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Suppressing Hawking radiation by quantum Zeno effect
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We present evidence that quantum Zeno effect, otherwise working only for microscopic systems,
may also work for large black holes (BH’s). The expectation that a BH geometry should behave
classically at time intervals larger than the Planck time tPl indicates that the quantum process of
measurement of classical degrees of freedom takes time of the order of tPl. Since BH has only a few
classical degrees of freedom, such a fast measurement makes a macroscopic BH strongly susceptible
to the quantum Zeno effect, which repeatedly collapses the quantum state to the initial one, the
state before the creation of Hawking quanta. By this mechanism, Hawking radiation from a BH of
mass M is strongly suppressed by a factor of the order of mPl/M .

PACS numbers: 04.70.Dy, 03.65.Ta

Introduction.—Fast-repeated measurements of a quan-
tum unstable system may prevent its decay and thus sta-
bilize it, by the mechanism known as quantum Zeno effect
[1–4]. As for most other quantum phenomena, it is typi-
cal for quantum Zeno effect that it works for microscopic
systems, not for the macroscopic ones.
In this paper, however, we present evidence that black

hole (BH) may be an exception. BH geometry of a large
black hole obeys classical laws, while classicality is a con-
sequence of fast measurement of classical properties, due
to which a quantum superposition collapses to a state in
which classical observables have definite values. Quan-
tum mechanically, black hole is unstable owing to the
Hawking radiation [5]. We find that the quantum Zeno
effect induced by fast measurement of classical BH ob-
servables strongly suppresses creation of Hawking radia-
tion, with suppression being stronger when the black hole
is bigger.
Of course, staring at a macroscopic piece of material

containing 1023 atoms in unstable excited states will not
stop the decay of atoms. Essentially, this is because dif-
ferent atoms decay independently, and in practice one
cannot monitor 1023 independent degrees of freedom. In
the laboratory, quantum Zeno effect works if the observa-
tion is applied to a single atom, or at best to a relatively
small number of them.
But how then the quantum Zeno effect may work for

the macroscopic black hole, having a large number of
degrees of freedom? Indeed, the number of degrees of
freedom may be counted by the BH entropy

S ∼ A/l2Pl ∼ R2/l2Pl ∼ M2/m2
Pl, (1)

where A is the BH surface, R is the BH radius, M ∼
Rm2

Pl is the BH mass, lPl is the Planck length, mPl =
1/lPl is the Planck mass, and we use units in which
Planck constant, velocity of light, and Boltzmann con-
stant are set to unity: h̄ = c = kB = 1. The entropy (1)
is very large for macroscopic black holes with M ≫ mPl,
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so at first sight it may seem that quantum Zeno effect
cannot work for macroscopic black holes.
However, most of these degrees of freedom are irrele-

vant for Hawking radiation. Instead, Hawking radiation
depends only on a few classical degrees of freedom [5];
mass, charge, and angular momentum of the black hole
as a whole. In this sense Hawking radiation is not like a
radiation from a box containing many independent atoms
in excited states. Instead, it is more like a radiation from
a single atom. But at the same time, a typical black hole
is much bigger than an ordinary atom, so it may inter-
act with a much larger number of environment degrees of
freedom. The interaction with a larger number of envi-
ronment degrees implies a faster process of decoherence
and hence a faster process of measurement [2, 6], which
strongly suggests that the measurement of the relevant
BH degrees of freedom is much faster than for ordinary
atoms. In this way, the remarkable BH property of being
both macroscopic (by size and mass) and microscopic (by
the small number of classical degrees of freedom) makes
black holes extremely susceptible to the quantum Zeno
effect.
In the rest of the paper we put these qualitative ar-

guments into a more quantitative form. In the absence
of a complete quantum theory of gravity, however, a
lot of quantitative arguments will rely on the order-of-
magnitude estimates.
Quantum Zeno effect.—Let us first outline how the

quantum Zeno effect works for ordinary quantum sys-
tems [1–4]. Initially, let the system be in an unstable
state |Ψ0〉, and let P0(t) denote the survival probability
of remaining in the initial state. For a sufficiently long
time t, the survival probability P0(t) obeys the exponen-
tial law P0(t) = Pγ(t), where

Pγ(t) ≡ e−γt. (2)

This exponential law is valid when there are no mea-
surements before t, but how can measurements change
it? For simplicity, suppose that during the time t there
was N instantaneous measurements occurring at times
nt/N , n = 1, . . . , N , with equal periods t/N of free
evolution between the measurements. If the time t/N
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is sufficiently long so that the exponential law (2) is
still valid, then the survival probability after time t is
P0(t) = [Pγ(t/N)]N = e−γt, which does not differ from
(2).
But what if t/N is so small that the exponential law

is not valid? The expansion of (2) for small t leads to a
linear law

Pγ(t) ≃ 1− γt, (3)

so with N measurements the survival probability is

P0(t) = (1 − γt/N)N
N→∞
−→ e−γt, (4)

naively suggesting that the exponential law is valid even
for very large N , corresponding to the very small t/N .
However, the linear law (3) for very short times is ac-

tually wrong. (The short-time expansion of a function
valid for long times does not need to lead to a correct
result for short times.) To find the correct law, one must
start from first principles. If H is the relevant Hamilto-
nian, including the interaction which makes the system
in the initial state |Ψ0〉 unstable, then the state at time
t has the form

|Ψ(t)〉 = e−iHt|Ψ0〉 = c0(t)|Ψ0〉+
∑

k 6=0

ck(t)|Ψk〉, (5)

where ck(t) = 〈Ψk|Ψ(t)〉 = 〈Ψk|e
−iHt|Ψ0〉, and each |Ψk〉

for k 6= 0 is a possible decayed state. Thus the short-time
expansion gives

c0(t) = 〈Ψ0|e
−iHt|Ψ0〉

≃ 1− it〈Ψ0|H |Ψ0〉 −
t2

2
〈Ψ0|H

2|Ψ0〉, (6)

so

P0(t) = c∗0(t)c0(t) ≃ 1− t2(∆H)2, (7)

where

(∆H)2 = 〈Ψ0|H
2|Ψ0〉 − 〈Ψ0|H |Ψ0〉

2. (8)

The uncertainty of energy ∆H is non-zero whenever |Ψ0〉
is unstable, for if the uncertainty were zero, then |Ψ0〉
would be an eigenstate of the Hamiltonian H and hence
would be stable.
Unlike (3), (7) is quadratic in time! Hence, if now we

introduce measurements, the survival probability is not
given by (4), but by

P0(t) = [1− (∆H)2(t/N)2]N ≃ 1−N(∆H)2(t/N)2. (9)

We see that limN→∞ P0(t) = 1, so in this limit the ini-
tial state |Ψ0〉 survives with certainty. In other words, a
continuous measurement prevents the decay of the sys-
tem, which otherwise would decay if the measurement
was absent. This is the quantum Zeno effect.
Of course, a realistic measurement cannot be perfectly

continuous because each measurement lasts a finite time

tmeas, given by the time needed for the process of deco-
herence [2, 6]. So in practice, the quantum Zeno effect is
efficient when tmeas is much shorter than the Zeno time

tZeno = 1/∆H. (10)

Let us recapitulate the main assumptions that were
used to get an efficient quantum Zeno effect. First, the
number of degrees of freedom relevant for the quantum
decay must be small. (Otherwise, it is hard to measure
them.) Second, the short-time evolution of the system in
the absence of measurement is a unitary evolution gov-
erned by a time-independent Hamiltonian. Third, the
measurement must be sufficiently fast, so that

tmeas ≪ tZeno. (11)

In the following we shall explain how all three assump-
tions get satisfied for black holes.
Number of relevant degrees of freedom.—Owing to the

classical BH no-hair theorems [7, 8], an arbitrary initial
black hole soon settles down to a stationary black hole
characterized by only a few degrees of freedom: mass,
charge, and angular momentum. (All other classical
degrees of freedom are radiated away by gravitational
waves.) Hawking radiation, derived from the assump-
tion of a stationary classical BH background [5], depends
only on these three quantities. Thus, these three classical
degrees of freedom are the only BH degrees of freedom
which are relevant for Hawking radiation.
The fact that the black hole contains only a few rele-

vant degrees of freedom can also be confirmed by a semi-
classical thermodynamic argument. For that purpose, let
us temporarily ignore the quantum Zeno effect. Then, far
from the horizon, the Hawking radiation makes the black
hole look like a black body of volume V = 4πR3/3 having
the Hawking temperature [5]

TH =
m2

Pl

8πM
. (12)

To give an effective description of this radiation, one may
ignore gravity and model black hole as a box of volume V
filled with nothing but free Hawking particles at temper-
ature T = TH. The corresponding effective BH entropy
is given by standard non-gravitational statistical physics
[9]

Seff =
∂(T lnZ)

∂T
, (13)

where (for a single particle species)

lnZ = V g

∫

d3p

(2π)3
1

1− e−ω/T
, (14)

ω =
√

p2 +m2, and g ∼ 1 is a spin factor. Hawking
radiation consists mainly of massless particles, so we can
take m = 0. Therefore the integral in (14) is of the order
of T 3, so (13) with T = TH gives

Seff ∼ V T 3 ∼ R3T 3
H ∼ (M/m2

Pl)
3(m2

Pl/M)3 = 1. (15)
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The fact that this effective entropy is of the order of unity
confirms that only a few degrees of freedom are relevant
for Hawking radiation.
Note that (15) is much smaller than (1), which can be

easily understood from the BH thermodynamic relation
dS = dM/T and the fact that the BH mass M can not

be modeled by a box containing nothing but free Hawk-
ing particles at temperature TH. Nevertheless, such an
effective model is appropriate for a description of ther-
mal black-body radiation. As known from standard non-
gravitational statistical physics, two black bodies with
the same T and V radiate equally, even if they have very
different masses or thermal energies.
Unitarity and measurement.—Hawking radiation is in

a possible conflict with unitarity for very long times, dur-
ing which the black hole suffers a significant decrease of
mass [10–14]. But for shorter times, the description based
on Bogoliubov transformation is fully unitary [15], owing
to the entanglement between outside an inside Hawking
particles. In addition, all treatments of Hawking radia-
tion take for granted that backreaction provides energy
conservation. This short-time unitarity and energy con-
servation imply that the short-time evolution can be de-
scribed by (5) with an effective time-independent Hamil-
tonian H = Heff . Similarly to the effective entropy (15),
the effective Hamiltonian does not describe all degrees of
freedom, but only those which are relevant for Hawking
radiation. The states |Ψk〉 in (5) can be chosen to be the
free-Hamiltonian eigenstates [16]

|Ψk〉 = |M − Ek> |Ek〉, (16)

where |Ek〉 is a state of Hawking radiation with energy
Ek, M is the initial BH mass, and |M − Ek > is a BH
state with mass M −Ek. Likewise, |Ψ0〉 = |M> |0〉. For
relatively long times (but still short enough so that the
BH temperature has not changed much), ck ∝ e−Ek/2TH

[16].
The state (5) with (16) involves a superposition of BH

states with different values of masses. But a classical BH
state has a definite mass. Since macroscopic BH geome-
try behaves classically, this means that (5) “collapses” to
one of the states with a definite mass. The “collapse” is
caused by measurement, which can be viewed as entan-
glement with the environment degrees of freedom which
perform the measurement [2, 6]. This means that (16)
modifies to

|Ψk〉 = |M − Ek> |EM−Ek
> |Ek〉, (17)

where |EM ′ > is a state of environment corresponding to
a situation in which the BH mass is measured to have
the value M ′. In particular, |EM ′ > contains information
about classical geometry surrounding the black hole. A
more complete description of measurement involves also a
measurement of BH charge Q and angular momentum J ,
leading to the environment states of the form |EM ′Q′J′ >.
The small-energy resolution problem.—For the quan-

tum Zeno effect to work, the measurement of BH mass

must be able to distinguish different BH masses. This
means that the state |EM−Ek

> must be sufficiently dif-
ferent from the state |EM >. But typical Ek is of the
order of TH, which is a very small energy. Far from the
horizon, such small differences of the BH mass cannot be
resolved.
Nevertheless, they can be resolved near the horizon.

This is because a Hawking particle, having a small red-
shifted energy Ek ∼ TH far from the horizon, has a large
trans-planckian energy close to the horizon. Hence, as-
suming that measurement makes geometry classical even
close to the horizon, different states in (5) can be resolved
despite the fact that the temperature measured far from
the horizon is very small.
We have argued that radiation from a black hole is sim-

ilar to radiation from a single atom. However, there is
one important difference between atoms and black holes,
that works against efficiency of the quantum Zeno effect
for black holes. Unlike radiation from an atom, Hawking
radiation from a macroscopic black hole has a continuous
energy spectrum. In particular, the energy of the Hawk-
ing particle can be arbitrarily small. Even close to the
horizon, the Hawking particle may be created with an
arbitrarily small energy. Such arbitrarily small energies
cannot be resolved by the measurement, implying that
quantum Zeno effect cannot stop creation of Hawking
particles with such small energies near the horizon. This
certainly decreases the efficiency of the quantum Zeno
effect.
Nevertheless, this does not change the fact that the

quantum Zeno effect suppresses Hawking radiation sig-
nificantly. Namely, Hawking particle created with such a
small energy near the horizon will have an even smaller
energy far from it. In this way, particles for which the
quantum Zeno effect will not work will escape with en-
ergies Ek ≪ TH. As a consequence, even though there
will be some radiation from the black hole, the intensity
of radiation will be much smaller than predicted by the
standard Hawking analysis.
Typical time scales.—What is the typical time scale

tmeas needed to perform a measurement of classical BH
observables such as mass? To answer that question, in
principle one would need a complete theory of quantum
gravity. But even in the absence of such a theory, it
is not difficult to estimate the order of magnitude. It
is widely expected that quantum theory of gravity can
be approximated by the classical theory for times longer
than the Planck time tPl = 1/mPl. On the other hand,
we have seen that classicality of gravity is a consequence
of measurement of the classical gravitational observables.
Hence

tmeas ∼ tPl. (18)

This indeed is a very short time, which is needed for the
quantum Zeno effect to work.
More precisely, the quantum Zeno effect needs the con-

dition (11). Thus we need to show that tPl is much
shorter than 1/∆H in (10), so we need to determine the
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value of ∆H . Since H = Heff is the effective Hamilto-
nian describing only those degrees of freedom which are
relevant for Hawking radiation, ∆H can be estimated by
an analysis similar to the one which we used to obtain
(13)-(15). By viewing black hole as a box filled with
free particles at temperature T , the uncertainty ∆H can
be identified with the uncertainty of energy due to the
thermal fluctuations inside the volume V . The thermal
average of the n’th power of thermal energy is [9]

〈En〉 = V g

∫

d3p

(2π)3
ωn

eω/T − 1
. (19)

The integral in (19) for massless particles is of the order
of T 3+n, so

〈En〉 ∼ V T 3+n ∼ R3T 3+n
H

∼ (M/m2
Pl)

3(m2
Pl/M)3+n = (m2

Pl/M)n. (20)

Hence 〈E2〉 ∼ 〈E〉2 ∼ (m2
Pl
/M)2, so

(∆E)2 = 〈E2〉 − 〈E〉2 ∼ (m2
Pl/M)2. (21)

Therefore (10) is estimated to be

tZeno ∼
1

∆E
∼

1

mPl

M

mPl

= tPl

M

mPl

, (22)

which is much larger than (18). This shows that the
condition (11) is fulfilled.
For a comparison, we also need to know the time scale

tγ = 1/γ (23)

in (2). Since this time is relevant when the quantum
Zeno effect is not present, we determine it by considering
Hawking radiation in the absence of quantum Zeno effect.
For long times, Hawking radiation can be described as a
continuous process, during which the black hole looses
mass at the rate [14, 17]

dM

dt
∼ −

m4
Pl

M2
. (24)

But at shorter times the radiation is better viewed as a
series of discrete quantum jumps, where black hole looses
mass of the order ∆M ∼ −TH in a typical jump. Hence
we write (24) in a discretized form

∆t ∼ −∆M
M2

m4
Pl

∼ TH

M2

m4
Pl

, (25)

which is the typical time needed for one jump to occur.
When a jump occurs then the system ceases to be in the
initial state, so from (2) and (23) we see that tγ ∼ ∆t.
Therefore

tγ ∼ TH

M2

m4
Pl

∼
m2

Pl

M

M2

m4
Pl

= tPl

M

mPl

, (26)

which is the same order of magnitude as (22).

Suppression of Hawking radiation.—Now we can finally
estimate how much the Hawking radiation is suppressed
by the quantum Zeno effect. The probability that decay
will happen during the time t is

p(t) = 1− P0(t). (27)

In the absence of quantum Zeno effect this is determined
by the value of γ in (2), so (27) for short times is equal
to

pγ(t) ≃ γt =
t

tγ
∼

mPl

M

t

tPl

. (28)

On the other hand, when the quantum Zeno effect is
present then P0(t) is given by (9), so in this case (27) is
equal to

pZeno(t) ≃ (∆H)2t2/N. (29)

The number of measurements at time t is

N =
t

tmeas

∼
t

tPl

, (30)

while ∆H ∼ ∆E is given by (21). Therefore (29) is

pZeno(t) ∼
(mPl

M

)2 t

tPl

. (31)

The strength of the suppression by the quantum Zeno
effect is given by the ratio between the decay probability
(31) with the Zeno effect and the decay probability (28)
without the Zeno effect. The results above show that this
ratio is

Γ ≡
pZeno(t)

pγ(t)
∼

mPl

M
. (32)

This is a very small number for a macroscopic black hole
withM ≫ mPl, showing that the suppression of radiation
by the quantum Zeno effect is very strong. Moreover, the
suppression is stronger when M is larger, i.e., when the
black hole is bigger. In contrast with the usual expecta-
tions about quantum phenomena, the more macroscopic

black hole is, the more efficient quantum Zeno effect be-
comes.

We have also seen that quantum Zeno effect is not effi-
cient for particles which escape with sufficiently small
energy Ek ≪ TH. This means that Γ is not a con-
stant, but a function Γ(Ek) with the properties Γ(0) = 1,
Γ(Ek) ∼ mPl/M for Ek

>
∼ TH.

The result Γ(Ek) 6= 1 means that radiation from the
black hole is not a black-body radiation at temperature
TH. Instead, Γ(Ek) can be viewed as a grey-body factor,
which modifies BH radiation in a way similar to the grey-
body factors coming from other physical mechanisms (see
e.g. [5, 14, 17]).
Conclusion.—Typically, quantum Zeno effect is a mi-

croscopic effect, working when a small number of rel-
evant degrees of freedom of an unstable system is fre-
quently measured, due to which the decay of the unstable
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system is suppressed. We have presented evidence that
black hole, being a macroscopic system with only a few
degrees of freedom relevant for Hawking radiation, is a
macroscopic system for which the quantum Zeno effect
is very strong. The measurement of classical observables
of a macroscopic black hole at the time scale of the or-

der of Planck time drives the quantum Zeno effect, which
strongly suppresses creation of Hawking radiation.
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