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On ‘Rotating regular black hole solution’: Generating the physical solution in

Boyer-Lindquist coordinates

Mustapha Azreg-Aı̈nou
Başkent University, Department of Mathematics, Bağlıca Campus, Ankara, Turkey

We show that the rotating metric proposed in Phys. Rev. D 89, 104017 (arXiv:1404.6443 [gr-
qc]) does not result from application of Newman-Janis algorithm. Dropping the complexification
procedure and introducing more physical arguments and symmetry properties, we show how one can
remedy the situation by providing the appropriate, easy to handle, metric for generating, regular and
singular, rotating black hole and non-black-hole solutions in Boyer-Lindquist coordinates. We focus
on rotating regular black holes and show that they are regular on the Kerr-like ring but physical
entities are undefined there. We show that rotating regular black holes have much smaller electric
charges and, with increasing charge, they turn into regular non-black-hole solutions well before their
Kerr-Newman counterparts become naked singularities. No causality violations occur in the region
inside a rotating regular black hole.

I. ON THE NEWMAN-JANIS ALGORITHM

In this introductory section we comment on two steps
in the Newman-Janis algorithm (NJA) [1]. We first in-
troduce the following general static metric

ds2stat = G(r)dt2 − dr2

F (r)
−H(r)(dθ2 + sin2 θdϕ2) (1)

One of the ambiguous steps in the algorithm is com-
plexification of the radial coordinate r. This is the step
that follows the complex coordinate transformation:

r → r + ia cos θ, u → u− ia cos θ,

where (u, r, θ, ϕ) are the advanced null coordinates. Re-
call that there were already generalizations of this com-
plex coordinate transformation [2], but it seems that
the subsequent developments of the NJA and generat-
ing methods have not made the matter of further gen-
eralizing these transformations a concern. There are as
many ways to complexify r as one wants. Here are some
examples:

r2 → (r + ia cos θ)(r − ia cos θ) = r2 + a2 cos2 θ,

r → 2(r + ia cos θ)(r − ia cos θ)

(r + ia cos θ) + (r − ia cos θ)
=

r2 + a2 cos2 θ

r
, (2)

r2 → r
√

(r + ia cos θ)(r − ia cos θ) = r
√

r2 + a2 cos2 θ.

When a = 0, each r.h.s reduces to the left hand side
(l.h.s) of the same line. Both the first and second types
of complexification in (2) are used to derive the Kerr
solution from the Schwarzschild one: If only one type of
complexification is used, the generated rotating solution
will not look like the Kerr one! This is the very ambiguity
behind nonphysical solutions [3] that cannot be written
in Boyer-Lindquist coordinates (BLC’s) as shown in [4].
The failure of the last step of NJA, which consists

in bringing the generated rotating solution written in
Eddington-Finkelstein coordinates (EFC’s) to BLC’s by
real coordinate transformation, is likely related to the

complexification procedure. We have already commented
on this point in [4] and have shown that it is not possible
in general to carry this last step of NJA. In this work we
will rise similar comments concerning the results derived
in [5].
The issue pertaining to complexification has been

solved in [6] where a generic metric formula, not appeal-
ing to complexification procedure, was derived to gener-
ate imperfect fluid rotating solutions in BLC’s. The met-
ric formula depends on a three-variable function Ψ(r, θ, a)
whose determination depends on the physical problem at
hands, that is, it depends on the type of rotating solution
one wants to derive. Ψ generally obeys some partial dif-
ferential equation(s). In the case to which one is generally
interested, where the source term in the field equations,
T µν , is interpreted as an imperfect fluid rotating about a
fixed axis, Ψ obeys two linear and nonlinear partial dif-
ferential equations [6, Eqs.(15),(18)] and [7, Eqs.(4),(7)].
Thus, the essence of our procedure is to reduce the task of
determining the rotating counterpart of (1) to that of fix-
ing Ψ by solving nonlinear partial differential equations.
Applications are considered in [6, 7] and in Sect. III of
this work.
In Sect. II we comment on Ref. [5] and show that the

rotating metric derived there by NJA cannot be brought
to BLC’s. In Sect. III we derive, based on our previ-
ous works [6, 7], a rotating regular black hole in BLC’s.
Sect. IV is devoted to the discussion of the general prop-
erties of all rotating regular black holes as well as to the
special properties of the rotating regular black hole coun-
terpart of the static regular one derived in [8]. We con-
clude in Sect. V. An appendix has been added to derive
the extremality condition of the rotating regular black
hole.

II. COMMENT ON REF. [5]

Eqs. (2.2) and (2.15) of Ref. [5] reveal that both the
first and third types of complexification in (2) have been
used to derive the “rotating” solution (2.19) of Ref. [5] in
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EFC’s. No explication of why these two complexifications
have been selected occurs in Ref. [5].

In Eqs. (2.20) of Ref. [5], each r.h.s is a total differ-
ential (exact differential) provided the functions λ and χ
depend only on r. It is easy to check that, in this case,
the conditions of integrability are satisfied, so one can
integrate the two equations to obtain global coordinates
u(t, r) and φ(φ, r).

Unfortunately, this is not the case in the final expres-
sions of λ and χ given in the right hand sides (r.h.s) of
Eqs. (2.21) of Ref. [5], which generally depend on both
(r, θ): Only in the trivial case Q = 0, which corresponds
to Schwarzschild solution, λ and χ depend on r only.

If λ and χ depend on both (r, θ) then ∂λ/∂θ 6=
0 and ∂χ/∂θ 6= 0, so the conditions of integrability
are no longer satisfied and it is not possible to inte-
grate Eqs. (2.20) of Ref. [5] to obtain global coordinates
u(t, r, θ) and φ(φ, r, θ). Consequently, if Q 6= 0, the set
of Eqs. (2.20) of Ref. [5] does not constitute a coordi-
nate transformation and the final metric, Eqs. (2.22) of
Ref. [5], is not equivalent to the metric (2.19) of Ref. [5].
Said otherwise, if Q 6= 0, it is not possible, by a co-
ordinate transformation, to bring metric (2.19) to met-
ric (2.22) of Ref. [5].

Thus, metric (2.22) of Ref. [5] does not result from ap-
plication of NJA and there is no remedy to help overcome
the situation1. One may think, for instance, to postulate
the metric independently of NJA. If that were the case
one would again encounter the complexification problem

because the function f̃(r) is nothing but f(r) where r
has been subject to complexification. Second, one may
modify some metric components in Eq. (2.22) of Ref. [5]
without modifying its asymptotic behavior nor its be-
havior in the limit a → 0: For instance, multiply the
coefficient of dt2 by (r2 + a2)/(r2 + a2 cos2 θ) (or by its
inverse) to get a new metric postulate with similar spa-
tial asymptotic properties and behavior as a → 0. How
many are there such metric postulates derived this way
without using physical arguments? And which metric
postulate yields a physical solution?

In the following section we show how one can skip the
complexification procedure and we introduce more phys-
ical arguments and symmetry properties to derive rotat-
ing regular black hole counterparts of static regular ones.
We apply the rules to the static solution used in Ref. [5]
and derive a rotating regular solution for it that is much
more simpler than the one “postulated” in Ref. [5].

1 For the same reason, because of its non-simple structure the met-
ric (3.12) of [9] [Eq. (18) of arXiv:1005.5605] does not seem to
result from application of NJA as claimed.

III. A ROTATING REGULAR BLACK HOLE

In [6] we dropped the complexification procedure and
obtained a metric in EFC’s depending on three un-
known functions (A(r, θ, a), B(r, θ, a),Ψ(r, θ, a)) and on
(G,F,H). We then performed a coordinate transforma-
tion on the rotating metric in EFC’s with well defined
functions λ(r) and χ(r) and we required the final trans-
formed metric be brought to BLC’s. This fixed two of
the three unknown functions, (A,B), and resulted in a
metric formula depending on the three-variable function
Ψ(r, θ, a) to be fixed using physical arguments.
From now on, we will use the notation of [6, 7]. Let

K(r) ≡
√
FH/

√
G, (3)

where (G,F,H) is the static metric (1). Its rotating
counterpart in BLC’s takes the form [6, 7]

ds2 =
(FH + a2 cos2 θ)Ψdt2

(K + a2 cos2 θ)2
− Ψdr2

FH + a2

+ 2a sin2 θ
[ K − FH

(K + a2 cos2 θ)2

]
Ψdtdφ−Ψdθ2

−Ψsin2 θ
[
1 + a2 sin2 θ

2K − FH + a2 cos2 θ

(K + a2 cos2 θ)2

]
dφ2, (4)

and is brought to Kerr-like forms

ds2 =
Ψ

ρ2

[(
1− 2f

ρ2

)
dt2 − ρ2

∆
dr2

+
4af sin2 θ

ρ2
dtdφ − ρ2dθ2 − Σ sin2 θ

ρ2
dφ2

]
(5)

ds2 =
Ψ

ρ2

[∆
ρ2

(dt− a sin2 θdφ)2 − ρ2

∆
dr2 − ρ2dθ2

− sin2 θ

ρ2
[adt− (K + a2)dφ]2

]
. (6)

on performing the following variable changes:

ρ2 ≡ K + a2 cos2 θ, 2f(r) ≡ K − FH

∆(r) ≡ FH + a2, Σ ≡ (K + a2)2 − a2∆sin2 θ. (7)

Here Ψ(r, θ, a) is an unknown function. If the source
term T µν is interpreted as an imperfect fluid rotating
about the z axis, Ψ obeys the two linear and nonlinear
partial differential equations (15) and (18) of [6] to which
some particular solutions were found in [6, 7]. The non-
linear differential equation is just Grθ = 0, where Gµν is
the Einstein tensor, and the linear differential equation
ensures consistency of the field equations, Gµν = Tµν ,
with the expression of T µν : T µν = ǫeµt e

ν
t + pre

µ
r e

ν
r +

pθe
µ
θ e

ν
θ + pφe

µ
φe

ν
φ, where eµt is the four-velocity vector of

the fluid, ǫ is the density, (pr, pθ, pφ) are the components
of the pressure, and the basis (et, er, eθ, eφ) is dual to the

1-forms defined in (6): ωt ≡
√
Ψ∆(dt − a sin2 θdφ)/ρ2,
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ωr ≡ −
√
Ψdr/

√
∆, ωθ ≡ −

√
Ψdθ, ωφ ≡ −

√
Ψsin θ[adt−

(K + a2)dφ]/ρ2 [6, Eqs.(16),(17)].
In our notation, the static metric (2.1) of Ref. [5],

which was derived in [8], takes the form:

G = F = 1− 2Mr2

(r2 +Q2)3/2
+

Q2r2

(r2 +Q2)2
, H = r2, (8)

which implies K = r2. Among the solutions known for
Ψ, we are interested to the special solution (19) of [6],
which is valid in our case where K = r2 provided we
take q2 = 0:

Ψ = r2 + a2 cos2 θ. (9)

In the case G = F , a general prescription for deter-
mining imperfect fluid rotating (about the z axis) regu-
lar black holes is given in [6, Sect. 3]. Using (8), (9),
and (7) along with ρ2 = r2 + a2 cos2 θ = Ψ in (5), the
regular rotating counterpart black hole of (8) takes the
compact form:

ds2 =
(
1− 2f

ρ2

)
dt2 − ρ2

∆
dr2

+
4af sin2 θ

ρ2
dtdφ− ρ2dθ2 − Σ sin2 θ

ρ2
dφ2 (10)

ρ2 = r2 + a2 cos2 θ, 2f = r2(1− F )

∆ = r2F + a2, Σ = (r2 + a2)2 − a2∆sin2 θ,

which reduces to Kerr metric if Q = 0 where, in this case,
2f = 2Mr, ∆ = r2 − 2Mr + a2, and Σ = (r2 + a2)ρ2 +
2Ma2r sin2 θ.

IV. PHYSICAL PROPERTIES

In this section we discuss the general and special prop-
erties of (10) for rotating regular black holes as well as
for singular ones that can be generated from a static reg-
ular or singular metric. However, we focus mostly on
rotating regular black holes. The first part of this sec-
tion is devoted to a general discussion and the second
one is concerned with the special solution (10) where F
is given by (8).

A. General physical properties

Notice that the only difference between Kerr’s metric
and (10) resides in the values of (f,∆,Σ). Moreover, and
this is an important point in our method, metric (10) is
a fresh formula, that is, it applies to all static (being
regular or not) black holes of the form (1) with G =
F and H = r2, the only task one has to perform is to
evaluate 2f = r2(1 − F ), ∆ = r2F + a2, and Σ = (r2 +
a2)2 − a2∆sin2 θ knowing F . There are no notions of
complexification associated with the different forms of F
while the application of NJA necessitates different ways

of complexification for each different form of F and the
final rotating metric may only be given in EFC’s because
of nonexistence of coordinate transformations bringing it
to BLC’s, as were the cases in [3, 5].
Stress-energy tensor. We keep on doing general-

ities which apply to all rotating regular black holes of
the form (10) (other conclusions apply also to singular
solutions). The components (ǫ, pr, pθ, pφ) of the stress-
energy tensor (SET), T µν, are given by Eqs. (13) and (14)
of [7] taking p2 = 0 (these have been evaluated in [10, 11]
too):

ǫ = −pr =
2(rf ′ − f)

ρ4
, pθ = pφ = −pr −

f ′′

ρ2
, (11)

(here f ′ ≡ df/dr) which, despite their appearance, have
been shown to remain finite, but undefined, on the ring
ρ2 = 0 because of de Sitter-like behavior near r = 0 of the
static regular black hole (F ∼ 1−const r2 and const > 0),
as is the case with all static regular holes (see paragraph
following Eq. (14) of [7] and Case (1) of [6]). The curva-
ture scalar remains finite too and undefined on the ring
(see Case (1) of [6] for a general discussion). Because of
the relation pr = −ǫ, these solutions can also be used
as regular cores to match other rotating external solu-
tions [7]. Note that NJA was first devised to generate
exterior rotating solutions but later was applied to gen-
erate rotating interior metrics which were matched to the
exterior Kerr one [12, 13].
Notice from (11) that, since f does not depend on the

rotation parameter a, ǫ has the same sign as its static
counterpart ǫstat: ǫ = (r4/ρ4)ǫstat. This remark is very
relevant for the determination of the energy conditions
of rotating regular black holes. For the rotating regular
black hole solution (10) with F given by (8), it was re-
ported that its static counterpart black hole satisfies the
weak energy condition [14], that is, ǫstat ≥ 0, we thus
conclude that ǫ ≥ 0. Because of de Sitter-like behavior
near r = 0 of the static regular black hole, this latter con-
clusion is valid for all rotating regular black holes near
r = 0 where rf ′ − f ≃ 3const r4.
It is straightforward to check that the components of

the SET given by (11) approach those of Kerr-Newman
black hole in the limit r → ∞ if F approaches the
Reissner-Nordström limit.
The function f ′′ is zero only for Reissner-Nordström-

like solutions of the form F = 1 + c1/r + c2/r
2. For all

other, regular or singular, solutions f ′′ 6= 0 and, by (11),
pθ = pφ 6= ǫ = −pr, so the fluid is never perfect.
Static limit – Horizons. The mass of the rotat-

ing solution, being regular or not, is that of the static
one. This is obvious from (10) for if F admits a Taylor
expansion of the form F = 1 − 2M/r + · · · at spatial
infinity, then the two metric functions gtt = and 1/grr of
the rotating solution (10) admit the same expansion as
r → ∞.
The static limit, which is the 2-surface on which the

timelike Killing vector tµ = (1, 0, 0, 0) becomes null, cor-
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responds to gtt(rst, θ) = 0 leading to 2f = ρ2 or simply

a2 cos2 θ = −rst
2F (rst). (12)

Observers can remain static only for r > rst(θ). No-
tice that if gtt(r, θ) were the metric “postulated” in [5,
Eq.(2.22)], the corresponding equation gtt(rst, θ) = 0
would not be separable as in (12).
The event horizon r+, which sets a limit for stationary

observers, and the inner apparent one r− are solutions to
grr(r±) = 0 implying ∆(r±) = 0:

r±
2F (r±) + a2 = 0. (13)

It is clear from these last two equations that the static
limit and event horizon intersect only at the two poles
θ = 0 and θ = π where rst = r+, as in Kerr and Kerr-
Newman solutions. The resolution of (13) provides r± as
functions of the charges, (M,Q, · · · ), on which F depends
and a2 only, contrary to the metric of [5, Eq.(2.22)] where
r± are functions of θ too.
It is well known that, if Q2 < M2, a Kerr-Newman

solution may have the properties of a rotating black
hole; this happens if 0 < a2 ≤ M2 − Q2, otherwise
(a2 > M2 − Q2) the solution is a naked singularity. In
the case where Q2 ≥ M2, a Kerr-Newman solution is al-
ways a naked singularity for all a2 > 0. As we shall see
in the next section, even in the case where Q2 < M2, it
is possible to have no rotating regular black holes for
all a2 but only regular non-black-hole solutions given
by (10), as is the case shown in Fig. 1 (a) which is a
plot of the extremality condition in the (a2/Q2,M2/Q2)
plane. Similar conclusion was made in [14]. If the func-
tion F(r) ≡ r2F (= ∆ − a2), which is zero at r = 0 for
a static regular black hole (resp. constant for a singular
black hole) and F → ∞ as r → ∞, has some negative
minimum value Fmin on the range of r, then there is
always a black hole solution if

0 < a2 ≤ |Fmin| (14)

and a non-black-hole solution (resp. a naked singularity)
for

a2 > |Fmin|. (15)

The extremality condition is

a2 = |Fmin| (16)

which provides a relation between the charges (M,Q, · · · )
and a2.
Causality issues. It is also well known that causal-

ity violations occur in Kerr and Kerr-Newman black
holes, as depicted in Fig. 2 (a). Causality violations and
closed timelike curves (CTCs) are possible if, in (10),
gφφ = −Σ sin2 θ/ρ2 > 0. Since sin2 θ/ρ2 is not neg-
ative, for simplicity we investigate the sign of Σ =
(r2 + a2)2 − a2(r2F + a2) sin2 θ. Fig. 2 (a) is a plot of
r versus sin θ where, for a given θ, r is a solution to

Σ(sin θ, r) = 0 and Fig. 2 (b) is a plot of r2 versus sin θ
where r2 is a solution to Σ(sin θ, r2) = 0. Causality vio-
lations occur on the right of each plot in Fig. 2 (a) where
the dashed curve corresponds to Kerr black hole and the
continuous one corresponds to Kerr-Newman black hole
for which CTCs exist even for r > 0 [in contrast with
the Kerr hole where CTCs are possible for r < 0 only, as
depicted in Fig. 2 (a)]. In Fig. 2 (a), the plot of Σ = 0
for the rotating regular hole (10) where F is given by (8)
is the point sin θ = 1 and r = 0. Since for sin θ = 0,
Σ > 0, this implies that Σ ≥ 0 at least for the values
of the parameters we have chosen M2 = 16, Q2 = 1,
and a2 = 1 corresponding, according to Fig. 1 (a), to
the black hole region for the rotating regular black hole
solution (10) with F given by (8). This shows that there
are no causality violations for this black hole since the
sign of gφφ can’t go positive, that is, the Killing vector
φµ = (0, 0, 0, 1), of norm gφφ, can’t become timelike.
Let us see under which general conditions the above

conclusion remains valid. Notice that causality violations
are not expected in the region r > r+ nor in in the region
between the horizons since there ∆ < 0 yielding Σ > 0
and gφφ < 0. Let r < r−. The condition Σ > 0 yields

(r2+a2)2 > a2(r2F +a2) sin2 θ. Since ∆ = r2F +a2 > 0
for r < r−, if we can show that

(r2 + a2)2 > a2(r2F + a2), (17)

this results in Σ > 0. Simplifying (17), we bring it to

r2 − a2F (r) + 2a2 > 0. (18)

The condition (18) is satisfied at r = 0 and r = r− where
its l.h.s is a2 and r−

2+(a4/r−
2)+2a2, respectively. Here

we have used F (0) = 1 and ∆(r−) = r−
2F (r−)+ a2 = 0.

Thus, if r = ǫa or r = r− − η where ǫ is a small positive
or negative number2 and η is a small positive number,
there are no causality violations for all rotating regular
black holes.
It might be true that the condition (18) holds for all

r < r− including negative values down to −r−. The
derivative of the l.h.s of (18) is

2r − a2F ′ (19)

which vanishes at r = 0. Because of the Sitter behavior,
the function F approaches 1 from below resulting in F ′ <
0 near the origin. If F ′ < 0 holds for all 0 < r < r−,
then 2r − a2F ′ > 0 and the l.h.s of (18) increases from
a2 to r−

2+(a4/r−
2)+ 2a2, hence no causality violations

occur for 0 < r < r−. Even if F ′ < 0 fails to be true for
all 0 < r < r−, the condition (18) may still hold unless
F oscillates rapidly in the region 0 < r < r−, in which
case this would lead to a nonphysical solution.

2 This same result could be achieved setting r = ǫa and θ = (π/2)+
δ, where δ is a small positive or negative number, yielding Σ ≃
a4(ǫ2 + δ2).
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Angular velocities. The angular velocity Ω of the
rotating hole (10) is3 Ω ≡ −gtφ/gφφ = 2af/Σ: This is
the angular velocity, attributable to dragging effects, of
freely falling particles initially at rest at spatial infinity
as they reach the point (r, θ). As r → ∞, Ω → 2Jr−3

where J = Ma is the angular momentum of the rotating
hole. The angular velocity of the horizon ΩH is taken as
Ω(r+). Using Σ(r+) = (r+

2 + a2)2 along with (13), we
obtain

ΩH =
2af(r+)

Σ(r+)
=

ar+
2[1− F (r+)]

(r+2 + a2)2
=

a

r+2 + a2
. (20)

The four-velocity of the fluid elements is eµt = (r2 +

a2, 0, 0, a)/
√
ρ2∆ [6, 7]. This can be written as eµt =

N(tµ + ωφµ), in terms of the timelike tµ = (1, 0, 0, 0)
and spacelike φµ = (0, 0, 0, 1) Killing vectors, with N =

(r2+a2)/
√
ρ2∆ and ω = a/(r2+a2) is the differentiable

angular velocity of the fluid. Since the norm of the vec-
tor tµ + ωφµ, 1/N2, is positive only for ∆ > 0, which
corresponds to the region r > r+, the fluid elements fol-
low timelike world lines only for r > r+. As r → r+,
ω approaches the limit a/(r+

2 + a2) that is the largest
angular velocity of the fluid elements and this equals the
angular velocity of the event horizon (20). So the fluid
elements are dragged with the angular velocity ΩH as all
falling objects. At the event horizon, tµ + ωφµ becomes
null and tangent to the horizon’s null generators.
parametric plot of 1/(2s)2 vs. u2 and that of Fig. 1

(b) is a parametric plot of t− 1 vs. u2

B. Special properties

We specialize to the case where F is given by (8).
Eq. (13) takes to form where we drop the subscripts ±:

r2 − 2Mr4

(r2 +Q2)3/2
+

Q2r4

(r2 +Q2)2
+ a2 = 0. (21)

As we noticed earlier, the locations of the horizons are
functions of (M,Q, a) only, contrary to the solution of [5,
Eq.(2.22)] where these locations are functions of θ too.
Unfortunately, one cannot solve (21) for r in terms of
(M,Q, a). For Q2/M2 ≪ 1, we obtain

r± ≃ rK ± + c±Q
2 (22)

c± =
4M ±

√
M2 − a2

2[a2 −M(M ±
√
M2 − a2)]

, c+ < 0, c− > 0

where rK± = M±
√
M2 − a2 are the horizons of the Kerr

black hole. If rKN± denote the corresponding horizons
of the Kerr-Newman hole

rKN± = M±
√
M2 − a2 −Q2 ≃ rK±∓

Q2

2
√
M2 − a2

, (23)

3 In [6], Ω was unintentionally misprinted as gθφ = Ωgθθ sin
2 θ.

This is obviously a mistake since gθφ ≡ 0.

4 8 12
a2�Q21

2.49

8

15

M2�Q2 HaL

4 8 12
a2�Q2

2.51

7.5

12.5

17.5

rext
2�Q2 HbL

FIG. 1: (a): Using different horizontal and vertical scales, we
show in the (a2,M2) plane the extremality condition. Continu-
ous plot: Rotating regular black hole (10) with F given by (8).
The black hole region is above this curved line. The curve itself
represents an extremal black hole and the region beneath it rep-
resents regular non-black-hole solutions. Dashed plot: Rotating
Kerr-Newman black hole. The Kerr-Newman black hole region is
above this straight line of equation M2/Q2 = a2/Q2 + 1. Notice
that the region between the two plots corresponds to Q2 < M2

which is within the black hole region for the Kerr-Newman solu-
tion but within the non-black-hole region (∀ a2 ≥ 0) for the rotating
regular black hole (10). This is a parametric plot of 1/(2s)2 vs. u2

(see Appendix). (b): The common radius rext2 of the merging
horizons vs. a2. For a2 = 0, we have rext2/Q2 ≃ 2.51155 yielding
rext/|Q| ≃ 1.58 as found in [8]. This is a parametric plot of t − 1
vs. u2 (see Appendix).

we obtain the order relations:

rK− < rKN− < r− < r+ < rKN+ < rK+. (24)

As far as the approximation Q2/M2 ≪ 1 is valid, but
this likely extends to all values of Q2 within the limits
of nonextremality, the horizons are ever closer than they
are in Kerr or Kerr-Newman solutions.
The extremality condition and the common radius rext

of the merging horizons are solutions to (21) along with
∂∆/∂r = 0:

1− M(r2 + 4Q2)r2

(r2 +Q2)5/2
+

2Q4r2

(r2 +Q2)3
= 0. (25)

For Q2/M2 ≪ 1, this leads to

M2 ≃ a2 + 4Q2, rext ≃ M +
3Q2

2M
. (26)
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FIG. 2: For all the plots we took M2 = 16, Q2 = 1, and a2 = 1
corresponding, according to Fig. 1 (a), to the black hole region
for Kerr, Kerr-Newman, and the rotating regular black hole solu-
tion (10) with F given by (8). (a): Implicit plot of Σ(sin θ, r) = 0,
where Σ = (r2 + a2)2 − a2∆sin2 θ and ∆ = r2F + a2, for Kerr
black hole (dashed plot: F = 1− 2M/r), Kerr-Newman black hole
(continuous plot: F = 1−2M/r+Q2/r2), and the rotating regular
black hole solution (10) with F given by (8) (the point sin θ = 1
and r = 0). Causality violations and CTCs occur on the right of
each curve where gφφ > 0. The Kerr black hole has CTCs for r < 0
only while the Kerr-Newman one has CTCs for both signs of r. For
the rotating regular black hole solution (10) with F given by (8)
no causality violations or CTCs occur since gφφ < 0 [except at the
point (sin θ = 1 and r = 0) where Σ = 0 and gφφ is undefined]. (b):
Implicit plot of Σ(sin θ, r2) = 0 for the rotating regular black hole
solution (10) with F given by (8). The plot confirms that solutions
to Σ(sin θ, r2) = 0 for sin θ 6= 1 are such that r2 < 0.

The same values for an extremal Kerr-Newman black hole
are M2 = a2 + Q2, rKN ext = M . The radius of the
extremal rotating regular black hole is 3Q2/(2M) larger
than its Kerr-Newman counterpart.
For the same value of M2 − a2, ones sees that a Kerr-

Newman black hole may cumulate three more levels of the

electric charge (M2 − a2)/4 than a rotating regular one
can do before the former becomes an extremal solution.

The latter conclusion extends to cases where the as-
sumption Q2/M2 ≪ 1 is not valid, as Fig. 1 (a) depicts.
A consequence of that is to have no rotating and no static
regular black holes for Q2 < M2 but only regular non-
black-hole solutions for all values of a2 ≥ 0, as shown in
Fig. 1 (a). It is clear from that figure that a horizontal
line M2 = C where Q2 = 1 < 2.49 < C intersects the
extremality condition curve, of the rotating regular black
hole (10) with F given by (8), at some critical value ac

2

above which the rotating solution is no longer a black
hole. As C gets closer to 2.49, ac

2 approaches zero, if
rotation increases a bit (a2 ↑) regular non-black-hole so-
lutions become more favored than rotating black holes
by nonlinear electrodynamics.

V. CONCLUSION

We have shown that metric (2.22) of Ref. [5] does not
result from application of NJA and that there is no rem-
edy to help overcome the situation but to postulate it
independently of NJA. We have provided a method for
generating, regular or singular, rotating black hole and
non-black-hole solutions that is based partly on NJA but
it avoids the complexification issues and employs physical
arguments.

We have noticed that our rotating metric is much easier
to handle than the one suggested in Ref. [5], we could pro-
vide simple treatments pertaining to the locations of the
horizons and to the causality violations. It is easy to in-
vestigate analytically these issues using the metric (2.22)
of Ref. [5].

We have concluded here and in [6, 7] that the rotating
black hole and non-black-hole solutions (10) are regular
on the ring ρ2 = 0 but physical entities are undefined
there.

Another interesting conclusion, confirmed in [14], is
that the rotating regular black holes have much smaller
electric charges and turn into regular non-black-hole so-
lutions, for yet small charges, well before their Kerr-
Newman counterparts become naked singularities. This
remark extends most likely to all known regular black
holes. The nonlinear electromagnetic field, due to the
incursion of nonlinear electrodynamics in general relativ-
ity, are strong enough to help “vanishing” the horizons,
for still small charges, well before their Kerr-Newman
counterparts can do.

We have reached the conclusion that causality viola-
tions do not occur in the region 0 ≤ r < r− including
small negative values of r for all rotating regular black
holes. By symmetry of the static regular black holes, this
conclusion extends down to −r−.

The still remaining open issues are the determination
of the electromagnetic potential and energetics of, as well
as geodesic motion in, a rotating regular black hole.
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Appendix: Extremality condition

We intend to find the extremality condition by solving
both Eqs. (21) and (25). Let

u2 ≡ a2/Q2, 2s ≡ |Q|/M, (A.1)

x2 ≡ rext
2/Q2, t = z2 ≡ x2 + 1 > 1, (A.2)

the notations with x and s have been used in [8].
Eqs. (21) and (25), respectively

z3

z2 − 1
− 1

s
+

1

z
+

u2z3

(z2 − 1)2
= 0, (A.3)

1− 1

2s

(z2 + 3)(z2 − 1)

z5
+

2(z2 − 1)

z6
= 0. (A.4)

Solving (A.4) for s and using the result in (A.3) we arrive
at

s =
z(−3 + 2z2 + z4)

2(−2 + 2z2 + z6)
, (A.5)

1− 3t− 3(u2 − 2)t2 − (5 + u2)t3 + t4 = 0. (A.6)

Eq. (A.6) admits one and only one real root greater than
1 for all u2 ≥ 0: This is the root

t =
5 + u2

4
+

√
W

2
+

1

2

[
Z +

29 + 111u2 + 27u4 + u6

4
√
W

]1/2
,

(A.7)

where

U =
√
428 + 828u2 + 963u4 + 16740u6 − 1620u8 − 108u10,

V = (36 + 27u2 + 144u4 − 18u6 +
√
3U)1/3,

W = 2− u2 + 3(u2 − 2) +
1

4
(5 + u2)2 +

V

181/3

+

(
2

3

)1/3
(1− 15u2 + 3u4)

V
, (A.8)

Z = u2 − 2 + 3(u2 − 2) +
1

2
(5 + u2)2 − V

181/3

−
(
2

3

)1/3
(1− 15u2 + 3u4)

V
.

With the expression of t given by (A.7) and (A.8),
the extremality condition reads substituting [M2/Q2 =
1/(2s)2] in (A.5):

M2

Q2
=

1

t

( t3 + 2t− 2

t2 + 2t− 3

)2

. (A.9)

The plot of Fig. 1 (a) is a parametric plot of 1/(2s)2 vs.
u2 and that of Fig. 1 (b) is a parametric plot of t− 1 vs.
u2.
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