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Abstract: We give a brief review of the AdS/CFT correspondence, which posits the equiv-

alence between a certain gravitational theory and a lower-dimensional non-gravitational one.

This remarkable duality, formulated in 1997, has sparked a vigorous research program which

has gained in breadth over the years, with applications to many aspects of theoretical (and even

experimental) physics, not least to general relativity and quantum gravity. To put the AdS/CFT

correspondence in historical context, we start by reviewing the relevant aspects of string theory

(of which no prior knowledge is assumed). We then develop the statement of the correspondence,

and explain how the two sides of the duality map into each other. Finally, we discuss the impli-

cations and applications of the correspondence, and indicate some of the current trends in this

subject. The presentation attempts to convey the main concepts in a simple and self-contained

manner, relegating supplementary remarks to footnotes.
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1 Prologue: thanks to black holes...

The beautiful theory of general relativity enjoyed many remarkable achievements over the last

century and provided a crucial edifice for theoretical physics. The conceptual revolution regarding

the nature of space and time has popularized the theory to the extent that it would be hard to

find a scientific-minded person who has not heard of Einstein’s theory of gravity. Yet, despite

its universally recognized elegance, until recently general relativity has been used by a relatively

small subset of the scientific community – much smaller, for instance, than those using quantum

mechanics or quantum field theory – mostly1 restricted to relativists, cosmologists, and a fraction

of astrophysicists. This is not so surprising; after all, the effects of general relativity are pretty

negligible at the scales relevant in context of condensed matter physics or nuclear physics. It

would seem even more audacious to imagine that gravitation could play any interesting role

deeper in the quantum world, say for quantum information theory.

Yet over the last decade, general relativity has percolated all of these fields! Nowadays one

can find many condensed matter physicists, nuclear physicists, quantum information theorists,

and others, who are actively interested in general relativity, not just for idle curiosity, but as

a crucial tool in their research. What has nucleated this dramatic transition? Naturally, the

overall scientific trend points toward multidisciplinarity as the value of cross-fertilization between

different areas is becoming more widely appreciated – but that is the effect rather than the cause.

The real game changer responsible for this transition was the AdS/CFT correspondence (now

more generally known as a gauge/gravity duality), conjectured by Juan Maldacena in 1997 [1].

Indeed, as we will see, the manner in which AdS/CFT related all these subjects to gravity

could scarcely have been more spectacular: it turns out that it’s not the weak curvature of our

spacetime which comes into play when studying everyday systems, but the most gravitational

object there is: the black hole! Incredible as this may sound, it is even more amazing, though in

retrospect also demystifying, that the relevant dynamical spacetime is a higher-dimensional one

compared to the non-gravitational system it describes. Indeed, the most striking feature of the

AdS/CFT duality is its ‘holographic’ nature: it posits full equivalence between certain theories

formulated in different numbers of dimensions.

We postpone a more detailed phrasing of the correspondence till §3, after we have put it into

historical context and explained the necessary ingredients in §2.2 The AdS/CFT correspondence

has been arrived at using the framework of string theory, and indeed engendered what might

be called a scientific revolution within the subject. This new type of holographic duality not

only provided a more complete formulation of the theory, but also profoundly altered our view of

the nature of spacetime: the gravitational degrees of freedom emerge as effective classical fields

1 Of course, there were also (comparatively much smaller numbers of) interested physicists in other fields,

amongst them notably string theorists – which, as we’ll soon see, was pivotal in the present context.
2 Since the focus throughout this chapter is on explaining the concepts (rather than providing a comprehensive

review or a historical account), we will attempt to keep references to a minimum, based mainly on historical

importance and suitability for the present audience. For a more comprehensive list of references see the relevant

reviews cited below.
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from highly quantum gauge theory degrees of freedom. This harks back to earlier expectations

motivated by black hole thermodynamics, that spacetime arises as a coarse-grained effective

description of some underlying microscopic theory, but with a new twist: the relevant description

is lower-dimensional. As we will see, black holes not only motivated this idea, but played a key

role in both the derivation and subsequent applications of AdS/CFT.

Over the intervening years, the AdS/CFT correspondence has flowered into a vast and intri-

cate subject; Maldecena’s original paper [1] alone now has well over 10,000 citations. While the

AdS/CFT duality as such has not been rigorously ‘proved’ (partly because we do not yet have

a complete independent definition of the quantum gravity side of the correspondence), it has

successfully withstood such an impressive array of highly nontrivial checks, that a vast majority

of the community is now fully convinced the duality holds. Indeed, the evidence has mounted so

rapidly, that the mindset soon changed from “can it possibly be true?” to “what does it mean?”

or “how does it work?” and “what else can we do with it?”. Hence regardless of its status as a

theorem, the utility of AdS/CFT has already been amply demonstrated by the consequent dis-

coveries. In fact, the resulting relations transcend the original construction; just as gauge/gravity

duality can actually be formulated without any recourse to string theory, many of its implications

in turn hold independently of AdS/CFT. Gratifyingly, the statement of equivalence between two

sides of the correspondence stimulates information flow in both directions, teaching us important

lessons about each side, as we review in §4. In particular, the gauge/gravity duality engendered

a number of fascinating observations about general relativity itself. Conversely, general relativity

provides the best means hitherto to calculate certain interesting quantities within strongly cou-

pled field theories – which is the main reason why so many physicists are using general relativity

as a tool.

Far-reaching as the implications of the AdS/CFT correspondence have turned out, the lessons

of the correspondence are far from exhausted, with new surprises jumping at us from every

corner – indeed it is evident that we have barely seen the tip of the iceberg! Particularly

enticing is the unquenched promise of ‘solving’ quantum gravity. While this quest motivated the

original explorations leading up to AdS/CFT as well as its subsequent developments, we still

have a long journey ahead of us. Already, the gauge/gravity duality has given us many crucial

insights into quantum gravity; in fact, one review of the gauge/gravity duality [2] starts with

the assertion that: Hidden within every non-Abelian gauge theory, even within the weak and

strong nuclear interactions, is a theory of quantum gravity. While part of the community is still

immersed in mining ‘Applied AdS/CFT’ to gain further insight into various systems of interest

in condensed matter, nuclear, and particle physics, the overall focus is gradually shifting towards

tackling the most mysterious aspects of the correspondence in view of unraveling quantum gravity.

Quintessentially quantum notions such as entanglement are gaining in significance, and the links

with quantum information theory are now being vigorously explored. Where it will all lead we

still don’t know, but for now there are many exciting paths to follow.
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2 Strings and branes

With the advent of the singularity theorems [reviewed in ch.8], it became manifest that classical

general relativity can break down quite generically: it ceases to provide a valid description of

physics near curvature singularities. The natural expectation of course is that quantum mechan-

ical effects ‘resolve’ the singularities, so that the dynamics remains well-defined throughout the

entire evolution. However, since quantum mechanics and general relativity by themselves are

mutually incompatible, our description of the universe based solely on these would be not just

incomplete but actually inconsistent.

In the ongoing quest for quantum gravity, the most useful playground has been provided by

black holes,3 for many reasons. Obviously, typical black holes contain curvature singularities,

which manifestly require new physics. These might reveal underlying symmetries of the full

theory (motivating for instance the ‘cosmological billiards’ program started by [3] based on

universal Mixmaster-like behaviour near spacelike singularities), or suggest possibilities of how

evolution could remain well-defined through a singularity (as happens e.g. for certain timelike

singularities in string theory), but usually direct study suffers from insufficient calculational

control. Fortunately, it turns out that we can gain important insight without being quite so

ambitious: already the black hole horizon contains many profound clues, as implied by black hole

thermodynamics [reviewed in ch.10; see also [4]]. The relations between geometrical properties of

the horizon (area and surface gravity) and thermodynamic quantities (entropy and temperature)

hint at a statistical mechanical origin. While Hawking [5] famously explained the temperature

in terms of semi-classical particle creation, understanding the origin of black hole entropy4 in

terms of the corresponding number of ‘microstates’ has proved both more difficult and more

rewarding. Classically, the black hole ‘no-hair’ theorems imply that these microstates are not

simply different spacetime geometries that look like a black hole – we need to go beyond general

relativity. Counting the black hole microstates has therefore provided an invaluable benchmark

for putative theories of quantum gravity.

To motivate whence one should seek guidance in this endeavor, recall that in units c = 1,

~ = 1, the 4-dimensional Newton’s constant is given by GN = `2
p where the Planck length

`p ≈ 1.6 × 10−33 cm specifies the length scale at which quantum effects become important. Of

course, direct access to such scales is many orders of magnitude beyond the reach of accelerators,

so the theory must be guided not by experiment but rather by internal consistency. Fortuitously,

this turns out to be an extremely stringent requirement.

3 We will consider spacetimes with well-defined future null infinity I + and use the standard definition of a

black hole as the region inside the event horizonH+ ≡ ∂I−[I +], i.e. one causally disconnected from the boundary.

The horizon is always a spacetime co-dimension 1 null surface, but in higher dimensions it may be extended in

one or more directions, giving rise to black strings, black branes, etc.; in the present context the term ‘black hole’

refers to all such objects.
4 That entropy of a black hole should be proportional to its area has been deduced by Bekenstein [6] based on

various gedanken-experiments, but these did not give a clue to its underlying quantum nature.

– 4 –



Unfortunately, conventional field theory techniques are not well suited to quantizing general

relativity directly: The fact that in 4 spacetime dimensions the dimensionless gravitational cou-

pling grows quadratically with energy gives rise to non-renormalizable perturbation theory: the

divergences become uncontrollably worse at each order. This indicates that some new physics has

to kick in to modify general relativity in the UV (meaning short distances or high energy scales).

An ingenious way to tame these divergences is to consider strings as the fundamental degrees

of freedom (so that what we previously thought of as particles are simply different excitation

modes of the string, a spatially extended 1-dimensional object), which effectively smears out the

interactions.

This might at first sight seem rather fanciful, but it works! More than that, it works spectac-

ularly well.5 In a consistent Lorentz-invariant quantum theory, a closed string necessarily has a

massless spin-two state, the graviton, whose long-wavelength interactions reproduce general rel-

ativity. Other states correspond to different particles: gauge bosons, fermions, etc; indeed string

theory automatically incorporates the earlier ideas trying to explain the Standard Model such as

grand unification, supersymmetry, and Kaluza-Klein theory.6 In the course of trying to unravel

string theory, it became evident that it in fact encompasses other ‘competing’ constructions as

well; indeed, within a few years it loomed into a vast edifice with incredibly rich structure which

contains many essential features from other areas of both physics and mathematics.

Given that any string theory is a quantum theory which necessarily includes gravity, it

naturally invites the examination of its consequences and implications for quantum gravity.

Since spacetime plays a central role in general relativity, the obvious question to ask is how

does string theory give rise to the curved dynamical spacetime of general relativity, and what

happens to the ‘stringy geometry’ when the classical description breaks down. In the perturbative

formulation valid at small string coupling gs, the spacetime coordinates specifying the position

of the string appear as scalar fields in the 2-dimensional sigma model describing the dynamics of

the string worldsheet, and the spacetime metric then enters as a coupling constant. But because

the strength of gravitational interactions is governed by the string coupling – the d-dimensional

Newton’s constant is GN = g2
s `

d−2
s in units of the string length `s – it is difficult to directly access

the most interesting, strongly gravitational, regime.

Nevertheless, already at this level we encounter several intriguing surprises. Since strings

are extended objects, some spacetimes which are singular in general relativity (for instance those

with a timelike singularity akin to a conical one) appear regular in string theory. Spacetime

5 In fact, strings were originally introduced as a possible theory of the strong interactions already by the early

70s , since they nicely explained certain features of the hadron spectrum. This program however dwindled with

the advent of QCD, until it was realized in the mid-70s that string theory is also a theory of gravity [7] (see e.g. [8]

for a historical review and [9, 10] for the classic string theory textbooks). It is amusing to note that two decades

later the circle got (almost) completed via the AdS/CFT correspondence, wherein string theory turns out to be

dual to a gauge theory akin to QCD.
6 Consistency requires that the (weakly-coupled) theory is formulated in 10 dimensions, but these can be

small (and therefore able to accommodate our spacetime looking 4-dimensional). The geometry of these ‘internal’

dimensions then determines the 4-dimensional matter content.
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topology-changing transitions can likewise have a completely controlled, non-singular description.

Moreover, the so-called ‘T-duality’ equates geometrically distinct spacetimes: because strings

can have both momentum and winding modes around compact directions, a spacetime with a

compact direction of size R looks the same to strings as spacetime with the compact direction

having size `2
s /R, which also implies that strings can’t resolve distances shorter than the string

scale `s. Indeed this idea is far more general (known as mirror symmetry [11]), and exemplifies

why spacetime geometry is not as fundamental as one might naively expect.

However, to learn about the more interesting regime where gravity is strong, we need to

go beyond perturbation theory. At first sight this looks extremely challenging, since generically

a quantum theory at strong coupling has uncontrollably large fluctuations. But remarkably in

string theory the situation is far tamer. It turns out that string theories have a symmetry known

as string duality: a strongly coupled limit of any given string theory is equivalent to a weakly

coupled limit of another one.7 In other words, as we take the coupling large (i.e. in the gs →∞
limit), the theory actually simplifies, and can be described perturbatively in some dual variables.

Though the intricate web of such relations was gradually built up through the early 90’s, the

crucial insight was provided by Polchinski [12], who showed that so-called Dirichlet-branes,8 or

D-branes for short, provide the necessary charges9 required by the duality. At weak coupling,

D-branes behave as topological defects on which open strings can end, but in the full theory they

are dynamical objects with mass scaling inversely with string coupling. Hence at strong coupling

they become light, providing the natural ‘fundamental’ constituents of the theory.

The advent of string dualities immediately stimulated the program of black hole microstate

counting. To explain this, let us take a short detour into specifying a few essential features of

D-branes, which will pave the way towards motivating the AdS/CFT correspondence. D-branes

can be spatially extended in any number p of dimensions; the world-volume of a Dp-brane is

(p+ 1)-dimensional. Massless modes of open strings ending on a D-brane describe the transverse

fluctuations of the brane and give rise to gauge fields along the brane and their fermionic partners;

for N coincident D-branes the low energy dynamics is then given by a U(N) gauge theory.10 A

stack of N coincident Dp-branes has N units of (p + 1)-form charge, and preserves half the

supersymmetry. This has the happy consequence that the number of microstates of such a

7 There are actually five perturbative 10-dimensional string theories, which differ from each other by the way

the supersymmetry acts on the string and whether it contains just closed or both open and closed strings; in

the following, when we say ‘string theory’ we mean the ‘Type IIB string theory’ (and similarly for its low-energy

limit, supergravity).
8 Using arguments based on T-duality, the idea of D-branes was in fact introduced already in [13], as extended

objects which can couple consistently to strings (and thence conjectured to be in a sense made up of strings). For

a technical overview see e.g. [14].
9 Namely, the so-called Ramond-Ramond (RR) charges. These are required by duality transformations, but

cannot be carried by strings. It was already known that they can be carried by black p-branes [15] (black holes

which are extended in p spatial directions), which prompted the speculation that these black p-branes might be

related to the dual variables.
10 Every open string has two endpoints, each lying on one of the branes. When the branes coincide the symmetry

gets enhanced since the strings stretching between them become massless.
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system remains invariant under varying the string coupling gs, and the mass of such states does

not receive quantum corrections. To take advantage of this observation, we need to understand

what happens to the system at strong coupling.

The amount by which N coincident D-branes backreact on the spacetime is governed by

GNM ∼ g2
s

N
gs

= gsN in string units. At sufficiently weak coupling, gsN � 1, the branes live in

nearly-flat 10-dimensional spacetime, whereas for gsN � 1, the branes backreact strongly and

source an extremal black brane geometry [15], a 10-dimensional analog of the extremal Reissner-

Nordstrøm black hole, extended in p spatial directions.11 In this regime, one can evaluate the

horizon area and compare this with the statistical entropy obtained from counting the degeneracy

of the system carrying the same charges at weak coupling. This idea was realized in the seminal

work of Strominger & Vafa [16] which correctly counts the Bekenstein-Hawking entropy of a

5-dimensional 3-charge extremal black hole (a strongly-coupled description of a dimensionally

reduced D1-D5 bound state carrying momentum). Note that this is a far greater achievement

than merely matching one number: both the functional dependence on all the charges as well as

the overall coefficient come out correctly without any additional input. Since the weakly-coupled

calculation looks nothing like the strongly coupled one, this nontrivial success suggests that such

black holes are indeed ‘made of’ D-branes.

This new understanding unleashed a flurry of activity which reproduced the microscopic

entropy of many other black holes described by more parameters, both in 4 and 5 dimensions

and for other charges and angular momentum; see e.g. [17, 18] for early reviews and [19] for

a broader overview. One might expect that supersymmetry is essential, but in fact one can

reproduce the entropy of some nonextremal black holes as well. Although such black holes

are quantum mechanically unstable due to Hawking evaporation, we can describe the Hawking

process at weak coupling, as emission of closed strings from the brane. More impressively still,

the weakly-coupled D-brane description can even correctly reproduce the full radiation spectrum

of the black hole, including the grey-body factors due to the curved spacetime through which

the Hawking quanta propagate [20].

As an aside, we should remark that sufficiently far from extremality we do lose control. So the

‘simplest’ black hole from the general relativistic standpoint and one which is perhaps closest to

the hearts of most relativists, namely the Schwarzschild solution, still eludes the exact microstate

counting. Nevertheless, the scaling of entropy with area (as well as correct dependence on other

charges) can be reproduced quite generally, by viewing the black hole at weak coupling as a bound

state of strings and D-branes with the same conserved charges. The relation between the two

descriptions was established by Horowitz & Polchinski [21] and is known as the “correspondence

principle”: Consider an excited fundamental string. As we increase the string coupling gs, the

11 More precisely, the geometry and causal structure depend on p; the horizon is regular for p = 3 and for

appropriate bound states of multiple branes, which requires the system to carry more than two types of charge.

For purposes of evaluating the entropy, given by quarter the horizon area in Planck units, the extra p dimensions

however do not play any role because the higher-dimensional Newton’s constant is related to the lower-dimensional

one by the same factor (namely the volume of the internal space) that relates the corresponding horizon areas.
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string self-gravitates more strongly and shrinks, while simultaneously the Schwarzschild radius

GNM increases. At high enough coupling the string shrinks to within its own Schwarzschild

radius, at which point the object is more appropriately described as a black hole. Conversely, if

we start with a black hole and decrease the coupling, the horizon eventually becomes string size

(which can however still be macroscopic in Planck units), at which point we can no longer trust

the classical black hole solution and the system is more appropriately described as an excited

string. Matching the masses12 on the two sides of the transition, [21] found that the entropies

also match, up to a constant of order unity which depends on the precise transition point.

By 1996 string theory has made significant advances towards understanding the quantum

aspects of black holes. Cracking the black hole Information Paradox seemed to be just around

the corner, and there were many tantalizing hints at a deeper structure underlying the many

newly-discovered mysterious connections. Though the former hope was rather too optimistic,

little did we expect how substantial a progress the following year will see on the latter front.

3 The AdS/CFT correspondence

In November 1997 Maldacena wrote his groundbreaking paper [1], conjecturing the relation which

became known as the AdS/CFT correspondence. In §3.1 we will explain how Maldacena arrived

at this remarkable conjecture, indicate its formulation and key features, and mention its imme-

diate sociological impact. Since the statement is perhaps as mystifying as it is profound, we

pause in §3.2 to give a more modern perspective which motivates the correspondence without

any recourse string theory. We then build up the basics of the AdS/CFT dictionary which simul-

taneously exemplify some of the initial checks of its validity in §3.3 and §3.4, the latter focusing

on the important context of AdS black holes. Finally, we briefly mention several generalizations

of AdS/CFT in §3.5. For further details, we refer the reader to the excellent early review by

‘MAGOO’ [23] (see also [24, 25]).

3.1 Maldacena’s derivation

The success in unraveling the D1-D5 system inspired analogous calculations for a D3-brane

system, which provided the focal example of Maldacena’s conjecture [1]. Consider N coincident

D3-branes (in type IIB string theory). At weak coupling gsN � 1, the branes live on a flat

10-dimensional spacetime and we have open strings ending on the D-branes as well as closed

strings propagating in the bulk. On the other hand, at strong coupling gsN � 1, the branes

12 In fact, this resolved a puzzle that previously impeded advancing the suggestion [22] that black holes are really

excited string states; namely, the respective entropies don’t scale the same way with the mass: Sstring ∼ `sM while

(say in 4 dimensions) SBH ∼ GNM
2. The resolution is that both masses cannot be kept fixed simultaneously as we

vary the string coupling. Making them match at the transition when the black hole is string size (gs ∼ (M `s)
−1/2)

makes the entropies agree as well. This agreement continues to hold more generally in all dimensions and in the

presence of extra charges, angular momentum, etc.
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curve the spacetime substantially, sourcing the extremal black 3-brane geometry [15]:

ds2 = f(r)−1/2 ηµν dx
µ dxν + f(r)1/2

(
dr2 + r2 dΩ2

5

)
, f(r) = 1 +

4π gsN `4
s

r4
(3.1)

where xµ denote the 4 coordinates along the D3-brane worldvolume and dΩ2
5 is the metric of a

unit S5. The solution is supported by a self-dual 5-form field strength, which has flux on the S5.

So far, we have specified two distinct regimes of gsN with no region of overlap. Maldacena’s

insight was to consider decoupling the theory on the branes from gravity. This can be achieved

by taking a low-energy limit, which simplifies the physics enormously. On the one hand, the

open string sector decouples from the rest of the theory, so that we end up with a 4-dimensional

SU(N) gauge theory (specifically super Yang-Mills) describing the dynamics of the branes. On

the other hand, in the black brane spacetime, this limit13 focuses on the near-horizon geometry:

from the asymptotic viewpoint, any finite-energy excitation near the horizon will be strongly

redshifted, while modes which propagate in the asymptotic region of (3.1) decouple from the

near-horizon region (since its cross section vanishes in this limit).

Note that just as in the case of extremal Reissner-Nordstrøm black hole, the event horizon

r = 0 of the black brane solution (3.1) lies at infinite proper distance along spacelike geodesics;

its embedding diagram has an infinite ‘throat’. The near-horizon geometry then has an enhanced

symmetry, and simplifies to a direct product of a sphere and Anti-de-Sitter spacetime. In case

of 4-dimensional extremal Reissner-Nordstrøm black hole, the near-horizon geometry is simply

AdS2 × S2, while in the present 10-dimensional case we have AdS5 × S5. In particular, defining

` ≡ (4π gsN)1/4 `s in (3.1), we see that as r → 0 (zooming near the horizon), f(r)1/2 → `2/r2,

which obtains

ds2 =
r2

`2
ηµν dx

µ dxν +
`2

r2
dr2 + `2 dΩ2

5 . (3.2)

The first two terms here describe the AdS5, a maximally symmetric spacetime of constant nega-

tive curvature, with radius14 `. The last term gives the S5, likewise with radius `. The D-branes

are no longer localized within the geometry, but as in (3.1), their effect manifests itself in the

5-form flux through the S5.

The low-energy limit of our D3 brane system is then described by a (10-dimensional) string

theory with just closed strings in AdS5 × S5 when gsN � 1, and by a (4-dimensional) super

Yang-Mills SU(N) gauge theory when gsN � 1. But since the gauge theory is well-defined at

any coupling, it is natural to conjecture that this description in fact applies even when gsN is

large, i.e. in the same regime as where the closed string description holds.

13 Actually, [1] implemented this by starting with slightly-separated branes and taking the `s → 0 limit at fixed

(large) N and (small) gs while simultaneously bringing the branes together, keeping the open string mass fixed.

In practice, this can be accomplished by taking r → 0 in (3.1).
14 Although AdS is spatially non-compact, it has a characteristic size given by its curvature radius: the Ricci

scalar is R = −20/`2. Moreover, all timelike geodesics in this spacetime oscillate with period 2π `, so AdS acts

like a confining box.
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This observation led Maldacena [1] to conjecture that

String theory on AdS 5 × S5 ' N = 4, SU(N) gauge theory in 4D . (3.3)

Here the ‘'’ sign indicates a full duality: the two sides are simply different languages which

describe the same physics.

The statement (3.3) quickly became known as the AdS/CFT correspondence, because AdS

specifies the sector of spacetimes for the LHS, and the 4-dimensional gauge theory on the RHS

is a conformal field theory (CFT). In fact, [1] gave several other examples which we will mention

in §3.5, all having the AdS/CFT structure: string or M-theory on AdSd+1 (times a compact

manifold) is dual to a d-dimensional CFT. Later people started referring to AdS/CFT alternately

as gauge/gravity (or sometimes gauge/string) duality to emphasize the emergence of gravity (or

string theory) from the gauge theory and to indicate its greater generality.15

We will discuss the meaning of this statement in greater depth in §3.3 below; for now we

make a few remarks to qualify the correspondence (3.3) a bit more precisely. First of all, since

the LHS still has dynamical gravity, by “string theory on AdS5 × S5” we mean string theory

on a 10-dimensional spacetime which is asymptotically AdS5 × S5. In particular, all physically

sensible gravitational processes are included on the LHS; for instance one can collapse a black

hole in AdS (which will provide an important class of examples that we will revisit below).

Secondly, along with the statement (3.3), the AdS/CFT correspondence also specifies how

the parameters on the two sides relate to each other. On the string theory side we have two

dimensionless parameters, the string coupling gs and the curvature scale (in string units) of the

spacetime on which the theory lives, `/`s. On the gauge theory side we have the rank of the

gauge group N and the Yang-Mills coupling gYM, which is more naturally expressed in terms of

the ‘t Hooft coupling16 λ ≡ g2
YMN . The relation between these is given by

4π gs = g2
YM ∼

λ

N
and

`

`s
= (4π gsN)1/4 ∼ λ1/4 (3.4)

In order to trust the gravity solution (i.e. to suppress stringy corrections of the geometry) we need

to keep ` large in string units, which translates to λ � 1. On the other hand, to suppress the

quantum corrections, we need to keep gs small. Hence classical gravity is valid in the N � λ� 1

regime of the parameter space. The most conservative version of the duality posits (3.3) in this

regime, though it is now widely believed that the equivalence holds even at finite N and λ

(although direct confirmation is stymied by lack of tools to study the string theory much beyond

perturbations in 1/N and 1/λ).

To summarize, the key features of the AdS/CFT duality are the following.

15 As anticipated already by [1], one can modify the boundary conditions away from AdS and correspondingly

the field theory need not be a CFT. (Also note that in the latter terminology the order of the two sides has been

swapped: “gravity” or “string” refers to the AdS side and “gauge” to the CFT side.)
16 For SU(N) gauge theories, ‘t Hooft [26] showed that there is a smooth limit (known as the ‘t Hooft limit)

which takes N →∞ while keeping λ ≡ g2YMN fixed; in this limit, only the planar Feynman diagrams contribute

and the gauge theory becomes effectively classical.
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• There is a mapping between a quantum theory of gravity (namely string theory) and

an ordinary (non-gravitational) quantum field theory. Moreover, the dual description of

gravity is manifestly background-independent, except for the AdS boundary conditions.

This should help us solve many long-standing questions in quantum gravity by recasting

them in a non-gravitational language.

• AdS/CFT is a strong/weak coupling duality: when the gauge theory is strongly-coupled

(and hence all perturbative techniques fail), we can study it using the weakly-coupled

string theory context. This has been the main point of [1] (and subsequently the most

utilized aspect of the correspondence).

• The AdS/CFT mapping is holographic. Indeed, the correspondence provides the most

concrete example of the holographic principle, suggested few years earlier by ‘t Hooft [27]

and Susskind [28].17 Albeit partly inspired by related ideas of [30] (see also [31]), [1] did not

emphasize holographic nature of the correspondence (in fact the term ‘holographic’ does

not appear in the paper); however, it was noted soon thereafter [32, 33].

Though many of the clues hinting at AdS/CFT correspondence (3.3) had existed before,

Maldacena’s conjecture [1] had taken most by surprise. Indeed, Juan Maldacena, then a young

faculty at Harvard one year after graduating from Princeton, instantly became somewhat of a

celebrity in the field. The general excitement was evident the following summer at the Strings ‘98

conference, not only during the talks, but also at the conference dinner when all the participants

danced the ‘Maldacena’.18

The statement of the AdS/CFT duality is so remarkable that one might well wonder whether

there is some loophole in this argument: could something have gone wrong along the way? For

instance, might there be some sharp transition under varying the coupling gsN or some non-

perturbative effect spoiling the extrapolation? Albeit unexpected, such effects have been vigor-

ously searched for. So far, however, the AdS/CFT correspondence has withstood all tests, and

whenever exact calculations are possible on both sides, such as in the maximally supersymmetric

case where we can use the tools of integrability [34], a precise match is found. Nevertheless, the

search continues as we develop new tools to understand increasingly more general context.

Another (more distanced and vague) level at which the AdS/CFT correspondence has been

questioned by its critics refers to the foundations themselves: AdS/CFT has been derived within

string theory, but what if string theory itself is incomplete or incorrect? Rather than delving

into an involved discussion attempting to dispel such objections here, we will now argue that the

17 This bold statement, that in a theory of gravity, we can describe physics in a given region by a theory living

on its boundary, was inspired by Bekenstein’s entropy bound [29] based on black hole thermodynamics: since

black hole entropy scales with horizon area, the amount of information which can be packed in a spherical region

should be bounded by its surface area rather than its volume.
18 With the lyrics composed by Jeff Harvey who led the dance, this was a take-off on the popular Spanish dance

called the Macarena, producing a rather comical effect which made the occasion doubly memorable.
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gauge/gravity duality actually stands on its own in a self-contained manner, independently of

string theory.

3.2 More modern perspective

Maldacena’s derivation notwithstanding, many of us experience some bewilderment at our first

encounter of the AdS/CFT duality. Indeed, the assertion that a higher dimensional gravitational

theory could be fully described by a lower-dimensional non-gravitational one seems quite pre-

posterous. Moreover, it was generally felt in the string theory community that we understand

quantum field theories well, and that they cannot be so well disguised as to actually behave like

quantum gravity. In fact, much of the initial effort in this field stemmed from attempts to find

a clear ‘counter-example’ which would indicate that the two sides of (3.3) cannot possibly be

equivalent. Though all such attempts of course failed, this was a tremendously useful exercise for

developing our understanding of how the correspondence works. Before describing some of these

checks and entries in the AdS/CFT dictionary, let us pause to see why the correspondence is not

obviously wrong, by mentioning a more direct route toward the duality, one which is independent

of string theory.

In hindsight, a plausible way to arrive at the gauge/gravity duality is the following:19 The

prospect that a gauge theory might capture a gravitational theory is partly inspired by the mat-

ter content: a natural guess, bolstered by representation theory, is that the spin-two graviton

could arise as a composite of two spin-one gauge bosons. Of course, this would be precluded

by the Weinberg-Witten no-go theorem [35], if the graviton and gauge bosons lived in the same

Lorentzian spacetime. However, the holographic principle suggests that the graviton may nat-

urally propagate in higher dimensions, thereby eluding the no-go argument. The gauge theory

would then have to contain not just the graviton but also an extra dimension, namely some

quantity with respect to which the physics behaves locally. One such quantity in a gauge the-

ory is the energy scale: the renormalization group equation governing the flow of the coupling

constants with energy scale is a nonlinear differential equation which is local in the energy scale.

Having identified a gauge theory quantity which could describe an extra direction in the bulk

dual, we want to further ensure that this new ‘dimension’ can be macroscopic. Since perturbative

gauge theory looks nothing like classical gravity, one is led to suspect that the gauge theory

should be highly quantum (i.e. strongly coupled) in order to reproduce gravity.20 Taking this

guess seriously, one would then seek a gauge theory where the coupling remains strong over

a large range of energies, in order to recover an extra dimension of macroscopic size. This is

most easily achieved in a conformal field theory where the coupling does not run, allowing for

an infinite holographic direction. Nonetheless, the possibility of having excitations with various

19 The presentation here is largely based on the excellent review of the gauge/gravity duality by Horowitz &

Polchinski [2].
20 Anticipating the string theory context, strong coupling can also be motivated by the requirement of keeping

only spin-two graviton while removing all higher-spin composite objects.
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energies propagating in higher dimensions still seems to have more degrees of freedom than can

be accommodated within a lower-dimensional theory. In order to overcome this obstacle, the

gauge theory then has to contain sufficiently large number of degrees of freedom, which one may

hope to achieve with a large gauge group; for SU(N) gauge theories, this suggests the ’t Hooft

limit [26], namely taking N →∞ keeping λ ≡ g2
YMN fixed (but large by the previous argument).

To keep our strongly-coupled gauge theory under control, it is convenient to impose super-

symmetry (since this keeps the Hamiltonian bounded from below and thereby precludes many

potential instabilities). The most supersymmetric case is N = 4 (which has 4 copies of the mini-

mal 4-dimensional supersymmetry algebra), which simultaneously ensures conformal invariance:

The 4-dimensional N = 4 SU(N) gauge theory, super-Yang-Mills,21 is a conformal field theory

(CFT). When formulated on Minkowski space, ds2
CFT = ηµν dx

µ dxν , the vacuum is invariant

under Poincaré transformations, and by virtue of conformal invariance it is also in particular

invariant under a rigid scale transformation xµ → αxµ, which simultaneously rescales the energy

E → E/α. Identifying inverse energy with the extra dimension (labeled by a new coordinate z),

the most general 5-dimensional bulk metric consistent with these symmetries is AdS5:

ds2 =
`2

z2

(
ηµν dx

µ dxν + dz2
)

(3.5)

where we’ve rescaled z ∼ 1/E so as to express the metric in terms of one free parameter, the

AdS scale `. A trivial change of variables, z = `2/r, recasts (3.5) into the form used in (3.2); i.e.

r corresponds to energy scale as indeed identified by [1].

So far, the above arguments motivate the equivalence of gravity on 5-dimensional AdS with

4-dimensional N = 4 SU(N) gauge theory, along with the expectation that the number of

‘colors’ N should be related to the size of AdS, `. But one can go even further. To match

the supersymmetry of the gauge theory side, we need to extend gravity to the full supergravity,

which is naturally formulated in 10-dimensions and has a solution AdS5 × S5. So we get not

just one, but six, extra dimensions, five of which (making up the S5) are naturally associated

with the scalars ϕi of the 4-dimensional super-Yang-Mills. Moreover, if we probe further still, by

considering highly boosted bulk states, the corresponding excitations on the gauge theory side

exhibit a one-dimensional structure which can be associated with excitations of a string [36]. So

by making the full structure self-consistent, one could in principle ‘uncover’ string theory.22 Hence

in hindsight, the AdS/CFT duality (3.3) emerges quite naturally. Moreover, albeit puzzling, it

elegantly explains why apparently different results in gauge theory and gravity happen to give

21 This theory can be obtained from a dimensional reduction of a 10-dimensional SU(N) gauge theory with

16 supersymmetries with smallest algebra, L = 1
2g2YM

Tr(Fµν F
µν) + iTr(ψ̄ γµDµψ) (with both the gauge field Aµ

and the spinor ψ in the adjoint N × N representation). Upon dimensional reduction to 4 dimensions, the Aµ

decomposes into a 4-dimensional gauge field and 6 scalars ϕi which are symmetric under SO(6) rotation, while

the spinor ψ separates into four 4-dimensional Weyl spinors. This 4-dimensional SYM is not only a finite theory,

but indeed the simplest interacting 4-dimensional field theory.
22 In fact, the idea of strings arising from large-N (planar) limit of gauge theory was already suggested by ’t

Hooft [26]; the AdS/CFT correspondence renders this occurrence fully explicit.
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the same answers. In a sense, having so many coincidences with no explanation would have been

far more perplexing...

Finally, at a broader level, it can be argued [37] that quantum gravity with asymptotically

AdS (or even asymptotically flat) boundary conditions is holographic, in the following sense: due

to diffeomorphism invariance, the gravitational Hamiltonian is a purely boundary term, expressed

as a surface integral at infinity. Since it is the operator which generates time translations, any

set of boundary observables which are available at any given time are necessarily available on

the boundary at any other time. More technically, Marolf [37] shows that (at least at the

perturbative level) there is a complete algebra of boundary observables within any neighborhood

of any boundary Cauchy surface. This idea is referred to as boundary unitarity, and has important

implications for example about the black hole information paradox.

3.3 Early checks and entries in the AdS/CFT dictionary

Now that we have explained two separate arguments for the gauge/gravity duality (3.3), let us

turn to its implications. Of course, even if rigorously proven, the correspondence would be of

little use if we didn’t know how to relate physically interesting quantities between the two sides.

Much the subsequent (and ongoing) effort went into establishing the AdS/CFT dictionary. The

basic entries in this dictionary follow immediately from the above arguments. Let us therefore

start by specifying these more explicitly.

Symmetries: Perhaps the most immediate check is that the symmetries match between the

two sides. Let us start with AdS5×S5. The isometry group of AdS5 is SO(4, 2), which is manifest

when we write AdS as the embedded hyperboloid

−X2
−1 −X2

0 +X2
1 + . . .+X2

4 = −`2 (3.6)

in R4,2 with metric ds2 = −dX2
−1 − dX2

0 + dX2
1 + . . . + dX2

4 ; and similarly, the isometry group

of the S5 is SO(6), so the full (bosonic) symmetry is SO(4, 2) × SO(6). From the CFT side,

the conformal group in four dimensions is SO(4, 2) (which includes Poincaré transformations as

well as scale transformations and special conformal transfomations), and the six scalar fields ϕi

and four fermions are related via a global SU(4) ' SO(6) R-symmetry. Both sides also have 32

supersymmetries, which manifest themselves as Killing spinors in AdS5×S5 on the gravity side,

and as superconformal algebra on the gauge theory side.

Spacetime directions: The above symmetry matching immediately suggests how the 10 di-

mensions of the bulk AdS5 × S5 map to the CFT. From the SO(6) symmetry we see that the

S5 directions are captured by the scalar fields ϕi. The radial bulk direction r = `2/z we have

already associated with the energy scale in the gauge theory. Therefore the boundary of AdS,

r = ∞ or z = 0, is naturally identified with the UV of the gauge theory. We will elaborate on

this relation further below. What remains are the transverse directions xµ of AdS, but these
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map directly to the Minkowski spacetime dimensions the gauge theory lives on. In particular,

the time x0 on both sides gets naturally identified, which means that the notion of Hamiltonian

should likewise match on both sides.

So far, we have indicated how the mapping between bulk spacetime directions and gauge

theory quantities works for pure AdS5 × S5. Even for this highly symmetric case, however, it

is far from obvious that the relevant gauge theory quantities should be related to each other

so as to uphold bulk diffeomorphisms. In other words, to a bulk observer in AdS5 × S5, all

9 spatial directions look locally the same, while in the gauge theory this local symmetry is

totally obscure. This becomes much more poignant when the geometry breaks all the symmetries

and only asymptotes to AdS5 × S5: in such generic case the bulk-boundary map is no longer

easy to specify. For example, even though there is a natural notion of ‘constant time’ slice

on the boundary (up to overall boosts), for generic time-dependent bulk geometry there is no

correspondingly uniquely defined time-foliation in the bulk. Moreover, while the bulk spacetime

is dynamical, governed by 10-dimensional Einstein’s equations with appropriate matter content,

the boundary spacetime is fixed: there is no sense of gravitational backreaction in the gauge

theory; so in this sense even the xµ directions ‘emerge’ nontrivially. Indeed, understanding how

bulk locality emerges from the gauge theory is one of the important open questions in this field,

which would teach us something nontrivial about the gauge theory as well as about the nature

of spacetime.

The AdS metric specified by the (xµ, z) coordinates in (3.5), commonly known as the Poincaré

(patch of) AdS, is geodesically incomplete. The Poincaré horizon, z → ∞, is a regular null

surface, and we can extend the spacetime to its global AdS form; in static, spherically symmetric

coordinates this can be written as

ds2 = −
(
ρ2

`2
+ 1

)
dτ 2 +

dρ2(
ρ2

`2
+ 1
) + ρ2 dΩ2

3 (3.7)

Although both Poincaré AdS (3.5) and global AdS (3.7) are explicitly static, the timelike Killing

fields
(
∂
∂t

)a
and

(
∂
∂τ

)a
are distinct. This is indicated in Fig. 1 which presents a sketch of global AdS,

showing a Poincaré patch, several geodesics, and an indication of the corresponding coordinates.

We can take (3.3) to apply to string theory on the full global AdS5 × S5, in which case the

gauge theory is formulated on the Einstein Static Universe S3 × R. Notice that in both cases,

Poincaré and global, the gauge theory can be naturally thought of as ‘living on the boundary’ of

AdS: it is formulated on a spacetime which is in the same conformal class (the relevant structure

for a conformal field theory) as the boundary metric induced from the bulk. For example,

multiplying the line element (3.7) by `2/ρ2 and taking ρ → ∞ with dρ = 0 yields the Einstein

static universe ds2
CFT = −dτ 2 + `2 dΩ2

3. Moreover, the fact that the conformal compactification

of AdS has a timelike boundary allows for a Lorentzian field theory on this background. We

will continue using terminology ‘CFT living on the boundary of AdS’ as a conceptual crutch,

since it will render many of the other elements of the AdS/CFT dictionary easier to understand

intuitively. We should however keep in mind that the gauge theory encodes the entire bulk, not
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Fig. 1: Left: Schematic plot of global AdS5, showing the Poincaré patch. The vertical coordinate is τ , the

horizontal radial coordinate is tan−1 ρ (so that the spacetime is drawn compactified and radial null

geodesics are at 45 degree angle), and the angular coordinate ϑ is one of the S3 directions of the

AdS. Poincare horizon is a null surface [red] (generated by null geodesics [blue]) whose constant-τ

slices are spacelike extremal surfaces anchored on spherical regions or (on equatorial slices of S3)

spacelike geodesics [green]. For orientation we have also plotted two z = ` (equivalently r = `)

curves, one at constant xi = 0 which describes orbit of
(
∂
∂t

)a
[red ∂t], and one at constant t = 0

which describes orbit of
(
∂
∂x

)a
[orange ∂x] Killing fields. Also shown are two timelike geodesics one

static at ‘center’ of global AdS following
(
∂
∂τ

)a
[grey ∂τ ] and one [purple] reaching to ρ = `, to

illustrate the confining nature of AdS. Right: Poincare disk of AdS, which is a spatial (constant

τ) slice of AdS. Spacelike geodesics and projections of null geodesics, as well as the z = `, t = 0

curve, are drawn [with the same color scheme as in the left panel].

just what is happening asymptotically.

Scale/radius duality: Closely-related to the above remarks is the statement of scale/radius

duality, also known as the UV/IR duality. Recall that motion in the radial direction r in (3.2)

corresponds to moving in energy scale in the dual field theory. For pure AdS, one can see this at

the level of the symmetry, as motivated in §3.2: high energies (or short distance, i.e. UV) on the

boundary is associated with large radius (so in this sense IR) in the bulk. In particular, a UV

cutoff in the boundary corresponds to an IR cutoff in the bulk. This correspondence was put on

a firmer footing in [33], which showed that when suitably regulated, the gauge theory provides

a holographic description with one bit of information per Planck area. Operationally, if instead
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of energy scales on the boundary one thinks of length scales, in the asymptotic region one can

associate the length between endpoints of a given spacelike geodesic with the bulk radial position

to which this geodesic penetrates (c.f. the green curves on the right panel of Fig. 1).

The scale/radius duality provides a good guide to our expectations of various physical pro-

cesses. For example, a bulk particle which falls deeper into AdS (due to the attractive potential

caused by the AdS curvature) is described by a localized excitation in the gauge theory which

spreads out with time. In the presence of a black hole, the bulk particle nearing the horizon

can be regarded as the gauge theory excitation thermalizing [38]. However, the precise form

of the scale/radius duality fuzzes out for anything other than pure Poincaré-AdS geometry, so

for a generic bulk spacetime it is most useful only asymptotically; deeper in the bulk or for

rapidly-evolving processes it need not provide a reliable guide, as indicated below.

Causality: Convenient as the scale/radius duality is for conceptual picture of part of the bulk-

boundary mapping, too-naive applications of it can however lead to apparent contradictions,

as instructively exemplified by [39], one of the earliest explorations of AdS/CFT in manifestly

Lorentzian context. The authors studied how the CFT manages to reproduce bulk causality, by

considering gedanken-experiments involving massless particles in the bulk: Suppose we send two

particles radially inward from the same boundary position but at different times. The second

particle is always to the future of the first one and therefore cannot influence its dynamics. On

the other hand, in the CFT where one expects each particle to be described by some initially

localized disturbance which spreads out (and hence the disturbance produced by the second

particle to overlap with that of the first one), it appears quite plausible that second can influence

the first. If this happened, the CFT would violate bulk causality. One can also imagine sending

two particles (non-radially inward) from different positions on the boundary but at the same

time. In the CFT, the two disturbances interact on a time scale given by their initial separation,

whereas in the bulk, if the particles miss each other, one would expect them to interact on a

much longer time scale, if at all.

Both of these puzzles get resolved by correctly accounting for the gravitational backreaction

of the particles, upon which the AdS and CFT answers match exactly. In particular, [39] shows

that a massless particle produces a gravitational shock wave, which in the CFT gives a ‘light-cone

state’, a disturbance which is localized on light cone of the boundary spacetime. So in the first

example, the two CFT excitations indeed do not interact, whereas in the second example the

shock waves produced by the particles do interact on the same timescale as predicted by the CFT.

The lesson from this resolution typifies many of the others: once the physics on both sides is

understood correctly, we indeed get a perfect agreement. As a bonus, a physical effect which may

be quite subtle on one side is often completely obvious on the other side of the correspondence.

In this way, the recasting of a given setup in the dual picture usually elucidates the physics.

Coming back to the specific issue of causality, one might nevertheless wonder how can bulk

causality generically coincide with CFT causality, in spite of the bulk having more directions.

Since the boundary metric (which determines the causal relations in the CFT) is induced from
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the bulk metric, it is clear that any two events which are causally related along the boundary

must likewise be causally related in the bulk. However the converse is far less obvious: could one

not travel through the bulk faster than around the boundary (as would be the case for a cylinder

in flat spacetime), thereby violating CFT causality? It is easy to check that this is not the case

for pure global AdS: as evident from Fig. 1 (blue curves), all null geodesics from a given boundary

point, whether passing through the bulk or along the boundary, in fact reconverge at the same

boundary point (namely antipodally on the sphere and time π ` after the starting point). Given

that in pure AdS it takes the same time for a light ray to go through the bulk as along the

boundary, one might worry that a small deformation to the bulk geometry could then speed up

the bulk geodesic and therefore send signals outside of the CFT light cone. That this does not

happen was proved by Gao & Wald [40] who showed that physically sensible23 deformations of

AdS would lead to a gravitational time delay (as opposed to time advance) of bulk geodesics,

thereby ensuring that causal processes in the bulk cannot violate CFT causality.

Observables and correlation functions: Now that we have seen how the bulk spacetime as

such relates to the gauge theory, what about various bulk fields propagating on this spacetime?

At the most basic level, the answer is quite simple: every bulk field φ corresponds to an operator

O in the gauge theory. This allows us to extract a useful entry in the AdS/CFT dictionary,

namely how the observables of the gauge theory are encoded in the bulk. This has been worked

out in the seminal papers [32, 41] within few months after [1] appeared, and the one-to-one

identification between the two sides developed therein provided important early checks of the

AdS/CFT correspondence.

One natural set of observables is given by expectation values of local gauge invariant operators

(constructed as single trace of a local product of super-Yang-Mills fields); these correspond to

supergravity fields in the bulk. More specifically, since local operators are associated with the

UV of the theory, it is not surprising that expectation values of such operators correspond to

the asymptotic behavior of the corresponding bulk fields. In particular, a normalizable bulk

field which falls off as φ ∼ φ0/r
∆ corresponds to an operator O with scaling dimension ∆

(which depends on the mass and type of the field and spacetime dimension), with expectation

value 〈O 〉 = φ0. The rate of the bulk field fall off is related to the nature on the field theory

perturbation.24

To substantiate this and obtain more general correlation functions, imagine adding a ‘source’

term to the CFT Lagrangian,
∫
d4xφ0(x)O(x). Its exponential gives a generating function

of correlation functions (i.e. 〈O(x) · · · O(y) 〉 is obtained by taking functional derivatives with

respect to φ0’s and then setting φ0 = 0), which one can naturally associate with the partition

23 More precisely, [40] assume the bulk satisfies the null energy condition (and the null generic condition).
24 More specifically, irrelevant (in the UV) perturbations of the field theory correspond to massive modes in

supergravity (which fall off quickly), marginal perturbations correspond to massless modes, and relevant per-

turbations correspond to modes with negative mass squared; unlike for asymptotically flat spacetime, the latter

is allowed in a certain range of masses (above the so-called Breitenlohner-Freedman bound) [42, 43] without

producing any instability.
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function of the string theory, as a functional of the boundary condition φ0,

Zstring[φ0] = 〈 e
∫
d4xφ0O 〉 (3.8)

In effect, one can rephrase the AdS/CFT duality in terms of equivalence between the field theory

partition function (viewed as function of sources for each operator) and quantum gravity partition

function (viewed as a function of boundary conditions for each bulk field). In the classical limit

one can approximate the LHS by the exponential of the classical action for the solution specified

by the boundary condition φ0. One can then think of correlation functions in the gauge theory

between operators O inserted at certain points on the boundary as propagation of corresponding

fields in the bulk between these points.

To determine which boundary operators map to which bulk fields, one can use the sym-

metries. The two objects must have the same Lorentz structure and quantum numbers. For

example, conserved currents in the gauge theory are associated to global symmetries, so the

corresponding sources act as external background gauge fields, which are boundary values of a

dynamical gauge field in the bulk. From the gravitational standpoint, the most crucial example

of this correspondence is that bulk gravitons hµν naturally couple to boundary stress energy

momentum tensor T µν . One can think of this as a generalization of the familiar fact that the

ADM mass in asymptotically flat spacetime can be extracted from the leading radial fall-off in

the metric. (For a more detailed review, see e.g. [44].)

One might naively expect that just knowing the asymptotic values of bulk fields does not

tell us much about their structure in the bulk; but it turns out that the situation is in fact much

better in AdS5 × S5 than it would be in flat spacetime, because AdS effectively acts like a lens

which refocuses some information to be extractible from just the leading fall-offs.25 Nevertheless,

we can gain far more information about the bulk physics from less local observables, such as the

above-mentioned correlation functions. Roughly-speaking, the further the separation between

the insertion points on the boundary, the greater its sensitivity to physics deeper in the bulk, as

might indeed be anticipated from the scale/radius duality. For 2-point function of high-dimension

operators, one may use a WKB approximation to express the bulk Green’s functions in terms

of geodesics; as clear from Fig. 1 (green curves), these typically penetrate deeper for greater

separation of endpoints. We will mention an interesting application of this in §3.4.

Another important class of nonlocal observables in the gauge theory are Wilson loops, W (C),
specified by some closed loop C on the boundary. Their expectation values for example allow

us to compute the quark anti-quark potential (with the quark and anti-quark trajectories given

by C). A Wilson loop is defined by a path-ordered integral along C of a gauge connection Aµ,

schematically26 W (C) = Tr
[
P exp

(
i
∮
C A
)]

with the trace taken over some representation of the

25 For example, using operators involving S5 spherical harmonics, one can read off the size of a small (compared

to `) spherical object from local field theory expectation values [45]. This may seem surprising in light of the

scale/radius duality which would naively suggest that any information about sub-AdS scales would require highly

delocalized observables in the gauge theory, but the operators we use for this task have very high dimension,

which gives large dispersion for an actual ‘measurement’ [46].
26 In the AdS/CFT context, this needs to be generalized by also including the gauge theory scalars [47].
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gauge group. Though this seems like quite a complicated object in the field theory, it turns out

that its bulk dual is remarkably simple: For the fundamental representation, the leading order

contribution comes from the proper area of a string worldsheet in the bulk [47], which describes

a 2-dimensional27 extremal surface anchored on C. Ultimately this correspondence is rooted in

the deep connection between a gauge theory flux tube and a bulk string, which we will revisit in

§4. For simple enough cases one can compute 〈W (C) 〉 exactly in the gauge theory, and confirm

precise agreement with the bulk string worldsheet area calculation [49].

The above examples demonstrate that interesting field theory observables can actually be

obtained from elementary geometrical bulk constructs, such as areas of extremal surfaces. This

has proved invaluable in computing these field theoretic quantities, since the dual calculation

is typically much easier than attempting a more direct approach. Conversely, if one were given

this ‘data’ in a field theory with a holographic dual, one could in principle use it to probe the

corresponding bulk geometry.

Entanglement entropy: Before proceeding with the early checks of AdS/CFT, we pause

briefly to mention a more recently-considered (and rather different type of) quantity in the field

theory, which is nevertheless thematically related to our story by having a simple geometric

dual description: the entanglement entropy. Entanglement is arguably the most non-classical

manifestation of quantum mechanics, which can be used as a resource for performing tasks that

cannot be accomplished with classical resources, such as quantum teleportation. It is actually

used in a wide range of subjects, including quantum information theory, quantum optics, con-

densed matter physics, etc.. A particularly convenient measure of entanglement is entanglement

entropy, specified by a subsystem A and a total state ρ of the system. Formally, it is defined as

the Von Neumann entropy SA = −Tr (ρA log ρA) of the reduced density matrix ρA obtained by

tracing ρ over the complement of A. In a local field theory, the subsystem A can be specified by

a given spatial region, bounded by an ‘entangling surface’ ∂A. Entanglement entropy of A then

contains information about the spatial distribution of quantum correlations in the system.

In all but the simplest systems, entanglement entropy is however extremely difficult to com-

pute, and even harder (if not impossible) to measure, being sensitive to detailed correlations in

the state. Remarkably, here too AdS/CFT comes to the rescue. It was proposed by Ryu &

Takayanagi [50] that in static situations, the entanglement entropy SA is given by quarter of the

area (in Planck units) of a certain co-dimension 2 bulk surface, analogously to the black hole

entropy. The surface in question is a minimal surface at constant time which is anchored on

the entangling surface ∂A. This proposal, recently proved [51] using Euclidean path integral

techniques, has rendered many non-trivial statements in the field theory (such as the strong

subadditivity property of entanglement entropy [52]) beautifully manifest in the geometrical lan-

guage. Since entanglement entropy is a well-defined quantity even in time-evolving situations

(corresponding to time-dependent bulk geometries), the construction of [50] is unnecessarily re-

27 In fact, certain other representations can be better characterized using D3-branes, and hence by corresponding

3-dimensional extremal surfaces [48].
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strictive. To overcome this limitation, [53] generalized the proposal to arbitrary asymptotically

AdS bulk geometries, using the guidance of general covariance: the entanglement entropy is given

by the (quarter-)area of a bulk co-dimension 2 extremal surface anchored on ∂A.28

There seems to be something quite deep and mysterious about this relation between quantum

entanglement on the one hand, and classical geometry on the other, which we will revisit in §4.

At a more pragmatic level, we note that as in the case of more conventional CFT observables,

entanglement entropy allows us to probe the bulk geometry. In particular, if we know the areas

of extremal surfaces anchored on a family of entangling surfaces, we can in certain circumstances

invert this relation to determine the bulk metric.

States and geometries: Having discussed how one can probe the geometrical structure of

asymptotically AdS5×S5 spacetimes using various quantities in the gauge theory, let us consider

from the gauge theory point of view what gives rise to the bulk spacetime deformations in the

first place. In the gauge theory, the only state which respects all the symmetries is the vacuum;

hence pure AdS5×S5 corresponds to the vacuum of the field theory. If we consider some excited

state, the symmetries will be broken, so correspondingly the bulk geometry should be deformed

as well. However, to see this at the classical geometry level, we need the energy of the excitation

to scale as N2, since the 10-dimensional Newton’s constant in AdS units is GN = g2
s `

8
s ∼ `8/N2.

Lower energy (parametrically smaller than O(N2)) excitations will not backreact on the

geometry; instead, they can be described by fields propagating on AdS5 × S5. But these are the

quantities we have already considered above. As shown by Witten [32], all linearized supergravity

states (perturbations of AdS5 × S5) have corresponding states in the gauge theory; for example

the Kaluza-Klein modes of the supergravity fields in the bulk are identified with certain simple

operators in the CFT, with excitation spectra matching on both sides. As one increases the

energy of the excitations to O(N), one encounters an interesting effect: massless string states

with high angular momentum J blow up into spherical D3-branes whose size grows with J .29

This gives rise to a new class of supersymmetric states, called ‘giant gravitons’, which can wrap

inside the internal sphere [58] or the 3-sphere in AdS [59]. They are stabilized by the angular

momentum, but there is a maximal angular momentum J ∼ N for which they can still ‘fit’

into the spacetime. These states were shown to be in one-to-one correspondence with classical

supersymmetric solutions in the super-Yang-Mills carrying the same quantum numbers, but

additionally they provided an explanation of the previously mysterious stringy exclusion principle

[60] which had been derived from the CFT side: because the relevant states are constructed from

traces of products of N × N matrices, there can be at most N independent ones. Since this

28 There are two additional specifications which give the holographic entanglement entropy a more non-local

flavor: 1) In case of multiple extremal surfaces anchored on ∂A (which can easily happen in e.g. black hole

geometries), the requisite surface is the one with the least area. 2) More intriguingly, the extremal surface should

be homologous to the specified region A (though this property needs further qualifications, as illustrated in [54]).

While harder to prove, this covariant prescription has however also passed many non-trivial checks; for example,

it implies strong subadditivity [55] and it is non-trivially consistent with field theory causality [56].
29 This is related to the ‘Myers effect’ [57] wherein polarized D-branes blow up into a sphere.
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match is nonperturbative in 1/N , it provided a nice check that the duality (3.3) remains valid

even at finite N .

Let us now return to the higher-energy (∝ N2) gauge theory excitations which do deform

the bulk AdS5 × S5 geometry. In fact, since there are O(N2) degrees of freedom in the gauge

theory, such excitations are rather natural: we can obtain them for instance by exciting each

degree of freedom by some small amount. Although the precise identification of a specific O(N2)

excitation in the field theory in terms of the bulk geometry is in general very difficult, one can in

fact retain full control over certain special, but nevertheless rather rich, class of supersymmetric

states, describable by free fermions [61]. These turn out to have an explicit one-to-one mapping

to the so-called LLM geometries [62], specified by arbitrary closed curves in 2-dimensions (which

correspond to the Fermi surface of the fermions, and simultaneously prescribe the boundary

conditions which uniquely determine the 10-dimensional bulk geometry). These geometries are

smooth and horizonless, but can have interesting topological structure.

For more general excitations, we usually content with considering various coarse-grained fea-

tures of their bulk duals. Such excited states (in the boundary CFT) have a non-zero expectation

value of the (boundary) stress tensor T µν , which can be thought of as arising from the bulk metric

being deformed away from pure AdS. The stress tensor, then, provides a useful characterization

of the bulk geometry.30 We have already encountered an example, namely the light-cone states

of [39] being dual to gravitational shock waves in the bulk, but such states are still rather special.

The most generic state with energy of O(N2), which by the 2nd Law of Thermodynamics

will be in thermodynamical equilibrium, in fact corresponds to a bulk black hole. This is easy to

see at the most basic level, as the end state of a generic process: in the gauge theory a generic

high energy excitation will thermalize, while in the bulk, the combined effects of backreaction

and AdS attractive potential will force a generic excitation to collapse to a black hole. So,

roughly-speaking, AdS black holes correspond to thermal states in the gauge theory. This illus-

trates an important point that although the theories appearing on the two sides of the AdS/CFT

correspondence (3.3) are supersymmetric, the actual states we consider need not be. So super-

symmetry is not a necessary ingredient in mapping between the two sides of the duality. Since

apart from the above genericity argument, black holes also provide a particularly useful arena to

consider in the context of both elucidating the AdS/CFT correspondence (and hence quantum

gravity), as well as for the applications discussed in §4, we will devote a separate subsection to

this important topic.

3.4 Black holes in AdS

We have already evoked (extremal) black branes as a key step in Maldacena’s derivation [1] of

the AdS/CFT correspondence; but once in the low-energy limit, the black hole was no longer

30 One might hope that it would actually allow us to determine the bulk metric fully, since by using holographic

renormalization group ideas, one can write the metric as a radial series expansion around the asymptotic behavior

[63], but in general this series may not converge; in fact it generically leads to naked singularities in the bulk [64].
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evident: instead, we were left with a Poincaré patch of AdS (with the black brane horizon

becoming the Poincaré horizon), which we could then globally extend to the causally-trivial

global AdS geometry.

The black holes we now wish to consider are within this asymptotically AdS spacetime,

appearing as new objects.31 We will focus on a neutral, static, spherically symmetric black hole

in AdS, i.e. the global Schwarzschild-AdS5×S5 solution, which is the easiest and most illustrative

example. We will start by describing the geometry, thermodynamics, and causal structure,

then briefly discuss time-dependent context, and finally revisit the previously-discussed issue of

whether/how does the gauge theory encode the region behind the horizon.

Geometry: The Schwarzschild-AdS5 × S5 geometry describes a spherical black hole in global

AdS, trivially smeared over the S5 in a direct product structure. The solution can be obtained

either as a 10-dimensional solution to Einstein’s equations with self-dual 5-form field strength

with flux given by `, or, by reducing on the S5, as a solution to 5-dimensional Einstein’s equations

with negative cosmological constant Λ = − 6
`2

but zero bulk stress tensor. The resulting metric

is given by

ds2 = −g(r) dt2 +
dr2

g(r)
+ r2 dΩ2

3 + `2 dΩ2
5 , g(r) =

r2

`2
+ 1− r2

0

r2
. (3.9)

This describes a 2-parameter family of solutions, characterized by the AdS size ` and the black

hole size r+, related to its mass M by

r2
0 ≡

8GNM

3 π
= r2

+

(
r2

+

`2
+ 1

)
(3.10)

where GN is the 5-dimensional Newton’s constant.32 The relation (3.10) implies that for fixed

mass GNM , the black hole size r+ is smaller than it would be in asymptotically flat case, which

is consistent with what one would expect from a confining potential.

Once we have the bulk metric, it is a simple matter to find the induced stress tensor on the

boundary.33 In the present situation, this is largely fixed by the symmetries: the stress tensor

must be static and homogeneous on the S3 of the boundary Einstein static universe, namely

T µν = ρ uµ uν + P hµν , (3.11)

31 The large-mass limit of a spherical black hole wherein the horizon becomes translationally invariant, namely

the planar Schwarzschild-AdS5×S5 geometry, can in fact be obtained directly from a D3 brane system, as already

described in [1], by suitably exciting the D3 branes and then taking the low energy limit of a near-extremal black

3-brane geometry. As we will see below, such a black hole is most naturally related to Poincaré-AdS.
32 Note that for notational convenience we have relabeled our coordinates: in the r+ → 0 limit we obtain global

AdS (3.7), with the coordinate relabeling ρ→ r and τ → t.
33 One can generalize a Brown-York procedure [65] for calculating a quasilocal stress tensor on a cutoff surface

in terms of its mean curvature; this was done in a covariant form in [66] (accounting for conformal anomalies and

counter-terms), which gave an explicit prescription. Alternately, if one writes the metric in ‘Poincaré coordinates’

generalizing (3.5), then the stress tensor appears as the coefficient of the first subleading (in z) term not specified

by the boundary metric [63, 67].
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where uµ is a unit vector in the t direction and hµν is the metric of the boundary S3 (with radius

`). This describes a perfect fluid stress tensor with energy density ρ and pressure P . Computing

T µν explicitly, we find ρ = 3P = M
2π2 `3

. Note that the stress tensor is traceless, as befits a state

of the CFT, i.e. a conformal fluid.

In the large black hole limit, the horizon becomes planar (i.e. has translational symmetry),

and the solution simplifies to a form akin to the Poincaré-AdS geometry (3.2),

ds2 =
r2

`2

[
−
(

1−
r4

+

r4

)
dt2 + dxi dx

i

]
+
`2

r2

(
1−

r4
+

r4

)−1

dr2 + `2 dΩ2
5 (3.12)

which indeed reduces to (3.2) for r+ = 0; as mentioned above, this geometry can be obtained as a

near-horizon limit of near-extremal black 3-brane [1]. Although (3.12) is written in terms of both

r+ and `, we have an additional symmetry under rescaling r by α and simultaneously t, xi by

α−1, which does not change ` or the overall scale but only rescales the horizon radius r+ → α r+.

Hence (3.12) really describes a 1-parameter family of solutions, more naturally characterized by

r+/`.

The Schwarzschild-AdS geometry (3.9) can be generalized in various ways. Thanks to the

AdS asymptotics, we can have not only spherical and planar black holes, but also hyperbolic ones

[68].34 Moreover, these black holes can be charged and/or rotating (see e.g. [69] for a review).

In fact, by virtue of being in 5 dimensions, we can even have asymptotically AdS black holes

with compact horizon but non-spherical topology such as AdS black rings. The new features

compared to the asymptotically flat counter-parts come from the AdS confining potential; thus,

taking the size of these black holes to be comparable to, or greater than, the AdS size `, we get

a genuinely new behavior, as manifested by the black hole thermodynamics.

Thermodynamics: Once we know how to describe black holes in AdS, we can also elucidate

their thermodynamical properties. Note that due to the identification of the Hamiltonians, all

the thermodynamic properties such as temperature, energy, entropy, etc., are in direct correspon-

dence between the two sides. In the CFT, a large black hole then corresponds to a hot plasma

of the gauge theory degrees of freedom at the Hawking temperature. To describe black hole

thermodynamics we use the usual horizon area ∼ entropy and surface gravity ∼ temperature

relations.

Since there are two length scales in the problem, r+ and `, the temperature (which knows

both about the horizon and the asymptotics) is no longer fixed by dimensional analysis, allowing

for richer behavior compared to the asymptotically flat case, more akin in fact to a black hole in

a box [70]. In particular, the Hawking temperature of the Schwarzschild-AdS black hole (3.9) is

T =
g′(r+)

4π
=

2 r2
+ + `2

2π r+ `2
, (3.13)

34 In fact, one can construct horizons of arbitrary topology by quotienting by discrete isometries; this gives rise

to the so-called ‘topological black holes’.
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which interpolates between the asymptotically flat case for r+
`
� 1 and the planar black hole case

(3.12) for r+
`
� 1: while the temperature scales as inverse radius for small black holes, it grows

linearly with horizon radius, T ∼ 3
4π
r+/`

2, for large ones. This means that a large AdS black

hole has positive specific heat, so that it is thermodynamically stable: it cools off as it evaporates

and therefore can be in thermal equilibrium with its Hawking radiation. In this sense, AdS black

holes are much better suited to thermodynamic analysis than asymptotically flat ones.

Note that (3.13) also implies that there is a minimum-temperature spherical black hole, when
r+
`

= 1√
2
. Below this temperature, the dominant phase is described by a thermal gas of gravitons

in AdS (which, havingO(1) free energy, do not backreact on the pure AdS geometry), while above

the critical temperature it is described by the large AdS black hole. This demarcates a first order

phase transition, called the Hawking-Page transition [71]. The gauge theory on S3 × R can be

excited to any temperature, but it likewise exhibits a corresponding phase transition, which can

be viewed as a confinement-deconfinement transition when the inverse temperature of the system

becomes comparable to its size [72]. At that point, the free energy jumps from O(1) to O(N2),

as the color degrees of freedom deconfine. Although sub-AdS size black holes with negative

specific heat are not thermodynamically stable within the canonical ensemble, they are still the

most entropically favorable states in the microcanonical ensemble.35 However, when we keep the

energy rather than the temperature fixed, the corresponding state is not a thermal state in the

field theory and consequently the dual of small black holes is less well understood.

Restricting attention to a large AdS black hole, which corresponds to a thermal state in the

gauge theory, let us now revisit the question of microscopic accounting for the black hole entropy.

Although computing entropy of a strongly coupled hot plasma in the gauge theory is too difficult,

one can at least compute the thermal entropy in Yang-Mills perturbatively and compare with the

bulk entropy obtained from the black hole area. For a thermal gas with N2 degrees of freedom

at temperature T in 3 + 1 dimensional flat spacetime, the entropy density per unit volume scales

as 1
V
SYM ∼ N2 T 3. One might have worried that in the bulk 9 + 1 dimensions already a thermal

gas has entropy ∼ T 9 which can be made arbitrarily larger than T 3 at high temperature, but in

fact even the most entropic configuration, namely the planar black hole (3.12) has entropy per

unit volume (in xµ directions)

1

V
SBH ∼

`2 r3
+

g2
s `

8
s

∼
N2 r3

+

`6
∼ N2 T 3 . (3.14)

This gives another non-trivial check of the gauge/gravity duality: the gauge theory does indeed

have (parametrically) just enough degrees of freedom to describe a higher-dimensional gravita-

tional theory.

35 There are two caveats: First of all, when the black hole becomes sufficiently small, it is no longer favorable

for it to be smeared on the S5: it becomes dynamically unstable to a Gregory-Laflamme type instability [73]

and for r+/` ≈ 0.4 it localizes on the S5 [74]. In the gauge theory this corresponds to a much more complicated

state with the scalar vevs turned on. Secondly, even a 10-dimensional localized black hole is not stable in the

microcanonical ensemble once it becomes parametrically small, namely for r+/` < N−2/17 [75].
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To see the exact match of entropies between the bulk black hole and the thermal gas of

the gauge theory is however far more difficult, because unlike in the extremal D-brane system

we discussed in §2, here masses change with coupling, so the number of states computed at

weak coupling does not agree with the number of states at strong coupling in the gauge theory.

If one calculates the number of states at weak coupling including the coefficient, one obtains

SBH = 3
4
SYM |gYM=0 [76].36

Causal structure: So far, we have not touched on one important feature of the Schwarzschild-

AdS solution (3.9): just like its asymptotically flat counterpart, its global completion has two

asymptotic regions, connected by an Einstein-Rosen bridge. The causal structure interpolates

between that of Schwarzschild at small r and AdS at large r, so the Penrose diagram looks

similar to that of Schwarzschild, but with scri I ± being timelike rather than null.37 This has

an interesting implication for the dual description. According to the picture of CFT living on

the boundary of AdS, the presence of two disconnected boundaries suggests that the black hole

is described by two CFTs which do not interact with each other, but are in some entangled state

[78]. This can be put on a more formal footing using the thermofield formalism [79], which has

been very useful in trying to probe the geometry deeper.

The black hole / thermal state correspondence is however too coarse to elucidate the most

intriguing quantum gravitational questions. For this purpose we wish to understand the map-

ping at a much finer level. Ultimately we hope to understand how the gauge theory ‘sees’ the

singularity, but as a first step it is useful to understand what perturbing this state in various

ways does to the dual description.

Non-equilibrium black holes: Hitherto, we have been talking about static black holes. The

easiest departure from this equilibrium context entails small perturbations. For the conventional

asymptotically flat black holes, the evolution of a deformed black hole is well-described by so-

called quasinormal modes [80], specified by a discrete set of complex frequencies characteristic

of the black hole (and independent of the details of the perturbation). Perturbations of asymp-

totically flat black holes decay exponentially on a timescale inversely proportional to black hole

mass (with a late-time power-law tail). One can think of the perturbations as fields which either

fall through the horizon or escape off to infinity.

In AdS, the confining potential prevents fields from escaping off to infinity, but they can still

decay through the horizon. This again gives a discrete set of complex frequencies, characteristic

36 The fact that the two answers do not match precisely is not a contradiction, since they were computed in

different regimes. (We indeed expect that the strongly-coupled gauge theory answer is smaller than the weakly-

coupled one, since increasing the coupling effectively raises the potential energy of the system, so there are fewer

states at a fixed energy.) Moreover, if one computes the leading corrections, the answers are consistent with

smooth interpolation in gYM, though why the two limits differ by such a simple factor has not been explained.
37 Strictly speaking, if one fixes a conformal compactification so as to render the boundaries as straight vertical

lines, one no longer has the freedom to keep the spacelike singularity drawn as straight horizontal line [77]; instead

the singularity bends inward.
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of the AdS black hole. Quasinormal mode frequencies for scalar perturbations were initially

computed in [81], which confirmed that the imaginary part (corresponding to the inverse of

the decay timescale) grows linearly with temperature (equivalently r+) for large black hole, but

linearly with horizon area (equivalently, scattering cross-section) for small black holes. One might

be puzzled as to why an attribute of small AdS black holes does not approach the corresponding

attribute of asymptotically flat black holes; the resolution here is that the attribute in question

(namely its quasinormal mode frequencies) crucially hinges on the boundary conditions, and

since the modes concern late-time decay, there is no causal obstruction to sensing the AdS

boundary. Interestingly, the time dependence is simpler in AdS than in asymptotically flat case:

the decay remains exponential at arbitrarily late times. In the dual field theory, perturbing the

black hole corresponds to perturbing the state away from thermal equilibrium, so quasinormal

modes characterize (e.g. predict the timescale for) approach to thermal equilibrium. While this is

difficult to verify by direct computation within the strongly-coupled field theory, it is consistent

with expectations.

Quasinormal modes for various AdS black holes were studied extensively (for a review see

[82]), but perhaps the most interesting point is that for a planar black hole (3.12), there are

several ‘massless’ (or ‘hydrodynamic’) quasinormal modes, those with arbitrarily low frequencies

(and therefore arbitrarily long timescales for decay) at long wavelengths. This will come to play

an important role in our discussion in §4.1, where we associate them with hydrodynamic sound

and shear modes of the dual conformal fluid. In describing the long-wavelength excitations of a

black hole in terms of a boundary fluid, the fluid speed of sound one expects from (3.11) and con-

formal invariance is vs = 1/
√

3. This might at first sight seem unlikely to emerge from the gravity

side where the only natural speed is the speed of light, but remarkably, that is just what the

bulk physics conspires to predict! Actually quasinormal modes provide a great tool for studying

properties of near-equilibrium strongly coupled quantum systems; in particular we can ascertain

their response and transport coefficients, which bolstered the connections between horizon dy-

namics and hydrodynamics [83], eventually culminating in the fluid/gravity correspondence [64]

which we will discuss further in §4.1.

Of course, a far more interesting departure from equilibrium is a strongly time-dependent

black hole. One crutch to building intuition has been to use mock time-dependence by considering

a static black hole in a set-up where the timelike Killing field is not manifest. For example, one

can boost a global Schwarzschild-AdS black hole38 or consider it in a restricted region such

as the Poincaré patch.39 Finally, there do exist explicit genuinely time-dependent black hole

solutions which retain sufficient symmetries. The most oft-used one is Vaidya-AdS, describing an

38 In fact, this solution was used in [39] to construct the gravitational shock wave by taking an infinite boost

limit of a global Schwarzschild-AdS black hole with fixed total energy. In this limit the solution is no longer

static.
39 The corresponding CFT dual on R4 was called ‘conformal soliton’ in [84] and considerations of its causal

structure [85] (showing that while the entropy is time-independent, the area of the event horizon of the restricted

solution grows and diverges at finite time) indicate that event horizon area may not be a good indicator of entropy

in strongly time-dependent situations.
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imploding spherical null ‘shell’ (of arbitrary density profile) which collapses to a black hole. This

solution is sourced by null dust stress tensor, and interpolates between pure AdS before/inside

the shell to Schwarzschild-AdS after/outside the shell. When the shell is infinitesimally thin,

the collapse occurs maximally suddenly, so this offers a good playground for studying rapidly

evolving geometries. In the dual gauge theory, this describes a particular form of global ‘quantum

quench’ [86]: namely a sudden disturbance of the system (usually implemented by deforming the

Hamiltonian).

From quantum gravitational standpoint, a particularly intriguing time-dependent setup is

one in which a black hole collapses and then fully evaporates via Hawking radiation, for under-

standing the dual description completely would allow us to resolve the black hole Information

Paradox. Being described by a unitary gauge theory, such a bulk process would necessarily be

unitary, suggesting that ‘information is not lost’ – but of course one also wants to see explicitly

where it went (one natural guess being that it remains encoded in subtle correlations in the

Hawking quanta). Indeed, the guarantee of unitarity provided an early example of what the

gauge theory can teach us about gravity, despite the lack of computational control at strong

coupling. However, understanding the detailed process turns out to be extremely difficult. Since

large black holes (which are homogeneous on the S5) are thermodynamically stable, we need

to consider sufficiently small black holes; these are not only more complicated geometrically,

but also do not have a nice description in the gauge theory – even the encoding of geometry in

the vicinity of such small black holes is ill-understood due to the large non-locality of the bulk-

boundary map.40 More importantly, we would also need to understand what happens inside the

black hole. This is an interesting chapter in itself, to which we turn next.

Inside the horizon: So far, we have discussed physics pertaining to black hole exterior. Since

this is visible to an asymptotic bulk observer, it is not so surprising that we can describe these

features in the dual gauge theory. On the other hand, the most interesting stuff happens inside

the horizon: indeed, much of the motivation for considering black holes in AdS was to gain

insight into the strongly quantum-gravitational effects near the singularity through the gauge

theory description. It is an important question, then, whether (and how) the gauge theory ‘sees’

past the horizon. Indeed, it was often suggested in the early days41 of AdS/CFT that the dual

description stops at the horizon – that the gauge theory cannot encode effects taking place inside

the black hole. This supposition, however, is actually more mystifying than the opposite one,

since the event horizon is defined globally and thus behaves teleologically, so that the AdS/CFT

40 Alternately, one could consider a large black hole, but ‘drain away’ the Hawking radiation by modifying the

AdS boundary conditions from reflecting to e.g. transparent, or by deforming the CFT by suitable operators,

thereby allowing a large black hole to evaporate. Although complete evaporation would still have to pass through

a small black hole stage subject to the above-mentioned problems, to unravel the Information Paradox, one

need not consider evaporating the black hole: one can repeat a process of letting a large black hole accrete and

evaporate some small fraction of its mass, say in a cyclic manner, as discussed in [87]. However one then has to

take into account the fact that one is no longer considering a closed system.
41 This belief has recently returned in far more concrete form with the ‘firewall’ proposal, further mention of

which we postpone till §4.2.
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mapping would have to be maximally temporally nonlocal in order to ‘know where to stop’. It

is easy to devise a simple gedanken-experiment [88] wherein we ‘probe’ physics inside AdS via

some non-local gauge theory operator (such as a large decorated Wilson loop, dubbed ‘precursor’

in [89]), and afterwards excite the state in a way which in the bulk collapses a sufficiently large

black hole whose event horizon emcompasses the event which we have already probed.

While the previous argument indicates that at least in some situations the gauge theory

should encode physics inside the black hole just as well as in causally trivial situations, it leaves

the precise nature of such encoding obscure. There have of course been many attempts to

reconstruct the geometry (and its breakdown) inside the horizon with a variety of CFT probes,42

but there is a wide realm left unexplored, partly due to insufficient tools to overcome the various

limitations of existing techniques. The question of understanding precisely what happens to an

observer who falls into a black hole of course has wider appeal and urgency beyond the AdS/CFT

context; but in the AdS/CFT setting this question is placed on a more concrete footing. Though

better understanding of the precise holographic map is essential, the amount of recent attention

this problem has received invites optimism for forthcoming progress.

3.5 Generalizations

So far, we have been describing just one particular case of the AdS/CFT duality, namely (3.3).

There are however many ways in which the correspondence can be extended and generalized. The

earliest and most immediate one was to consider different number of dimensions, i.e. describe a

dual of a gravitational theory on AdSd+1 (times a compact manifold) in terms of a d-dimensional

CFT. Another straightforward type of generalization is to start with (3.3) and deform both

sides in a controlled way. If we add extra terms to the Lagrangian, the gauge theory is no

longer conformal; it will undergo renormalization group flow (which gives an effective description

at a given energy by integrating out the higher-energy degrees of freedom). This is directly

mimicked by the behavior of the bulk geometry in the radial direction.43 Depending on the type

of deformation, we can get quite a rich set of possibilities, including ones where the low-energy

physics is confining, massive, chiral symmetry breaking, etc.. One can also replace the S5 by

any other Einstein manifold or a quotient of the S5, which gives rise to more complicated gauge

theories. More interestingly, one can even consider different asymptotics.

42 An early idea [90] was to use correlation functions for probing physics behind the horizon. This was explicitly

implemented in [77] (see also [91]) which identified the CFT signature of the black hole singularity using ana-

lytically continued correlators of high-dimension operators. More direct approach [92] used D-branes as probes,

described in terms of the dynamics of rolling scalar fields in the dual gauge theory. A separate set of ideas [93]

is to express a local bulk operator (including those inside the horizon) in terms of boundary operators. While

this may not be possible in general, the fact that gravitational Hamiltonian is a pure boundary term allows us to

relate operators probing a collapsing black hole to earlier boundary ones using boundary evolution [37].
43 One of the initial checks involved RG flows with a conformal fixed point in the IR, whose bulk dual interpolates

between the original AdS asymptotics and another (smaller size) AdS, whose radius correctly accounts for the

smaller number of IR degrees of freedom [94]. In fact, in static spacetimes one can express the RG flow equation

in terms of bulk Einstein’s equations [95].
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These extensions provided many further tests of the correspondence as the salient features

one expects in the gauge theory were in each case faithfully mimicked by the gravity side. We

will elaborate on a few of these developments below, primarily to exemplify the robustness of the

gauge/gravity duality, and to give the reader some feel for how far one can wander away from the

specific example (3.3). The following is certainly not meant to be an exhaustive list; numerous

further examples are reviewed in [23] or more recently in e.g. [25]. The main point is that the

gauge/gravity duality really refers to a broad class of dualities. We will see in §4 that these allow

for a rich enough structure to cover a vast arena, and in fact bear on much of everyday physics.

Other dimensions: Generalization to other dimensions was apparent from the very outset: [1]

explored a number of other examples of the AdS/CFT duality besides (3.3). Instead of starting

with string theory, one can start with ‘M-theory’ (an 11-dimensional theory whose low-energy

effective action is that of 11-dimensional supergravity). The fundamental objects of M-theory

are M2-branes and M5-branes. We can consider the low-energy limit of a stack of N of these, for

which much of the development indicated in §3.1 carries through. The near-horizon geometries

that we obtain in these cases are AdS4 × S7 with radius ` = 1
2
RS7 ∼ `pN

1/6 for M2-branes

and AdS7 × S4 with radius ` = 2RS4 ∼ `pN
1/3 for M5-branes. M-theory on these spacetimes

is then dual to a 3-dimensional conformal field theory (the so-called ABJM theory [96]) and a

6-dimensional (0, 2) conformal field theory, respectively. One can also start with string theory

compactified (on T 4 or K3) down to 6 spacetime dimensions. Take Q5 � 1 D5-branes wrapped

on the 4 compact dimensions, giving rise to a D-string in the remaining 6 dimensions, and add

Q1 � 1 D1-branes coincident with this string. In the low-energy limit this system is described

by a 2-dimensional (4, 4) superconformal field theory, and the near-horizon geometry of the

resulting 6-dimensional black brane is AdS3 × S3 with radii ` = RS3 ∼ `s (g2
6 Q1Q5)1/4. Further

possibilities were also mentioned in [1], involving AdS3 × S2 ×T 6 and even AdS2 × S2 ×T 6 (the

latter conjectured to be equivalent to certain quantum mechanical system).44 Although the dual

field theory is not as well understood in all these cases as for the 4-dimensional super-Yang-Mills

theory of (3.3), the bulk physics is quite analogous.

One notable feature of the AdS3 case (keeping the internal modes unexcited) is that the

geometry remains very simple: in 3-dimensions there are no propagating gravitational degrees of

freedom, which means that any negatively curved Einstein space is locally AdS3. Nevertheless,

unlike asymptotically flat 3-dimensional spacetimes, AdS admits (the so-called BTZ) black hole

solutions [98], which can be obtained as quotients of AdS3 but still share many analogous proper-

ties with their higher-dimensional cousins. Since the BTZ geometry is algebraically much simpler

(and in fact, being locally pure AdS, does not receive any higher-curvature corrections45), it has

provided quite a useful playground for studying features of black holes in a controlled setting.

44 One should also mention another nonperturbative realization of the holographic principle, the BFSS matrix

model [97], which conjectures duality between M-theory in infinite momentum frame and the large-N limit of a

supersymmetric matrix quantum mechanics describing D0-branes.
45 As a consequence, the black hole entropy counting analogous to (3.14) now matches the field theory dual

exactly.
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Asymptotically locally AdS: A relatively mild, but rather useful, generalization of the stan-

dard AdS/CFT correspondence is to put the field theory on a curved background different from

the conformally flat ones we have been considering. As is well-appreciated, field theories on

curved backgrounds provide a useful step towards elucidating quantum gravity. Even in in-

nocuously mild contexts, we uncover many fascinating effects, such as particle production, vac-

uum polarization, etc.. However, technical limitations have previously restricted such studies

to weakly-coupled field theories, whilst we expect further novel effects at strong coupling. It

is particularly interesting to study thermally excited states, and more ambitiously ones out of

equilibrium (wherein we cannot take recourse to Euclidean techniques). In all these regimes,

AdS/CFT provides an excellent laboratory. Since the background metric in gauge theory is

non-dynamical (i.e., it does not need to solve any field equation, and correspondingly the field

theory stress tensor does not produce any backreaction), we have a large amount of freedom at

our disposal; for example, we can put the field theory on any black hole background. The chosen

background then provides boundary conditions for the bulk dynamical spacetime, and by solving

bulk Einstein’s equations we can read off the requisite boundary stress tensor (see e.g. [44] for a

detailed review), which allows us to extract the essential field theory physics; see [99] for a good

overview of recent progress in this direction.

Other asymptotics: For some, the excitement at the profound and far-reaching nature of

AdS/CFT was tempered by the regret that (3.3) pertains only to asymptotically AdS bulk

spacetimes. We don’t live in AdS, they remarked, but wouldn’t it be nice to describe our world

holographically? This sentiment motivated the early efforts to obtain a holographic correspon-

dence for spacetimes with asymptotics other than AdS. One obvious idea is to take a further limit

within the AdS/CFT correspondence. The earliest attempts involved formulating flat spacetime

holography (e.g. defining a scattering matrix) by considering processes happening on length scales

much smaller than ` [100–102]. However, here we soon lose control over the gauge theory de-

scription, as anticipated from the UV/IR duality (though this has been recently revisited in e.g.

[103, 104], the latter recasting bulk S-matrix usefully in terms of a Mellin amplitude in CFT).

One ingenious limit which however does allow a more controlled description is the Penrose

limit [105], of zooming in on a null geodesic in the spacetime. This generates a plane wave

spacetime, considered by [36], whose boundary is actually one-dimensional and null. In the

gauge theory, this limit corresponds to a large-charge sector of the theory, which enables one to

use perturbation theory on both sides and thereby retain computational control.46 In particular,

one can reproduce the complete spectrum of string oscillations in this spacetime. While the

contingency of a d > 2 dimensional spacetime admitting only 1-dimensional conformal boundary

is unusual, the plane wave spacetimes are still perfectly physically sensible geometries in terms

of their causal properties: like AdS itself, they are stably causal (but not globally hyperbolic47).

46 The maximally supersymmetric plane wave solution of supergravity [36] in fact provides the simplest solvable

example of a sigma model with Ramond-Ramond background.
47 The fact that AdS is not globally hyperbolic is not a problem for the AdS/CFT correspondence, since initial

conditions on any ‘Cauchy slice’ are supplemented by reflecting boundary conditions at the boundary, rendering
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It is interesting to note that AdS/CFT in fact compels us to relax causality requirements as

far as possible in the causal hierarchy: one can obtain physically sensible field theories (such as

those with lightlike non-commutativity considered in [106]) whose bulk dual is causal but not

distinguishing.48 This means that although such spacetimes come arbitrarily close to having

closed causal curves (and therefore one might have worried that quantum fluctuations could lead

to pathological behavior), the well-posedness of the field theory dual effectively protects the bulk

from causal paradoxes.

From the cosmological standpoint, it would be most desirable to obtain holography for

spacetimes with positive cosmological constant. This has motivated the so-called dS/CFT cor-

respondence [107] (see also [108]), which attempts to relate dynamical quantum gravity on de

Sitter to a Euclidean CFT ‘living on’ de Sitter scri. However, although at a superficial level,

de Sitter seems straightforwardly related to AdS, the different causal character of the two situa-

tions inhibits the utility of the analogy much beyond a kinematic level. More severely, in string

theory, obtaining de Sitter scri is problematic due to quantum instability, manifested in chaotic

nucleation of bubbles of metastable vacua with lower cosmological constant [109]. As a result,

the dS/CFT correspondence is at a far less solid footing as the AdS/CFT correspondence. One

can however utilize properties of a CFT for useful results bearing on cosmology, such as calculat-

ing non-gaussianities of primordial fluctuations in single field inflationary models by analytically

continued 3-point functions [110]. There have also been many efforts of embedding an inflating

geometry within AdS such as [111], but here one faces the typical problem of not having sufficient

handle on the dual description in the gauge theory.

Though obtaining a precise holographic duality for spacetimes with asymptotics other than

AdS remains an ongoing effort, the goal of this endeavor has mostly shifted away from trying to

describe ‘our’ universe holographically, instead focusing on elucidating the general structure of

the correspondence, to understand the guiding principle behind all gauge/gravity dualities.

4 Applied AdS/CFT

As might be guessed from its breadth, the AdS/CFT duality has turned out tremendously

useful in elucidating both sides of the correspondence: we can use gravity to perform previously

intractable calculations within strongly-coupled quantum systems on the one hand, and we can

use knowledge of quantum field theories to gain insight into (quantum) gravity on the other. Both

directions are interesting from the GR perspective, since the former reveals the surprisingly vast

set of applications of general relativity, and the latter teaches us something fascinating about

gravity itself.

the Cauchy evolution in the bulk well-defined.
48 A spacetime is causal if it does not contain any closed causal curves, and distinguishing if distinct points have

distinct causal past and future sets. In the case studied in [106], all points on an entire co-dimension 1 surface

have identical causal pasts and identical causal futures, despite maintaining locally Lorentzian structure.
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4.1 Applying general relativity to other real-world systems

On the application front, one may of course object that super-Yang-Mills is a conformal field

theory, quite distinct from the ‘real-world’ systems we wish to understand. The remarkable fact

is that it nevertheless provides an invaluable toy model for studying universal quantities shared

by more familiar systems, as well as for exploring new classes of strongly coupled phenomena.

Applying this philosophy to quantum chromodynamics has led to the fruitful synthesis of lattice

QCD and heavy ion phenomenology with gauge/string duality via the AdS/QCD program; for a

concise overview see [112], and for more extensive reviews see [113, 114]. While the potentiality

of connections between particle physics and string theory had been to some extent presaged

since the 70’s, it seems rather more surprising that one can likewise apply this philosophy to

various condensed matter systems. This program, known as AdS/CMT, has been successful

in explaining an impressive array of physical effects raging from superfluid transitions to non-

Fermi liquid behavior; for extensive reviews see e.g. [115–117]. In both of these programs, the

AdS/CFT correspondence not only provided the best (and often the only) tool to tackle the

physical problems of interest, but even more remarkably, these computations actually predict

values which agree with experimentally measured quantities49 in the real world! Both of these

programs have burgeoned into active and ongoing research areas. Below we highlight only one

aspect from each to exemplify their success, referring the reader to the above-mentioned excellent

reviews for a more complete overview of the subject.

AdS/QCD: Quantum chromodynamics, the theory of the strong interactions between quarks

and gluons, is a gauge theory based on the gauge group SU(3) (i.e. quarks come in Nc = 3

colors). Unlike super-Yang-Mills, QCD is neither supersymmetric, nor a conformal theory since

the coupling runs: at large energy scales the coupling becomes weak (i.e. QCD is asymptotically

free), whereas at low energies it is strong.50 Below a certain ‘confinement’ temperature, the

physical degrees of freedom are confined into color singlet hadrons (so thermodynamic quantities

scale as N0
c ), whereas for higher temperatures the quarks and gluons deconfine into a ‘quark-

gluon plasma’ (with N2
c scaling). At temperatures slightly above the deconfinement transition,

which are typically the relevant ones for the quark-qluon plasma created in heavy ion colliders,

the quarks and gluons are still strongly coupled. This naturally provides an excellent window

of opportunity for holographic techiques. More broadly, while at zero temperature, super-Yang-

Mills and QCD are very different, one would expect that since finite temperature breaks both

supersymmetry and conformal invariance, the two theories become more alike in that regime, as

has indeed been observed experimentally.

49 One of the early successes concern the shear viscosity of the quark-gluon plasma; holographic arguments

[118] indicate that the dimensionless ratio of viscosity to entropy density has a universal lower bound, η/s ≥ 1/4π;

gravity side (and therefore the strongly coupled N = 4 SYM) would saturate the bound, while the actual value

measured in quark-gluon plasma is only slightly above this lower bound. In contrast, it would diverge at weak

coupling.
50 This makes direct calculations extremely difficult, and the pre-AdS/CFT state of the art for low-energy

calculations was achieved by lattice computations (which however are not well suited to time-dependent context).
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Understanding confinement remains one of the important problems in QCD, so it is inviting

to study it in other theories which serve as toy models for the real world. Confinement indicates

that quarks are connected by flux tubes, with energy proportional to length. In the bulk dual,

this flux tube (the large-N version of the QCD string) stretching between the quarks is codified

by a fundamental string, which ends on the boundary at the position of the quarks.51 Hence the

thick QCD string in 4 dimensions gets described by an infinitesimally thin fundamental string

in the 5-dimensional bulk. Since the fundamental string wants to minimize its worldsheet area

(which determines its energy), it ‘hangs’ form the boundary into the bulk. We have already

seen an analogous effect manifested in Fig. 1 (green curves, which in this context would represent

snapshots of the string at a given time, and whose endpoints would represent the quarks).

While the SYM on R4 does not exhibit confinement (there is no independent length scale in

the problem), we have already seen in §3.4 that SYM on Einstein static universe does exhibit

a confinement-deconfinement transition [72]. More realistic setup involves a geometry where a

spatial circle smoothly caps off, such as the ‘AdS soliton’ constructed by [119], where the string

cannot extend beyond the bottom of the geometry. Such a geometry automatically enforces a

regime with the confining condition of energy of quark - anti-quark pair growing linearly with

their separation: if the string endpoints are much further separated than the scale determining

where the geometry caps off, the string extends along the bottom and recovers the scaling (i.e.

linear growth with quark separation) characteristic of confinement. In this way, the AdS/CFT

correspondence offers a simple picture of quark confinement.

Instead of considering a meson, one could also consider just a single quark. The bulk dual is

again a fundamental string ending on the quark. As the quark moves and accelerates, the bulk

string trails behind accordingly. One can compute its backreaction on the bulk spacetime, and

from this read off the boundary stress tensor T µν , which in turn indicates the energy-momentum

distribution in the strongly-coupled plasma through which the quark propagates. This then

allows us to study interesting features such as the drag the quark experiences in moving through

the plasma, its radiation due to acceleration, the propagation and dispersion of this radiation

through the plasma, and so on.52 It is rather intriguing that the bulk string codifies both the

quark (and its surrounding gluonic cloud) as well as the radiation it produces. In fact, cutting

off the same bulk configuration at different radial distances allows us to extract the physics of

a ‘dressed quark’, including radiation damping and effects of acceleration on the surrounding

gluonic cloud, in very simple way [121]. While from the field theory perspective these are rather

complicated and sometimes puzzling effects (such as the well-known pre-acceleration effect), the

bulk dual naturally provides neatly-packaged and automatically self-consistent description.

AdS/CMT: The utility of AdS/CFT for studying hot quark-qluon plasmas encouraged people

to explore other strongly-coupled systems. Of immediate interest are many of the ones studied in

51 More accurately, since strings are oriented, its endpoints represent a quark + anti-quark pair. The mass

of these diverges with the radial position of the string endpoints, which one can however regulate by putting in

additional D-brane in a suitable configuration, so as to terminate the string at finite distance radius.
52 For another nice review of these effects, see e.g. [120].
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condensed matter physics, not least because understanding strongly-correlated systems at finite

temperature is extremely challenging with presently-known condensed matter techniques once a

conventional description in terms of weakly-coupled quasiparticles becomes ill-suited. Moreover,

these are experimentally accessible systems which we can control, even engineer, and some may

have useful technological applications. On the other hand, the large amount of freedom in

specifying the material also suggests that we have not yet encountered all of them: there may be

novel phases with remarkable physical properties which have been hitherto overlooked. Using a

dual description is likely to systematize the enumeration of possibilities, at least in some regime,

and therefore point to new phases with novel properties which experimentalists could then look

for. In fact, in quantum optics, experimentalists are now able to design an impressive range

of cold atom systems with certain specified properties [122]. This might even allow us to do

‘experimental AdS/CFT’ once we design a real system with a gravitational dual. Finally, from

the quantum gravity standpoint, condensed matter physics can offer interesting toy models of

emergent gravity.

Although there is no obvious analog of large N in condensed matter physics, one can obtain

gravitational duals of related systems which are close enough for many purposes. The basic

ingredients are as follows: The dimensionality of the system (typically 3 or 2 since some layered

materials are effectively 2-dimensional) determines the dimensionality of the bulk; so most studies

are conducted in either 3+1 or 4+1 dimensional AdS. As in the case of quark-gluon plasma, to

describe the system at finite temperature we consider a black hole in AdS. However, here we also

typically want to keep the system at a finite chemical potential; this corresponds to charging up

the black hole, which simultaneously lets us tune the temperature independently of the energy

density. To model charged condensates, one can include a charged scalar field in the bulk system,

which exhibits more diverse behavior. To ‘latticize’ the system, we can either add periodic

sources on the boundary which breaks translational invariance, or let the symmetry be broken

spontaneously by an instability, resulting in ‘striped phases’ (see e.g. [123, 124] for pioneering

efforts in these directions). Such systems naturally implement momentum dissipation and often

allow for new (metallic and insulating) ground states with interesting transitions between them.

Once we have set up the gravitational system, we can analyze its properties in the bulk, which

translate to the corresponding properties of the boundary dual. For example, to extract transport

properties via linear response, we study linear perturbations of the black hole.

One nice example of the power of this technique is the holographic superconductor devel-

oped by Hartnoll, Herzog, Horowitz [125]. Real superconductivity occurs when Cooper pairs

condense at a critical temperature Tc, leading to infinite DC conductivity. While conventional

superconductors are well-described by BCS theory, for the unconventional ones, such as cuprates

and organics, the pairing mechanism remained obscure. To describe the basic setup in the bulk,

[125] considered an Einstein-Maxwell-scalar system which has Reissner-Nordstrøm-AdS black

hole above Tc, but a charged black hole with a scalar hair (corresponding to the condensate) be-

low Tc. One might have naively expected a requisite no-hair theorem would rule this out, but in

fact, such a contingency can indeed arise, through an instability of the Reissner-Nordstrøm-AdS
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solution. As demonstrated by Gubser [126], the effective mass of the scalar field can become

negative near the horizon, resulting in the requisite instability.

Fluid/gravity correspondence: Let us now step back from specific systems, and consider

them in a more general framework. It is well-known that strongly-coupled quantum systems

have an effective description in terms of fluid dynamics. At sufficiently long wavelengths both

the quark-gluon plasma as well as many condensed matter systems behave like fluids. They

are described by coarse-grained variables, namely the local temperature T and fluid velocity

uµ (with the usual normalization uµ u
µ = −1), along with the local densities of all conserved

charges. These quantities are slowly-varying (on the microscopic scale) functions of the boundary

spacetime coordinates xµ. The dynamics is captured by the conservation of the fluid stress tensor

∇µT
µν = 0 (and any other conserved currents), supplemented by constitutive relations which

allow us to express T µν in terms of the fluid variables.53

To study this system in terms of its gravitational dual, one needs to find bulk solutions

which would have the same freedom of specification built in. Finite temperature indicates that

we should consider a black hole, and the long-wavelength regime requires the black hole to be

planar. When T and uµ are independent of xµ, the requisite solution is simply a stationary black

hole with temperature T and horizon velocity uµ, obtained by boosting (3.12). Written more

conveniently in ingoing coordinates, we have

ds2 = −2uµ dx
µ dr + r2

(
ηµν +

π4 T 4

r4
uµ uν

)
dxµ dxν , (4.1)

which indeed gives the induced stress tensor on the boundary,

T µν = π4 T 4 (ηµν + 4uµ uν) . (4.2)

(Although for physical fluids we expect dissipative terms as well, these would not be turned on

in this stationary context.) However, to describe a fluid out of global equilibrium, we need to

promote T and uµ to functions of xµ, subject to satisfying the fluid equations. This might seem

very hard since general relativity is a non-linear theory. For example one can’t simply replace

the parameters T and uµ in (4.1) by expressions with xµ-dependence. However, in order to

be describable by a fluid, the system we want to consider must be slowly varying in xµ. This

suggests recasting Einstein’s equations in a derivative expansion and solving them order by order

in xµ derivatives, subject to regularity.

This strategy was implemented in [64], explicitly up to second order in derivative expansion.

We obtain solutions whose radial dependence is solved at the fully non-linear level, written in

terms of functions T (xµ) and uν(xµ). These must satisfy a constraint equation (obtained from

the (rµ) component of Einstein’s equations), which precisely reproduces the generalized Navier-

Stokes equations describing the fluid. Hence we see that 5-dimensional bulk Einstein’s equations

53 It is convenient to organize Tµν in terms of ‘boundary derivatives’ ∂
∂xµ ; its form in terms of the tensor

structures built out of the fluid variables is fixed by symmetries, up to a finite number of undetermined coefficients

(functions of T ) at each order. These coefficients reflect the microscopic origin of the fluid.
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(with negative cosmological constant) contain the 4-dimensional fluid Navier-Stokes equations!

For each fluid solution we have a corresponding bulk black hole solution whose temperature and

horizon velocity mimics that of a fluid. Moreover, by construction the solution remains regular

well past the event horizon [127].54 This relation is known as the fluid/gravity correspondence;

for a review written for GR audience see e.g. [128, 129].

Of course, the idea that a black hole horizon might resemble a fluid is not new; in particular

a similar notion appears in the black hole Membrane Paradigm [130, 131]. However, in the

fluid/gravity correspondence, the ‘membrane’ lives on the boundary of the spacetime and is a

perfect mirror of the entire bulk physics, not just the horizon. We have already seen that large

Schwarzschild-AdS black holes in the bulk correspond to thermal states on the boundary, and

that linearized fluctuations, described by quasinormal modes that characterize the black hole,

allow us to extract various response and transport properties of the dual thermal state near

global equilibrium [132]. The fluid/gravity correspondence [64] takes this relation to the fully

non-linear level. We can now read-off the transport and response coefficients directly from the

bulk solution; gravity in effect determines the fluid specifically.

The fluid/gravity correspondence has many useful applications. Evidently, by geometrizing

the fluid we can gain further insight into its dynamics, which despite much theoretical, ex-

perimental, and computational effort, still retains fascinating mysteries. For example, one can

try to understand turbulence using the gravitational description, further mentioned below. At

a more technical level, another intriguing consequence (in the generalized context of Maxwell-

Chern-Simons charged fluid) is the appearance of a new pseudo-vector contribution to the charge

current, which has been ignored by Landau & Lifshitz [133], but which may have potentially ob-

servable effects [134].

Brane worlds: We have touched on applications of AdS/CFT to nuclear physics, condensed

matter physics, and even fluid dynamics. Let us conclude this section by mentioning one interest-

ing application of AdS gravity as such, this time to grand unified model building. Known as the

‘brane world’ scenario, this idea was developed in parallel with the AdS/CFT correspondence,

also using string theory. Although logically separate, interconnections between the two programs

were soon discovered.

Our spacetime appears 3+1 dimensional. This innocuous-sounding statement implies not

just that photons seem to propagate in this many dimensions (i.e. at presently-accessible scales

we do not directly see any extra dimensions), but also that gravitational interactions satisfy 3+1

dimensional general relativity (approximated by the Newton’s 1/r2 force law).55 On the other

54 Despite its global definition, the teleological nature of the event horizon is rather mild in our long-wavelength

regime, allowing for explicit determination. Moreover, the pullback of the area form on the horizon gives a natural

entropy current in the boundary fluid which is guaranteed to satisfy the 2nd law of thermodynamics by virtue of

the black hole area theorem.
55 The experimental bounds on the size of extra dimensions from gravity are of course much weaker; see e.g.

[135].
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hand, as we mentioned in §2, string theory is naturally formulated in 10-dimensional spacetime,

though these dimensions need not be flat or infinite. The conventional way of making this

formulation compatible with observation has been to compactify the extra dimensions to be

smaller than the present observational bounds on them, analogously to the original Kaluza-Klein

idea. Since there is a mass gap in the KK spectrum, the zero mode of the graviton would then

look 4-dimensional up to the scale given by the gap. A new possibility arises when we consider

gauge fields living on branes, since then only gravity feels the bulk; e.g. two extra millimeter-sized

compact dimensions would allow for unification of gravity and gauge interactions at the weak

scale [136]. However, this scenario shifts the problem of large hierarchy between the weak scale

and fundamental scale of gravity to one of ‘large’ extra dimensions.

Soon after the advent of AdS/CFT, another option was suggested [137]: allowing the space-

time to have a warped product structure of AdS, as opposed to a direct product structure over

the internal space, allows for large extra directions which can nevertheless remain consistent with

observations. More specifically, while gravity (which is a manifestation of spacetime curvature)

of course feels all directions, it can be effectively localized on a subspace, as a ‘bound state’ of the

higher-dimensional graviton. Although the KK spectrum is continuous, the higher dimensional

effects can remain subleading. The explicit construction in [137] involves taking two pieces of

AdS5 and gluing them together (with the junction representing a 3-brane). This obtains a zero

mode of the graviton which is localized on the brane and the massive KK mode continuum which

corrects the 1/r gravitational potential along the brane by O(`2/r3) effects.56

This intriguing idea generated a large industry of various generalizations and computations

of its consequences, both in cosmology and in phenomenology. From the GR standpoint, there

are many interesting effects for brane world black holes, whose study was initiated in [139]. To

make contact with AdS/CFT, one can consider just one side of the brane, and describe the

physics on the brane in terms of a cut-off field theory, weakly-coupled to gravity.

4.2 Lessons for general relativity

The AdS/CFT correspondence has also revealed many new results pertaining to general relativity

itself. Although many of these could in principle have been stumbled upon without AdS/CFT,

the correspondence provided the incentive or means to look in the right direction. Here we

mention a few examples.

New solutions: We have already seen several examples wherein AdS/CFT guided exploration

leading to unexpected new solutions.57 One example are the hairy black holes uncovered in the

process of trying to understand superconductivity. Another is the large set of black hole solutions

56 An earlier construction [138] involved two branes: one with ‘our’ matter fields and another supporting the

graviton mode. The apparent hierarchy between the weak and Planck scale is then naturally generated by the

warp factor scaling exponentially with compactification radius.
57 Some can be expressed analytically, some only numerically or approximately in a perturbative expansion;

but they can be analysed and studied, often revealing interesting new physics.
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with no symmetries, arising in the fluid/gravity context (these are described in terms of lower-

dimensional fluid solution, in a derivative expansion). Yet another example, in asymptotically

locally AdS context, is a ‘flowing funnel’ solution [140, 141] which constructs a stationary black

string whose horizon is nevertheless not a Killing horizon.58 While these examples all involved

black holes, there have also been interesting smooth causally trivial solutions, such as the AdS

geons constructed in [143], which are gravitational soliton-like solutions to Einstein’s equation

with a helical symmetry.

Instability of AdS: While AdS is known to be linearly stable, the non-linear stability of AdS

has been analysed only recently, cf. [144] for a brief review. The program turned out far richer

than one might have anticipated. The first surprise came with the numerical study by Bizon

& Rostworowski [145], who considered the analog of Choptuik phenomena in AdS. One would

expect that collapsing a scalar shell (specified by its amplitude A, with some fixed profile) in AdS

will collapse to form a black hole for sufficiently large amplitude A > Ac and disperse for A < Ac.

Near A ≈ Ac we should see the usual critical behavior, at least locally.59 These expectations

turned out partly correct, but for the unexpected result of [145] that in fact after long enough

time, the black forms no matter how small A is, at least for a large class of profiles. For a

range of A’s slighter smaller than Ac, the field disperses after the first implosion but collapses

on the second one, for a range of smaller A’s the field collapses on the third implosion, and so

forth, all the way down to vanishing A. This implies that AdS is non-linearly unstable, in the

sense of arbitrarily small perturbation evolving to a black hole. Of course, from the field theory

standpoint, this might not be so surprising, since we would expect any initial disturbance to

eventually thermalize.

The initial expectation following this dramatic result was that any small deformation of

AdS will form a black hole. This is however not true either. For example the geons of [143]

mentioned above provide an explicit example of a near-AdS purely gravitational configuration

which does not form a black hole. In the Einstein-scalar system, it was soon discovered that

with different starting profiles, one could obtain e.g. time periodic solutions [146], though the

issue of characterizing the islands of stability has not been fully settled. So it appears that while

most perturbations of AdS eventually form black holes, there are small islands of stability which

remain regular. The full story is however yet to be understood.

Turbulence: As mentioned above, fluids display rather rich dynamics, including turbulence.

Hence one expects that, in the appropriate regime, event horizons of large black holes in AdS

likewise exhibit this kind of instability. From a conventional GR viewpoint, trained by the

familiar case where a black hole dissipates perturbations maximally rapidly, the idea that an

58 Although this would naively appear to violate the rigidity theorem [142], the horizon in question is non-

compact, thereby evading rigidity; in the dual language, one can have entropy production even in steady state.
59 Unlike the asymptotically flat case, though, one cannot characterize the final mass scaling in the critical

regime as M ∼ (A−Ac)γ , since the AdS reflecting boundary conditions will cause the initially-formed black hole

to accrete the rest of the scalar field as time evolves.
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event horizon could exhibit such a rich behavior may verily seem radical. Nonetheless, this

expectation has been confirmed through numerical studies [147], which construct turbulent black

holes in asymptotically AdS4 spacetime by solving Einstein equations numerically.60 They find

the expected inverse cascade, but also point to a novel property of the black hole horizon: steady-

state black holes dual to d dimensional turbulent flows have horizons which are approximately

fractal, with fractal dimension d+ 4/3.

This fascinating discovery motivated further exploration of the robustness of this behaviour

away from the fluid/gravity regime. This prompted a closer look at dynamics of perturbations

of asymptotically flat black holes, which indeed revealed a new type of horizon instability for

rapidly rotating Kerr black holes [149]. In particular, near-extremal black holes have long-lived

quasinormal modes which can excite other modes and cause them to grow exponentially for a

while. The associated energy flow exhibits an inverse cascade, analogously to turbulence for

2-dimensional fluids. This drives the black hole toward richer angular structure, and might even

have observational consequences, e.g. for gravitational wave signals and perhaps for spectra of

accretion disks.

Firewalls: The path towards the AdS/CFT correspondence was motivated in large measure

by the desire to understand black holes: since string theory can resolve singularities and render

the entire evolution well-defined, it should be able to shed light on the long-standing puzzles

of quantum gravity, such as the black hole Information Paradox: how can the laws of quantum

mechanics (specifically unitarity) be upheld by an evaporating black hole with (nearly) thermal

Hawking radiation? Direct approach was typically stymied by lack of control over the setup, but

with the advent of the AdS/CFT duality, tractability of this question suddenly appeared more

promising: the entire gravitational dynamics of collapsing and evaporating black hole (in AdS)

is fully captured by a manifestly unitary gauge theory. This means that black hole collapse and

evaporation is described by a unitary process, so information cannot be lost. This argument was

oft presented as an example of what AdS/CFT can teach us using the CFT side (as opposed to

the more usual AdS side) as a starting point.

However, when the earnest effort was made at actually seeing precisely how the informa-

tion is recovered, the situation turned out to be far more intricate and mystifying: Almheiri,

Marolf, Polchinski, and Sully (AMPS) [150] realized that the following three innocuous-sounding

assumptions are mutually inconstent: (i) information is not lost (i.e. black hole formation and

evaporation process is unitary), (ii) the radiation is emitted from the region near the horizon,

where low energy effective field theory valid, and (iii) the infalling observer encounters nothing

unusual at the horizon (i.e. Einstein’s equivalence principle is upheld). Judging that relaxing the

last assumption is the least radical, [150] proposed the ‘firewall’ – a place very near the horizon

where local effective field theory description breaks down. Naturally, this proposal generated

60 An earlier work [148] also used AdS/CFT to study 2-dimensional superfluid turbulence, discovering that the

superfluid kinetic energy spectrum actually obeys the Kolmogorov −5/3 scaling law, as it would for normal fluids

in 3 dimensions.
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a large amount of controversy, accompanied by a flurry of putative resolutions.61 These were

however addressed in [152], where the original AMPS argument was sharpened (though dissent-

ing views remain as to whether the proposed resolutions are viable), and another argument was

subsequently supplied in [153]. To date, it is still unclear what the final resolution is. Neverthe-

less, this observation already has deep implications about the encoding of bulk geometry in the

dual CFT: whilst we understand a great deal of the spacetime outside the horizon, encoding the

region inside is far more subtle.

Entanglement and geometry: The proposals of holographic entanglement entropy [50, 53]

suggest a mysterious connection between entanglement and geometry. This has been followed

by the bold proposal of [154–156] that entanglement actually creates geometry, and conversely,

disentangling the degrees of freedom associated with different spatial regions has the geometrical

effect of pinching them off from each other. Subsequently, the even more radical notion known

as “ER=EPR” [157] posits that the spacetime should admit Einstein-Rosen bridges associated

with any EPR pairs, present in general entangled states. This was partly inspired by the ob-

servation that although both Einstein-Rosen bridge (or wormhole) and EPR correlations appear

non-local, they do not violate causality. More recently, there has been mounting attention on

how the geometry of an Einstein-Rosen bridge relates to information theoretic constructs. For

example, following up on the suggested connections [158] between the distance from the horizon

to computational complexity, [159] relates the radial bulk direction to a measure of how well

CFT representations of bulk quantum information are protected from local erasures.

Entanglement structure seems to have some deep importance, but its precise nature is far

from clear. Even within quantum mechanics, there are many distinct measures of entanglement

[160, 161], with varying degrees of computability, depending on what feature one wants to focus

on. Entanglement entropy of a given subsystem, defined as the Von Neumann entropy of a

reduced density matrix for that subsystem, is well-defined given a corresponding partitioning

of the Hilbert space; but for the total system being in a mixed state this quantity counts not

just quantum correlations but the classical ones as well. For instance we recover the thermal

entropy of the system if we take our subsystem to be the entire system. Some of the other

measures characterizing entanglement, such as negativity, robustness, distillable entanglement,

entanglement cost, etc., may have more direct link with the genuinely quantum correlations

but are often less robustly defined or less easily computable. Nevertheless, apart from having a

good thermodynamic limit, the entanglement entropy has certain ‘nice’ properties such as strong

subadditivity, and correspondingly it has a simple holographic description: an extremal surface

anchored on the boundary of a given region is just about the simplest geometrical construct

associated with that boundary region.62

61 One alternative is the earlier ‘fuzzball’ proposal; see [151] for review.
62 In fact, an even simpler construct is the ‘causal wedge’ (which only depends on the bulk causal structure)

and associated quantities such as the ‘causal holographic information’ [162]. However, the corresponding objects

in the CFT dual are yet to be identified.
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Finally, let us close by mentioning another intriguing recent development suggestive of the

deep relation between entanglement entropy and geometry. Entanglement entropy obeys a ‘first

law’ which can be thought of as a quantum generalization of the ordinary first law of ther-

modynamics. Under certain special conditions, [163] have been able to use the holographic

entanglement entropy proposal to derive linearized Einstein equations in the bulk. Whether one

can obtain the full nonlinear Einstein’s equations from known laws governing the behavior of

entanglement entropy in the CFT dual remains a fascinating open problem.

5 Epilogue: onward to quantum gravity...

Our story started with black holes, and black holes have been the star player throughout, ap-

pearing at various stages in different guises. Black hole entropy counting motivated the advances

in string theory which provided the basic framework. Extremal black branes supplied the specific

context from which AdS/CFT was derived. Large black holes in AdS turned out to encode the

dynamics of fluids and describe a vast array of experimentally accessible systems. Black hole

information paradox has prompted the recent exploration of connections between quantum in-

formation and geometry. And, of course, black holes still present a crucial playground for trying

to unravel quantum gravity.

While this has been the much sought-for Holy Grail of theoretical physics, justifiably ap-

proached from many directions, the context of AdS/CFT correspondence seems particularly

well-suited to this endeavor. One hint is that a local formulation of quantum gravity is necessar-

ily problematic, as recently explained in [164]: any gravitational theory with universal coupling

to energy is charactrerized by a Hamiltonian which lives on the boundary (more precisely is

a purely boundary term on shell) – indeed, there are no local observables in quantum gravity.

Since all bulk dynamics freezes out for such candidate local theory allowing for an effective grav-

itational description, bulk gravity must then be encoded in purely boundary dynamics in the

original theory. In fact, this emergence entails further non-locality (on top of any non-locality

manifest in the original dynamics), characteristic of holographic systems. As we have seen, the

AdS/CFT duality implements this emergence quite naturally.

From a historical perspective, it is amusing to note how much black holes had risen in

prominence over the last century, starting from presenting almost an embarrassment to general

relativity, to scarcely-believed esoteric objects, to astrophysically relevant and mathematically

fascinating objects, to key constructs underlying profound dualities connecting far reaches of

theoretical physics, and finally to becoming virtually ubiquitous, in describing almost every-day

systems. This has been quite an amazing climb, but we’re not near the summit yet, and the

best is still to come! The glimpse at profound connections between quantum information and

geometry hint at more fundamental structures to be uncovered. The resulting scientific revolution

may be just around the corner, or might still take years. At present, though, novel vistas have

been revealed, and there is much to explore and relate. Perhaps the most intriguing aspect of
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AdS/CFT is that it interconnects so many previously disconnected and apparently disparate

ideas. In 100 years of general relativity, our revelations regarding the nature of space and time

have brought us to perhaps the most exciting era to be a physicist discovering the mysteries of

the Universe.
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