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Abstract

We present a comparison of the calculation of BTZ black hole entropy
in loop quantum gravity and in spin foam models. We see that both give
the same answer.

1 Introduction

In [1] a calculation of the BTZ black hole entropy from loop quantum gravity
was obtained. The calculation follows similar steps to the calculation of the
usual 4-dimensional case. The same calculation was done in [2] using spin foam
models. The calculation is done by defining an expectation value using spin
foam partition functions with observables.

Here we describe and compare both calculations see that both give the same
answer.

We focus on the Euclidean version of the black hole. A three dimensional
solution of Einstein’s equations was introduced for the first time in [3]. Now
it is known as the BTZ black hole. The three dimensional Euclidean solution
to empty Einstein equations of general relativity with negative cosmological
constant is given by the metric

ds2 =

(
r2

ℓ2
−M

)
dτ 2 +

(
r2

ℓ2
−M

)
−1

dr2 + r2dφ2 (1)
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In [4], it is shown that by a change of coordinates, the solution can be written
in the form

ds2 =
ℓ

z2
(dx2 + dy2 + dz2) (2)

for z > 0. Immediately it can be recognised as the metric of the hyperbolic
space H3. Then after some isometric identifications the BTZ solution is in fact
given by a fundamental region of the hyperbolic space. This region is a solid
torus where the core of the torus is the black hole horizon R = ℓ

√
M , and the

rest of the torus is the outside of the black hole R > ℓ
√
M .

According to Bekenstein-Hawking formula the leading term of the entropy
of a black hole in three dimensions is given by

S ∼ L

4
(3)

where L is the black hole horizon length. The entropy is believed to be related
to the logarithm of the number of microstates.

2 The BTZ black hole entropy

In [1] the calculation of the entropy for the BTZ black hole is done in a similar
way to the four dimensional case. The isolated three dimensional black hole
horizon was introduced in [5]. The black hole horizon surface is thought as a
circular boundary on a spacelike surface. It is also asummed that n spin network
graph edges puncture the horizon(see Figure 1).

j1

j2

j3

jn

Figure 1: Spin network graph edges puncturing the horizon
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The corresponding edges are labelled with irreducible representations of
SU(2). If j1, j2, ..., jn are the edge labels which cross the horizon. The length
spectrum of three dimensional gravity was studied in [6]. The length of the
horizon according to [1] is given by

L = 8πℓP l

n∑

i=1

√
ji(ji + 1) (4)

The number of states which give rise to the entropy is shown to be given by the
dimension of the invariant tensor in the decomposition of the tensor product
of irreducible representations of the quantum group version of SU(2). This
number is shown to be given approximately by

N =
2

k

k∑

d=1

sin2

(
π

k
d

) n∏

i=1

sin(π
k
d(2ji + 1))

sin(π
k
d)

(5)

After a kind of Wick rotation (which corresponds to making k = iλ) in order
to have a negative cosmological constant, N is shown to be dominated by

N =
2

λ
sinh2(π)

n∏

i=1

sinh(π(2ji + 1))

sinh(π)
(6)

the entropy is given by the logarithm of the number of microstates. The authors
from [1] claim that

S = log(N) ∼ L

4ℓP l

(7)

We now explain the entropy from the point of view of spin foam models, in-
troduced in [2] and show that after a similar Wick rotation both calculations
coincide.

The Euclidean BTZ black hole is topologically a solid torus. Consider a
triangulation of the solid torus which contain interior edges, that is, the horizon
is formed by edges (Figure 2).

Figure 2: Triangulated BTZ Euclidean black hole
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Let Z(T 2,O) be the Turaev-Viro [7] partition function of the triangulated
solid torus with the only difference that in the partition function we leave the
labels at the horizon fixed. Z(T 2,O) is therefore a function of these labels.1

We now think of the horizon as an observable and consider the expectation
value of this observable defined by

W (T 2,O) =
Z(T 2,O)

Z(T 2)
(8)

where Z(T 2) is the usual Turaev-Viro partition function of the solid torus.
The calculation of W (T 2,O) was carried out in [2] and is computed by

thinking of the blocks which form the triangulated horizon. Consider a par-
ticular triangulation which locally looks like in Figure 3 and where the hori-
zon is triangulated with an even number of edges. Label the horizon edges by
i1, j1, · · · , in, jn. Each pair of edges im, jm belongs to a triangle which is labelled
as (im, jm, ĵm). The edges labelled ĵm belong to the boundary of the solid torus.

i

j

j
~

Figure 3: A block of the triangulated horizon where i and j belong to it and j̃
belongs to the boundary of the solid torus.

The expectation value of the horizon is given by

W (T 2,O) =

n∏

m=1

N
im,jm,ĵm

dimq(ĵm)
dimq(im)dimq(jm) (9)

Recall that the factor Nim,jm,ĵm
is zero if the states are non admissible and 1 if

states are admissible. We are considering admissible states since they will lead
us to a non zero calculation.

We can rewrite the expectation value as2

1It must be understood that here we are dealing with the quantum group SUq(2). q = eiπ/r

2Here r is related to k of formula (5) by k = 2(r − 1)
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W (T 2,O) =

n∏

m=1

( sin π(2im+1)
r

)

( sinπ
r

)

( sinπ(2jm+1)
r

)

( sin π
r

)

( sin π(2ĵm+1)
r

)

( sinπ
r

)

(10)

If we perform the same Wick rotation as in equation (6) and introduced in [1]
we have that

W (T 2,O) =

n∏

m=1

(
sinhπ(2im+1)

λ
)

( sinhπ
λ

)

(
sinhπ(2jm+1)

λ
)

( sinh π
λ

)

( sinhπ(2ĵm+1)
λ

)

( sinhπ
λ

)

(11)

We define the entropy to be given by

S = log(W (T 2,O)) (12)

Renaming the labels im and jm by jℓ only, it can be seen that

S ≃
2n∑

jℓ=1

log(exp(
π

λ
2jℓ))−

n∑

m=1

log

(
sinh π(2ĵm + 1)/λ

sinh π/λ

)
(13)

and up to a factor we have that

S ≃ log(N)−
n∑

m=1

log

(
sinh π(2ĵm + 1)/λ

sinh π/λ

)
(14)

If we consider the major contribution of the entropy, we have that our labels
outside the horizon should vanish, which leads to ĵm = 0, for all m.

Therefore the major contribution to the entropy is approximatelly given by

S ∼ log(N) (15)

which up to a factor coincides with formula (7).
We have seen that loop quantum gravity and spin foam calculations lead to

the same result. This really implies a very nice result since it suggests what is
always expected; that loop quantum gravity and spin foams are truly the same
theory.
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