherence and Determination of Coupling Constants in

Quantum Gravity, Nucl. Phys. B307 (1988) 854–866.

[30] D. Marolf, Unitarity and Holography in Gravitational Physics, Phys. Rev. D79 (2009) 044010,

[0808.2842].

[31] R. M. Wald, General Relativity. 1984.

[32] L. Susskind, L. Thorlacius and J. Uglum, The Stretched horizon and black hole complementarity, Phys.

Rev. D48 (1993) 3743–3761, [hep-th/9306069].

[33] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP

02 (2013) 062, [1207.3123].

[34] R. Bousso, Complementarity Is Not Enough, Phys. Rev. D87 (2013) 124023, [1207.5192].

[35] D. Harlow and P. Hayden, Quantum Computation vs. Firewalls, JHEP 06 (2013) 085, [1301.4504].

[36] A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls, JHEP 09

(2013) 018, [1304.6483].

[37] J. Oppenheim and W. G. Unruh, Firewalls and flat mirrors: An alternative to the AMPS experiment

which evades the Harlow-Hayden obstacle, JHEP 03 (2014) 120, [1401.1523].

[38] D. Marolf and J. Polchinski, Gauge/Gravity Duality and the Black Hole Interior, Phys. Rev. Lett. 111

(2013) 171301, [1307.4706].

[39] S. Banerjee, R. K. Gupta, I. Mandal and A. Sen, Logarithmic Corrections to N=4 and N=8 Black

Hole Entropy: A One Loop Test of Quantum Gravity, JHEP 11 (2011) 143, [1106.0080].

[40] A. Sen, Logarithmic Corrections to N=2 Black Hole Entropy: An Infrared Window into the

Microstates, Gen. Rel. Grav. 44 (2012) 1207–1266, [1108.3842].

[41] A. Sen, Logarithmic Corrections to Rotating Extremal Black Hole Entropy in Four and Five

Dimensions, Gen. Rel. Grav. 44 (2012) 1947–1991, [1109.3706].

15

http://arxiv.org/abs/1212.2814
http://dx.doi.org/10.1002/prop.201400047
http://arxiv.org/abs/1407.5322
http://dx.doi.org/10.1098/rsta.2012.0163
http://arxiv.org/abs/1205.6750
http://dx.doi.org/10.1007/s10773-005-8896-z
http://dx.doi.org/10.1007/s10773-005-8896-z
http://arxiv.org/abs/hep-th/0501103
http://arxiv.org/abs/hep-th/0501103
http://dx.doi.org/10.1016/0550-3213(88)90109-5
http://dx.doi.org/10.1103/PhysRevD.79.044010
http://arxiv.org/abs/0808.2842
http://dx.doi.org/10.1103/PhysRevD.48.3743
http://dx.doi.org/10.1103/PhysRevD.48.3743
http://arxiv.org/abs/hep-th/9306069
http://arxiv.org/abs/hep-th/9306069
http://dx.doi.org/10.1007/JHEP02(2013)062
http://dx.doi.org/10.1007/JHEP02(2013)062
http://arxiv.org/abs/1207.3123
http://dx.doi.org/10.1103/PhysRevD.87.124023
http://arxiv.org/abs/1207.5192
http://dx.doi.org/10.1007/JHEP06(2013)085
http://arxiv.org/abs/1301.4504
http://dx.doi.org/10.1007/JHEP09(2013)018
http://dx.doi.org/10.1007/JHEP09(2013)018
http://arxiv.org/abs/1304.6483
http://dx.doi.org/10.1007/JHEP03(2014)120
http://arxiv.org/abs/1401.1523
http://dx.doi.org/10.1103/PhysRevLett.111.171301
http://dx.doi.org/10.1103/PhysRevLett.111.171301
http://arxiv.org/abs/1307.4706
http://dx.doi.org/10.1007/JHEP11(2011)143
http://arxiv.org/abs/1106.0080
http://dx.doi.org/10.1007/s10714-012-1336-5
http://arxiv.org/abs/1108.3842
http://dx.doi.org/10.1007/s10714-012-1373-0
http://arxiv.org/abs/1109.3706


[42] S. Bhattacharyya, A. Grassi, M. Marino and A. Sen, A One-Loop Test of Quantum Supergravity,

Class. Quant. Grav. 31 (2014) 015012, [1210.6057].

[43] S. B. Giddings, Models for unitary black hole disintegration, Phys. Rev. D85 (2012) 044038,

[1108.2015].

[44] S. B. Giddings, Nonviolent nonlocality, Phys. Rev. D88 (2013) 064023, [1211.7070].

[45] S. B. Giddings, Nonviolent information transfer from black holes: A field theory parametrization,

Phys. Rev. D88 (2013) 024018, [1302.2613].

[46] S. B. Giddings, Modulated Hawking radiation and a nonviolent channel for information release, Phys.

Lett. B738 (2014) 92–96, [1401.5804].

[47] S. B. Giddings, Nonviolent unitarization: basic postulates to soft quantum structure of black holes,

1701.08765.

[48] F. Wilczek in Proceedings of the Houston Conference on Black Holes, Membranes, Wormholes and

Superstrings, 1992.

[49] M. Hotta, R. Schtzhold and W. G. Unruh, Partner particles for moving mirror radiation and black

hole evaporation, Phys. Rev. D91 (2015) 124060, [1503.06109].

[50] S. B. Giddings, Statistical physics of black holes as quantum-mechanical systems, Phys. Rev. D88

(2013) 104013, [1308.3488].

[51] S. B. Giddings, Hawking radiation, the StefanBoltzmann law, and unitarization, Phys. Lett. B754

(2016) 39–42, [1511.08221].

[52] Y. Nomura, J. Varela and S. J. Weinberg, Complementarity Endures: No Firewall for an Infalling

Observer, JHEP 1303 (2013) 059, [1207.6626].

[53] K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, JHEP 1310 (2013) 212,

[1211.6767].

[54] Y. Nomura, J. Varela and S. J. Weinberg, Black Holes, Information, and Hilbert Space for Quantum

Gravity, Phys. Rev. D87 (2013) 084050, [1210.6348].

[55] L. Susskind, Black Hole Complementarity and the Harlow-Hayden Conjecture, 1301.4505.

[56] W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, Nature 299 (1982) 802–803.

[57] D. Dieks, COMMUNICATION BY EPR DEVICES, Phys. Lett. A92 (1982) 271–272.

[58] J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013)

781–811, [1306.0533].

16

http://dx.doi.org/10.1088/0264-9381/31/1/015012
http://arxiv.org/abs/1210.6057
http://dx.doi.org/10.1103/PhysRevD.85.044038
http://arxiv.org/abs/1108.2015
http://dx.doi.org/10.1103/PhysRevD.88.064023
http://arxiv.org/abs/1211.7070
http://dx.doi.org/10.1103/PhysRevD.88.024018
http://arxiv.org/abs/1302.2613
http://dx.doi.org/10.1016/j.physletb.2014.08.070
http://dx.doi.org/10.1016/j.physletb.2014.08.070
http://arxiv.org/abs/1401.5804
http://arxiv.org/abs/1701.08765
http://dx.doi.org/10.1103/PhysRevD.91.124060
http://arxiv.org/abs/1503.06109
http://dx.doi.org/10.1103/PhysRevD.88.104013
http://dx.doi.org/10.1103/PhysRevD.88.104013
http://arxiv.org/abs/1308.3488
http://dx.doi.org/10.1016/j.physletb.2015.12.076
http://dx.doi.org/10.1016/j.physletb.2015.12.076
http://arxiv.org/abs/1511.08221
http://dx.doi.org/10.1007/JHEP03(2013)059
http://arxiv.org/abs/1207.6626
http://dx.doi.org/10.1007/JHEP10(2013)212
http://arxiv.org/abs/1211.6767
http://dx.doi.org/10.1103/PhysRevD.87.084050
http://arxiv.org/abs/1210.6348
http://arxiv.org/abs/1301.4505
http://dx.doi.org/10.1038/299802a0
http://dx.doi.org/10.1016/0375-9601(82)90084-6
http://dx.doi.org/10.1002/prop.201300020
http://dx.doi.org/10.1002/prop.201300020
http://arxiv.org/abs/1306.0533


[59] L. Susskind, Entanglement is not enough, Fortsch. Phys. 64 (2016) 49–71, [1411.0690].

[60] A. Giveon and N. Itzhaki, String Theory Versus Black Hole Complementarity, JHEP 12 (2012) 094,

[1208.3930].

[61] E. Silverstein, Backdraft: String Creation in an Old Schwarzschild Black Hole, 1402.1486.

[62] C. Rovelli and F. Vidotto, Planck stars, Int. J. Mod. Phys. D23 (2014) 1442026, [1401.6562].

[63] H. M. Haggard and C. Rovelli, Quantum-gravity effects outside the horizon spark black to white hole

tunneling, Phys. Rev. D92 (2015) 104020, [1407.0989].

[64] M. Christodoulou, C. Rovelli, S. Speziale and I. Vilensky, Planck star tunneling time: An

astrophysically relevant observable from background-free quantum gravity, Phys. Rev. D94 (2016)

084035, [1605.05268].

[65] C. Rovelli. Private communication.

[66] A. Kapustin, Is there life beyond Quantum Mechanics?, 1303.6917.

[67] G. T. Horowitz and J. M. Maldacena, The Black hole final state, JHEP 02 (2004) 008,

[hep-th/0310281].

[68] S. Lloyd and J. Preskill, Unitarity of black hole evaporation in final-state projection models, JHEP 08

(2014) 126, [1308.4209].

[69] K. Papadodimas and S. Raju, Black Hole Interior in the Holographic Correspondence and the

Information Paradox, Phys.Rev.Lett. 112 (2014) 051301, [1310.6334].

[70] K. Papadodimas and S. Raju, State-Dependent Bulk-Boundary Maps and Black Hole

Complementarity, Phys.Rev. D89 (2014) 086010, [1310.6335].

[71] K. Papadodimas and S. Raju, The unreasonable effectiveness of exponentially suppressed corrections

in preserving information, Int.J.Mod.Phys. D22 (2013) 1342030.

[72] K. Papadodimas and S. Raju, Local Operators in the Eternal Black Hole, 1502.06692.

[73] K. Papadodimas and S. Raju, Comments on the Necessity and Implications of State-Dependence in

the Black Hole Interior, 1503.08825.

[74] Y. Nomura, J. Varela and S. J. Weinberg, Black Holes or Firewalls: A Theory of Horizons, Phys. Rev.

D88 (2013) 084052, [1308.4121].

[75] Y. Nomura and J. Varela, A Note on (No) Firewalls: The Entropy Argument, JHEP 07 (2013) 124,

[1211.7033].

[76] E. Verlinde and H. Verlinde, Black Hole Entanglement and Quantum Error Correction, JHEP 1310

(2013) 107, [1211.6913].

17

http://dx.doi.org/10.1002/prop.201500095
http://arxiv.org/abs/1411.0690
http://dx.doi.org/10.1007/JHEP12(2012)094
http://arxiv.org/abs/1208.3930
http://arxiv.org/abs/1402.1486
http://dx.doi.org/10.1142/S0218271814420267
http://arxiv.org/abs/1401.6562
http://dx.doi.org/10.1103/PhysRevD.92.104020
http://arxiv.org/abs/1407.0989
http://dx.doi.org/10.1103/PhysRevD.94.084035
http://dx.doi.org/10.1103/PhysRevD.94.084035
http://arxiv.org/abs/1605.05268
http://arxiv.org/abs/1303.6917
http://dx.doi.org/10.1088/1126-6708/2004/02/008
http://arxiv.org/abs/hep-th/0310281
http://arxiv.org/abs/hep-th/0310281
http://dx.doi.org/10.1007/JHEP08(2014)126
http://dx.doi.org/10.1007/JHEP08(2014)126
http://arxiv.org/abs/1308.4209
http://dx.doi.org/10.1103/PhysRevLett.112.051301
http://arxiv.org/abs/1310.6334
http://dx.doi.org/10.1103/PhysRevD.89.086010
http://arxiv.org/abs/1310.6335
http://dx.doi.org/10.1142/S0218271813420303
http://arxiv.org/abs/1502.06692
http://arxiv.org/abs/1503.08825
http://dx.doi.org/10.1103/PhysRevD.88.084052
http://dx.doi.org/10.1103/PhysRevD.88.084052
http://arxiv.org/abs/1308.4121
http://dx.doi.org/10.1007/JHEP07(2013)124
http://arxiv.org/abs/1211.7033
http://dx.doi.org/10.1007/JHEP10(2013)107
http://dx.doi.org/10.1007/JHEP10(2013)107
http://arxiv.org/abs/1211.6913


[77] E. Verlinde and H. Verlinde, Passing through the Firewall, 1306.0515.

[78] E. Verlinde and H. Verlinde, Black Hole Information as Topological Qubits, 1306.0516.

[79] E. Verlinde and H. Verlinde, Behind the Horizon in AdS/CFT, 1311.1137.

[80] D. Marolf and J. Polchinski, Violations of the Born rule in cool state-dependent horizons, JHEP 01

(2016) 008, [1506.01337].

[81] S. Raju, Smooth Causal Patches for AdS Black Holes, 1604.03095.

[82] P. Hayden and J. Preskill, Black holes as mirrors: Quantum information in random subsystems, JHEP

09 (2007) 120, [0708.4025].

[83] Y. Sekino and L. Susskind, Fast Scramblers, JHEP 10 (2008) 065, [0808.2096].

[84] S. D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys. 53 (2005)

793–827, [hep-th/0502050].

[85] I. Bena and N. P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008)

1–92, [hep-th/0701216].

[86] V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black Holes as Effective Geometries,

Class. Quant. Grav. 25 (2008) 214004, [0811.0263].

[87] K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117–171,

[0804.0552].

[88] S. D. Mathur, Fuzzballs and the information paradox: A Summary and conjectures, 0810.4525.

[89] B. D. Chowdhury and A. Virmani, Modave Lectures on Fuzzballs and Emission from the D1-D5

System, 1001.1444.

[90] I. Bena and N. P. Warner, Resolving the Structure of Black Holes: Philosophizing with a Hammer,

1311.4538.

[91] S. D. Mathur and D. Turton, Comments on black holes I: The possibility of complementarity, JHEP

01 (2014) 034, [1208.2005].

[92] S. D. Mathur and D. Turton, The flaw in the firewall argument, Nucl. Phys. B884 (2014) 566–611,

[1306.5488].

[93] A. J. Amsel, D. Marolf and A. Virmani, Collisions with Black Holes and Deconfined Plasmas, JHEP

04 (2008) 025, [0712.2221].

[94] A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152, [1312.2229].

18

http://arxiv.org/abs/1306.0515
http://arxiv.org/abs/1306.0516
http://arxiv.org/abs/1311.1137
http://dx.doi.org/10.1007/JHEP01(2016)008
http://dx.doi.org/10.1007/JHEP01(2016)008
http://arxiv.org/abs/1506.01337
http://arxiv.org/abs/1604.03095
http://dx.doi.org/10.1088/1126-6708/2007/09/120
http://dx.doi.org/10.1088/1126-6708/2007/09/120
http://arxiv.org/abs/0708.4025
http://dx.doi.org/10.1088/1126-6708/2008/10/065
http://arxiv.org/abs/0808.2096
http://dx.doi.org/10.1002/prop.200410203
http://dx.doi.org/10.1002/prop.200410203
http://arxiv.org/abs/hep-th/0502050
http://arxiv.org/abs/hep-th/0502050
http://dx.doi.org/10.1007/978-3-540-79523-0
http://dx.doi.org/10.1007/978-3-540-79523-0
http://arxiv.org/abs/hep-th/0701216
http://arxiv.org/abs/hep-th/0701216
http://dx.doi.org/10.1088/0264-9381/25/21/214004
http://arxiv.org/abs/0811.0263
http://dx.doi.org/10.1016/j.physrep.2008.08.001
http://arxiv.org/abs/0804.0552
http://arxiv.org/abs/0810.4525
http://arxiv.org/abs/1001.1444
http://arxiv.org/abs/1311.4538
http://dx.doi.org/10.1007/JHEP01(2014)034
http://dx.doi.org/10.1007/JHEP01(2014)034
http://arxiv.org/abs/1208.2005
http://dx.doi.org/10.1016/j.nuclphysb.2014.05.012
http://arxiv.org/abs/1306.5488
http://dx.doi.org/10.1088/1126-6708/2008/04/025
http://dx.doi.org/10.1088/1126-6708/2008/04/025
http://arxiv.org/abs/0712.2221
http://dx.doi.org/10.1007/JHEP07(2014)152
http://arxiv.org/abs/1312.2229


[95] S. W. Hawking, M. J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett. 116 (2016)

231301, [1601.00921].

[96] S. W. Hawking, M. J. Perry and A. Strominger, Superrotation Charge and Supertranslation Hair on

Black Holes, 1611.09175.

[97] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor.

Phys. 38 (1999) 1113–1133, [hep-th/9711200].

[98] A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT,

JHEP 04 (2015) 163, [1411.7041].

19

http://dx.doi.org/10.1103/PhysRevLett.116.231301
http://dx.doi.org/10.1103/PhysRevLett.116.231301
http://arxiv.org/abs/1601.00921
http://arxiv.org/abs/1611.09175
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1007/JHEP04(2015)163
http://arxiv.org/abs/1411.7041

	1 Background
	2 Hawking Radiation and the information problem
	2.1 A straw man information problem
	2.2 The information problem and the Page time

	3 Resolutions?
	3.1 No problem in principle?
	3.2 No problem in practice?
	3.3 Effective Field Theory Fails?
	3.3.1 Non-violent Nonlocalty
	3.3.2 Equating the interior and exterior
	3.3.3 Sources of Drama

	3.4 Modify Quantum Mechanics?
	3.5 Further Remarks

	4 The future of black hole information

