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We review the current state of data mining and machine learning in astronomy. Data

Mining can have a somewhat mixed connotation from the point of view of a researcher in
this field. If used correctly, it can be a powerful approach, holding the potential to fully
exploit the exponentially increasing amount of available data, promising great scientific
advance. However, if misused, it can be little more than the black-box application of com-

plex computing algorithms that may give little physical insight, and provide questionable
results. Here, we give an overview of the entire data mining process, from data collection
through to the interpretation of results. We cover common machine learning algorithms,
such as artificial neural networks and support vector machines, applications from a broad
range of astronomy, emphasizing those where data mining techniques directly resulted
in improved science, and important current and future directions, including probability
density functions, parallel algorithms, petascale computing, and the time domain. We
conclude that, so long as one carefully selects an appropriate algorithm, and is guided
by the astronomical problem at hand, data mining can be very much the powerful tool,
and not the questionable black box.

Keywords: Keyword1; keyword2; keyword3.

1. Introduction

In its broadest sense, data mining is simply the act of turning raw data from an ob-

servation into useful information. This information can be interpreted by hypothesis

or theory, and used to make further predictions. This scientific method, where useful

statements are made about the world, has been widely employed to great effect in

the West since the Renaissance, and even earlier in other parts of the world. What

has changed in the past few decades is the exponential rise in available computing

power, and, as a related consequence, the enormous quantities of observed data,

primarily in digital form. The exponential rise in the amount of available data is
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now creating, in addition to the natural world, a digital world, in which extracting

new and useful information from the data already taken and archived is becoming a

major endeavor in itself. This action of knowledge discovery in databases (KDD), is

what is most commonly inferred by the phrase data mining, and it forms the basis

for our review.

Astronomy has been among the first scientific disciplines to experience this flood

of data. The emergence of data mining within this and other subjects has been

described1,2,3 as the fourth paradigm. The first two paradigms are the well-known

pair of theory and observation, while the third is another relatively recent addi-

tion, computer simulation. The sheer volume of data not only necessitates this new

paradigmatic approach, but the approach must be, to a large extent, automated.

In more formal terms, we wish to leverage a computational machine to find pat-

terns in digital data, and translate these patterns into useful information, hence

machine learning. This learning must be returned in a useful manner to a human

investigator, which hopefully results in human learning.

It is perhaps not entirely unfair to say, however, that scientists in general do not

yet appreciate the full potential of this fourth paradigm. There are good reasons

for this of course: scientists are generally not experts in databases, or cutting-edge

branches of statistics, or computer hardware, and so forth. What we hope to do in

this review, primarily for the data mining skeptic, is to shed light on why this is a

useful approach. To accomplish this goal, we emphasize either algorithms that have

or could currently be usefully employed, and the actual scientific results they have

enabled. We also hope to give an interesting and fairly comprehensive overview to

those who do already appreciate this approach, and perhaps provide inspiration for

exciting new ideas and applications. However, despite referring to data mining as a

whole new paradigm, we try to emphasize that it is, like theory, observation, and

simulation, only a part of the broader scientific process, and should be viewed and

utilized as such. The algorithms described are tools that, when applied correctly,

have vast potential for the creation of useful scientific results. But, given that it

is only part of the process, it is, of course, not the answer to everything, and we

therefore enumerate some of the limitations of this new paradigm.

We start in §1.1 with a summary of some of the advantages of this approach.

In §2, we summarize the process from the input of raw data to the visualization

of results. This is followed in §3 by the actual application of data mining tools in

astronomy. §2 is arranged algorithmically, and §3 is arranged astrophysically. It is

likely that the expert in astronomy or data mining, respectively, could infer much

of §3 from §2, and vice-versa. But it is unlikely (we hope) that the combination

of the two sections does not have new ideas or insights to offer to either audience.

Following these two sections, in §4, we combine the lessons learned to discuss the

future of data mining in astronomy, pointing out likely near-term future directions

in both the data mining process and its physical application. We conclude with a

summary of the main points in §5.
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1.1. Why Data Mining?

Of course, what astronomers care about is not a fashionable new computational

method for ever more complex data analysis, but the science. A fancy new data

mining system is not worth much if all it tells you is what you could have gained by

the judicious application of existing tools and a little physical insight4. We therefore

summarize some of the advantages of this approach:

• Getting anything at all: upcoming datasets will be almost overwhelmingly large.

When one is faced with Petabytes of data, a rigorous, automated approach that

intelligently extracts pertinent scientific information will be the only one that is

tractable.

• Simplicity: despite the apparent plethora of methods, straightforward applications

of very well-known and well-tested data mining algorithms can quickly produce

a useful result. These methods can generate a model appropriate to the com-

plexity of an input dataset, including nonlinearities, implicit prior information,

systematic biases, or unexpected patterns. With this approach, a priori data sam-

pling of the type exemplified by elaborate color cuts, is not necessary. For many

algorithms, new data can be trivially incorporated as they become available.

• Prior information: this can be either fully incorporated, or the data can be allowed

to completely ‘speak for themselves’. For example, an unsupervised clustering

algorithm can highlight new classes of objects within a dataset that might be

missed if a prior set of classifications were imposed.

• Pattern recognition: an appropriate algorithm can highlight patterns in a dataset

that might not otherwise be noticed by a human investigator, perhaps due to the

high dimensionality. Similarly, rare or unusual objects can be highlighted.

• Complimentary approach: although there are numerous examples where the data

mining approach demonstrably exceeds more traditional methods in terms of sci-

entific return. Even when the approach does not produce a substantial improve-

ment, it still acts as an important complementary method of analyzing data,

because different approaches to an overall problem help to mitigate systematic

errors in any one approach.

2. Overview of Data Mining and Machine Learning Methods

In this section, we review the data mining process. Specifically, as described in

§1, this data mining review focuses on knowledge discovery in databases (KDD),

although our definition of a ‘database’ is somewhat broad, essentially being any

machine-readable astronomical data. As a result, this section is arranged algorith-

mically. To avoid overlap with §3 on the astronomical uses, we defer most of the

application examples to that section. Nevertheless, all algorithms we describe have

been, or are of sufficient maturity that they could immediately be applied to as-

tronomical data. The reader who is expert in astronomy but not in data mining is

advised to read this section to gain the full benefit from §3. As in any specialized
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subject, a certain level of jargon is necessary for clarity of expression. Terms likely

to be unfamiliar to astronomers not versed in data mining are generally explained

as they are introduced, but for additional background we note that there are other

useful reviews of the data mining field5,6,7. Another recent overview of data mining

in astronomy by Borne has also been published8.

2.1. Data Collection

The process of data collection encompasses all of the steps required to obtain the

desired data in a digital format. Methods of data collection include acquiring and

archiving new observations, querying existing databases according to the science

problem at hand, and performing as necessary any cross-matching or data combin-

ing, a process generically described as data fusion.

A common motivation for cross-matching is the use of multiwavelength data,

i.e., data spanning more than one of the regions of the electromagnetic spectrum

(gamma ray, X-ray, ultraviolet, optical, infrared, millimeter, and radio). A common

method in the absence of a definitive identification for each object spanning the

datasets is to use the object’s position on the sky with some astrometric tolerance,

typically a few arcseconds. Cross-matching can introduce many issues including

ambiguous matches, variations of the point spread function (resolution of objects)

within or between datasets, differing survey footprints, survey masks, and large

amounts of processing time and data transfer requirements when cross-matching

large datasets.

A major objective of the Virtual Observatory (VO, §4.5) is to make the data

collection process more simple and tractable. Future VO webservices are planned

that will perform several functions in this area, including cross-matches on large,

widely distributed, heterogeneous data.

Common astronomical data formats include FITS9, a binary format, and plain

ASCII, while an emerging format is VOTable10. Commonly used formats from other

areas of data mining, such as attribute relation file format (ARFF)a, are generally

not widely used in astronomy.

2.2. Preprocessing of Data

Some data preprocessing may necessarily be part of the data collection process, for

example, sample cuts in database queries. Preprocessing can be divided into steps

that make the data to be read meaningful, and those that transform the data in

some way as appropriate to a given algorithm. Data preprocessing is often problem-

dependent, and should be carefully applied because the results of many data mining

algorithms can be significantly affected by the input data. A useful overview of data

preprocessing is given by Pyle11.

ahttp://weka.wiki.sourceforge.net/ARFF

http://weka.wiki.sourceforge.net/ARFF
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Algorithms may require the object attributes, i.e., the values in the data fields

describing the properties of each object, to be numerical or categorical, the latter

being, e.g. ‘star’, or ‘galaxy’. It is possible to transform numerical data to categorical

and vice versa.

A common categorical-to-numerical method is scalarization, in which different

possible categorical attributes are given different numerical labels, for example,

‘star’, ‘galaxy’, ‘quasar’ labeled as the vectors [1,0,0], [0,1,0], and [0,0,1], respectively.

Note that for some algorithms, one should not label categories as, say, 1, 2 and 3, if

the output of the algorithm is such that if it has confused an object between 1 and 3

it labels the object as intermediate, in this case, 2. Here, 2 (galaxy) is certainly not

an intermediate case between 1 (star) and 3 (quasar). One common algorithm in

which such categorical but not ordered outputs could occur is a decision tree with

multiple outputs.

Numerical data can be made categorical by transformations such as binning. The

bins may be user-specified, or can be generated optimally from the data12. Binning

can create numerical issues, including comparing two floating point numbers that

should be identical, objects on a bin edge, empty bins, values that cannot be binned

such as NaN, or values not within the bin range.

Object attributes may need to be transformed. A common operation is the dif-

ferencing of magnitudes to create colors. These transformations can introduce their

own numerical issues, such as division by zero, or loss of accuracy.

In general, data will contain one or more types of bad values, where the value is

not correct. Examples include instances where the value has been set to something

such as -9999 or NaN, the value appears correct but has been flagged as bad, or

the value is not bad in a formatting sense but is clearly unphysical, perhaps a

magnitude of a high value that could not have been detected by the instrument.

They may need to be removed either by simply removing the object containing

them, ignoring the bad value but using the remaining data, or interpolating a value

using other information. Outliers may or may not be excluded, or may be excluded

depending on their extremity.

Data may also contain missing values. These values may be genuinely missing,

for example in a cross-matched dataset where an object is not detected in a given

waveband, or is not in an overlapping region of sky. It is also possible that the data

should be present, but are missing for either a known reason, such as a bad camera

pixel, a cosmic ray hit, or a reason that is simply not known. Some algorithms

cannot be given missing values, which will require either the removal of the object

or interpolation of the value from the existing data. The advisability of interpolation

is problem-dependent.

As well as bad values, the data may contain values that are correct but are

outside the desired range of analysis. The data may therefore need to be sampled.

There may simply be a desired range, such as magnitude or position on the sky,

or the data may contain values that are correct but are outliers. Outliers may

be included, included depending on their extremity (e.g., n standard deviations),
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downweighted, or excluded. Alternatively, it may be more appropriate to generate

a random subsample to produce a smaller dataset.

Outside any normalization of the data prior to its use in the data mining algo-

rithm, for example, calibration using standard sources, input or target attributes

of the data will often be further normalized to improve the numerical conditioning

of the algorithm. For example, if one axis of the n-dimensional space created by

n input attributes encompasses a range that, numerically, is much larger than the

other axes, it may dominate the results, or create conditions where very large and

small numbers interact, causing loss of accuracy. Normalization can reduce this,

and examples include linear transformations, like scaling by a given amount, scal-

ing using the minimum and maximum values so that each attribute is in a given

range such as 0–1, or scaling each attribute to have a mean of 0 and a standard de-

viation of 1. The latter example is known as standardization. A more sophisticated

transformation with similar advantages is whitening, in which the values are not

only scaled to a similar range, but correlations among the attributes are removed

via transformation of their covariance matrix to the identity matrix.

2.3. Attribute Selection

In general, a large number of attributes will be available for each object in a dataset,

and not all will be required for the problem. Indeed, use of all attributes may in

many cases worsen performance. This is a well-known problem, often called the curse

of dimensionality. The large number of attributes results in a high-dimensional

space with many low density environments or even empty voids. This makes it

difficult to generalize from the data and produce useful new results. One therefore

requires some form of dimension reduction, in which one wishes to retain as much

of the information as possible, but in fewer attributes. As well as the curse of

dimensionality, some algorithms work less well with noisy, irrelevant, or redundant

attributes. An example of an irrelevant attribute might be position on the sky

for a survey with a uniform mask, because the position would then contain no

information, and highly redundant attributes might be a color in the same waveband

measured in two apertures.

The most trivial form of dimension reduction is simply to use one’s judgement

and select a subset of attributes. Depending on the problem this can work well. Nev-

ertheless, one can usually take a more sophisticated and less subjective approach,

such as principal component analysis (PCA)13,14,15. This is straightforward to im-

plement, but is limited to linear relations. It gives, as the principal components,

the eigenvectors of the input data, i.e., it picks out the directions which contain the

greatest amount of information. Another straightforward approach is forward selec-

tion, in which one starts with one attribute and selectively adds new attributes to

gain the most information. Or, one can perform the equivalent process but starting

with all of the attributes and removing them, known as backward elimination.

In many ways, dimension reduction is similar to classification, in the sense that
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a larger number of input attributes is reduced to a smaller number of outputs.

Many classification schemes in fact directly use PCA. Other dimension reduction

methods utilize the same or similar algorithms to those used for the actual data

mining: an ANN can perform PCA when set up as an autoencoder, and kernel

methods can act as generalizations of PCA. A binary genetic algorithm (§2.4.4)

can be used in which each individual represents a subset of the training attributes

to be used, and the algorithm selects the best subset. The epsilon-approximate

nearest neighbor search16 reduces the dimensionality of nearest neighbor methods.

Other methods include information bottleneck17, which directly uses information

theory to optimize the tradeoff between the number of classes and the informa-

tion contained, Fisher Matrix18, Independent Component Analysis19, and wavelet

transforms. The curse of dimensionality is likely to worsen in the future for a similar

reason to that of missing values, as more multiwavelength datasets become avail-

able to be cross-matched. Classification and dimension reduction are not identical

of course: a classification algorithm may build a model to represent the data, which

is then applied to further examples to predict their classes.

2.4. Selection and Use of Machine Learning Algorithms

Machine learning algorithms broadly divide into supervised and unsupervised meth-

ods, also known as predictive and descriptive, respectively. These can be general-

ized to form semi-supervised methods. Supervised methods rely on a training setb

of objects for which the target property, for example a classification, is known with

confidence. The method is trained on this set of objects, and the resulting mapping

is applied to further objects for which the target property is not available. These

additional objects constitute the testing set. Typically in astronomy, the target

property is spectroscopic, and the input attributes are photometric, thus one can

predict properties that would normally require a spectrum for the generally much

larger sample of photometric objects. The training set must be representative, i.e.,

the parameter space covered by the input attributes must span that for which the

algorithm is to be used. This might initially seem rather restrictive, but in many

cases can be handled by combining datasets. For example, the zCOSMOS redshift

survey20, at one square degree, provides spectra to the depth of the photometric

portion of the Sloan Digital Sky Survey (SDSS)21, r ∼ 22 mag, which covers over

8000 square degrees. Since SDSS photometry is available for zCOSMOS objects,

one can in principle use the 40,000 zCOSMOS galaxies as a training set to assign

photometric redshifts to over 200 million SDSS galaxies.

In contrast to supervised methods, unsupervised methods do not require a train-

ing set. This is an advantage in the sense that the data can speak for themselves

without preconceptions such as expected classes being imposed. On the other hand,

bFor many astronomical applications, one might more properly call it a training sample, but the
term training set is in widespread use, so we use that here to avoid confusion.
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if there is prior information, it is not necessarily incorporated. Unsupervised algo-

rithms usually require some kind of initial input to one or more of the adjustable

parameters, and the solution obtained can depend on this input.

Semi-supervised methods attempt to allow the best-of-both-worlds, and both

incorporate known priors while allowing objective data interpretation and extrap-

olation. But given their generality, they can be more complex and difficult to im-

plement. They are of potentially great interest astronomically because they could

be used to analyze a full photometric survey beyond the spectroscopic limit, with-

out requiring priors, while at the same time incorporating the prior spectroscopic

information where it is available.

2.4.1. Supervised Methods

The most widely used and well-known machine learning algorithm in astronomy

to-date, referred to as far back as the mid 1980s,22 is the artificial neural net-

work (ANN, Fig. 1)23,24,25. This consists of a series of interconnected nodes with

weighted connections. Each node has an activation function, perhaps a simple

threshold, or a sigmoid. Although the original motivation was that the nodes would

simulate neurons in the brain,26,27 the ANNs in data mining are of such a size that

they are best described as nonlinear extensions of conventional statistical methods.

The supervised ANN takes parameters as input and maps them on to one or

more outputs. A set of parameter vectors, each vector representing an object and

corresponding to a desired output, or target, is presented. Once the network is

trained, it can be used to assign an output to an unseen parameter vector. The

training uses an algorithm to minimize a cost function. The cost function, c, is

commonly of the form of the mean-squared deviation between the actual and desired

output:

c =
1

N

N∑
k=1

(ok − tk)
2,

where ok and tk are the output and target respectively for the kth of N objects.

In general, the neurons could be connected in any topology, but a commonly

used form is to have an a : b1 : b2 : . . . : bn : c arrangement, where a is the

number of input parameters, b1,...,n are the number of neurons in each of n one

dimensional ‘hidden’ layers, and c is the number of neurons in the final layer, which

is equal to the number of outputs. Each neuron is connected to every neuron in

adjacent layers, but not to any others. Multiple outputs can each give the Bayesian

a posteriori probability that the output is of that specific class, given the values of

the input parameters.

The weights are adjusted by the training algorithm. In astronomy this has typ-

ically been either the well-known backpropagation algorithm28,29,30 or the quasi-

Newton algorithm23, although other algorithms, such as Levenberg-Marquardt31,32

have also been used.
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Fig. 1. Schematic of an artificial neural network for an object with n attributes, a hidden layer
of size p, and a single continuously-valued output, in this case, the redshift, z. From Firth, Lahav
& Somerville33.

Another common method used in data mining is the decision tree (DT, Fig.

2)34,35,36,37,38. Decision trees consist first of a root node which contains all of the

parameters describing the objects in the training set population along with their

classifications. A node is split into child nodes using the criterion that minimizes

the classification error. This splitting subdivides the parent population group into

children population groups, which are assigned to the respective child nodes. The

classification error quantifies the accuracy of the classification on the test set. The

process is repeated iteratively, resulting in layered nodes that form a tree. The iter-

ation stops when specific user-determined criteria are reached. Possibilities include

a minimum allowed population of objects in a node (the minimum decomposition

population), the maximum number of nodes between the termination node and the

root node (the maximum tree depth), or a required minimum decrease resulting

from a population split (the minimum error reduction). The terminal nodes are

known as the leaf nodes. The split is tested for each input attribute, and can be

axis-parallel, or oblique, which allows for hyperplanes at arbitrary angles in the

parameter space. The split statistic can be the midpoint, mean, or median of the

attribute values, while the cost function used is typically the variance, as with ANN.

In recent years, another algorithm, the support vector machine (SVM, Fig.

3)40,41,42,43,44,45,46,47,48, has gained popularity in astronomical data mining.

SVM aims to find the hyperplane that best separates two classes of data. The

input data are viewed as sets of vectors, and the data points closest to the classi-

fication boundary are the support vectors. The algorithm does not create a model
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Fig. 2. As Fig. 1, but showing a decision tree. The oblique planes specified by the division criteria
on the input attributes x1 and x2 at the nodes in this case divide the input parameter space into
three regions. From Salzberg et al.39.

of the data, but instead creates the decision boundaries, which are defined in terms

of the support vectors. The input attributes are mapped into a higher dimensional

space using a kernel so that nonlinear relationships within the data become linear

(the ‘kernel trick’)49, and the decision boundaries, which are linear, are determined

in this space. Like ANN and DT, the training algorithm minimizes a cost function,

which in this case is the number of incorrect classifications. The algorithm has two

adjustable hyperparameters: the width of the kernel, and the regularization, or cost,

of classification error, which helps to prevent overfitting (§2.5) of the training set.

The shape of the kernel is also an adjustable parameter, a common choice being the

Gaussian radial basis function. As a result, an SVM has fewer adjustable parameters

than an ANN or DT, but because these parameters must be optimized, the training

process can still be computationally expensive. SVM is designed to classify objects

into two classes. Various refinements exist to support additional classes, and to per-

form regression, i.e., to supply a continuous output value instead of a classification.

Classification probabilities can be output, for example, by using the distance of a

data point from the decision boundary.

Another powerful but computationally intensive method is k nearest neighbor

(kNN)51,52,53,54,55. This method is powerful because it can utilize the full infor-

mation available for each object, with no approximations or interpolations. The

training of kNN is in fact trivial: the positions of each of the objects in the input at-

tribute space are simply stored in memory. For each test object, the same attributes

are compared to the training set and the output is determined using the properties

of the nearest neighbors. The simplest implementation is to output the properties

of the single nearest neighbor, but more commonly the weighted sum of k nearest

neighbors is used. The weighting is typically the inverse Euclidean distance in the

attribute space, but one can also use adaptive distance metrics. The main drawback

of this method is that is it computationally intensive, because for each testing object

the entire training set must be examined to determine the nearest neighbors. This
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Fig. 3. As Fig. 1, but showing a support vector machine. The circled points are the support
vectors between the two classes of objects, represented by open and filled circles. The cases shown
are separable and non-separable data with linear and nonlinear boundaries. w is the normal to the
hyperplane, and b is the perpendicular distance. From Huertas-Company et al.50, to which the
reader is referred for details of ξ.

requires a large number of distance calculations, since the test datasets are often

much larger than the training datasets. The workload can be mitigated by storing

the training set in an optimized data structure, such as a kd-tree.

However, in the past few years, novel supercomputing hardware (which is dis-

cussed in more detail in §4.7) has become available that is specifically designed to

carry out exactly this kind of computationally intensive work, including applica-

tions involving a large number of distance calculations. The curve of growth of this

technology exceeds that of conventional CPUs, and thus the direct implementa-

tion of kNN using this technology has the potential to exceed the performance of

conventional CPUs.

2.4.2. Unsupervised Methods

Kernel density estimation (KDE)56,57,58,59,60,61,62 is a method of estimating the

probability density function of a variable. It is a generalization of a histogram where

the kernel function is any shape instead of the top-hat function of a histogram bin.

This has the advantages that it avoids the discrete nature of the histogram and does

not depend on the position of the bin edges, but the width of the kernel must still be
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chosen so as not to over- or under-smooth the data. A Gaussian kernel is commonly

utilized. In higher numbers of dimensions, common in astronomical datasets, the

width of the kernel must be specified in each dimension.

K-means clustering63,64 is an unsupervised method that divides data into clus-

ters. The number of clusters must be initially specified, but since the algorithm con-

verges rapidly, many starting points can be tested. The algorithm uses a distance

criterion for cluster membership, such as the Euclidean distance, and a stopping

criterion for iteration, for example, when the cluster membership ceases to change.

Mixture models65,66 decompose a distribution into a sum of components, each

of which is a probability density function. Often, the distributions are Gaussians, re-

sulting in Gaussian mixture models. They are often used for clustering, but also for

density estimation, and they can be optimized using either expectation maximiza-

tion or Monte Carlo methods. Many astronomical datasets consist of contributions

from different populations of objects, which allows mixture modeling to disentangle

these population groups. Mixture models based on the EM algorithm have been

used in astronomy for this purpose67,68.

Expectation maximization (EM)69,70,71 treats the data as a sum of probability

distributions, which each represent one cluster. This method alternates between an

expectation stage and a maximization stage. In the expectation stage, the algorithm

evaluates the membership probability of each data point given the current distribu-

tion parameters. In the maximization stage, these probabilities are used to update

the parameters. This method works well with missing data, and can be used as the

unsupervised component in semi-supervised learning (§2.4.3) to provide class labels

for the supervised learning.

The Kohonen self-organizing map (SOM)72,73 is an unsupervised neural net-

work that forms a general framework for visualizing datasets of more than two

dimensions. Unlike many methods which seek to map objects onto a new output

space, the SOM is fundamentally topological. This is neatly illustrated by the fact

that one astronomical SOM application74 is titled ‘Galaxy Morphology Without

Classification’. A related earlier method is learning vector quantization75.

Independent component analysis (ICA)76,77,19,78,79, an example of blind source

separation, can separate nonlinear components of a dataset, under the assumption

that those components are statistically independent. The components are found by

maximizing this independence. Related statistical methods include principal com-

ponent analysis (§2.3), singular value decomposition, and non-negative matrix fac-

torization.

2.4.3. Semi-Supervised

The semi-supervised approach80,81 has been somewhat underused to-date, but

holds great potential for the upcoming, large, purely photometric surveys. Super-

vised methods require a labeled training set, but will not assign new classes. On the

other hand, unsupervised methods do not require training, but do not use existing
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known information. Semi-supervised methods aim to capture the best from both of

these methods by retaining the ability to discover new classes within the data, and

also incorporating information from a training set when available. An example of a

dataset amenable to the approach is shown in Fig. 4.

This is particularly relevant in astronomical applications using large amounts of

photometric and a more limited subsample of spectroscopic data, which may not

be fully representative of the photometric sample. The semi-supervised approach

allows one to use the spectral information to extrapolate into the purely photometric

regime, thereby allowing a scientist to utilize all of the vast amount of information

present there.

Semi-supervised learning represents an entire subfield of data mining research.

Given the nontrivial implementation requirements, this field is a good area for po-

tential fruitful collaborations between astronomers, computer scientists, and statis-

ticians. As one example of a possible issue, a lot of photometric data are likely to

be a direct continuation in parameter space of spectroscopic data, with, therefore, a

highly overlapping distribution. This means that certain semi-supervised approaches

will work better than others, because they contain various assumptions about the

nature of the labeled and unlabeled data.
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Fig. 4. Dataset amenable to semi-supervised learning, showing labeled and unlabeled classes,
denoted by 1–4 and U1–U4, respectively. The axes are arbitrary units. The crosses result from a
mixture model applied to the data. From Bazell & Miller82.
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2.4.4. Other Algorithms

In §§2.4.1–2.4.2 above, we described the main data mining algorithms used to date

in astronomy, however, there are numerous additional algorithms available, which

have often been utilized to some extent. These algorithms may be employed at

more than one stage in the process, such as attribute selection, as well as the

classification/regression stage.

While neural networks in some very broad sense mimic the learning mechanism

of the brain, genetic algorithms83,84,85,86,87,88 mimic natural selection, as the most

successful individuals created are those that are best adapted for the task at hand.

The simplest implementation is the binary genetic algorithm, in which each

‘individual’ is a vector of ones and zeros, which represent whether or not a particular

attribute, e.g., a training set attribute, is used. From an initial random population,

the individuals are combined to create new individuals. The fitness of each individual

is the resulting error in the training algorithm run according to the formula encoded

by the individual. This process is repeated until convergence if found, producing the

best individual.

A typical method of combining two individuals is one-point crossover, in which

segments of two individuals are swapped. To more fully explore the parameter space,

and to prevent the algorithm from converging too rapidly on a local minimum, a

probability of mutation is introduced into the newly created individuals before they

are processed. This is simply the probability that a zero becomes a one, or vice-

versa. An approximate number of individuals to use is given by nin ∼ 2nf log(nf ),

where nf is the number of attributes. The algorithm converges in nit ∼ αnf log(nf )

iterations, where α is a problem-dependent constant; generally α > 3.

Numerous refinements to this basic approach exist, including using continuous

values instead of binary ones, and more complex methods for combining individuals.

Further possibilities for the design of genetic algorithms exist89, and it is possible

in principle to combine the optimization of the learning algorithm and the attribute

set.

The Information bottleneck method17 is based directly on information theory

and is designed to achieve the best tradeoff between accuracy and compression for

the desired number of classes. The inputs and outputs are probability density func-

tions. Association rule mining90,91 is a method of finding qualitative rules within a

database such that a rule derived from the occurrence of certain variables together

implies something about the occurrence of a variable not used in creating that rule.

The false discovery rate92 is a method of establishing a significant discovery from

a smaller set of data than the usual n sigma hypothesis test.

This list could continue, broadening into traditional statistical methods such as

least squares, and regression, as well as Bayesian methods, which are widely used

in astronomy. For brevity we do not consider these additional methods, but we

do note that graphical models6 are a general way of describing the interrelation-

ships between variables and probabilities, and many of the data mining algorithms
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described earlier, such as ANNs, are special cases of these models.

2.4.5. Choice of Algorithm

Unfortunately, there is no simple method to select the optimal algorithm to use,

because the most appropriate algorithm can depend not only on the dataset, but

also the application for which it will be employed. There is, therefore, no single best

algorithm. Likewise, the choice of software is similarly non-trivial. Many general

frameworks exist, for example WEKA5 or Data to Knowledge93, but it is unlikely

that one framework will be able to perform all steps necessary from raw catalog

to desired science result, particularly for large datasets. In Table 1, we summarize

some of the advantages and disadvantages of some of the more popular and well-

known algorithms used in astronomy. We do not attempt to summarize available

software. Various other general comparisons of machine learning algorithms exist7,

as well as numerous studies comparing various algorithms for particular datasets, a

field which itself is rather complex94.
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Table 1. Advantages and disadvantages of well-known machine learning algorithms in astronomy. These algorithms, and others, are described in more
detail in §§2.4.1–2.4.4.

Algorithm Advantages Disadvantages

Artificial Neural Network Good approximation of nonlinear functions Black-box model
Easily parallelized Local minima
Good predictive power Many adjustable parameters
Extensively used in astronomy Affected by noise
Robust to irrelevant or redundant attributes Can overfit

Long training time
No missing values

Decision Tree Popular real-world data mining algorithm Can generate large trees that require pruning
Can input and output numerical or categorical variables Generally poorer predictive power than ANN, SVM or kNN
Interpretable model Can overfit
Robust to outliers, noisy or redundant attributes Many adjustable parameters
Good computational scalability

Support Vector Machine Copes with noise Harder to classify > 2 classes
Gives expected error rate No model is created
Good predictive power Long training time
Popular algorithm in astronomy Poor interpretability
Can approximate nonlinear functions Poor at handling irrelevant attributes
Good scalability with number of attributes Can overfit
Unique solution (no local minima) Some adjustable parameters

Nearest Neighbor Uses all available information Computationally intensive
Does not require training No model is created
Easily parallelized Can be affected by noise and irrelevant attributes

Few or no adjustable parameters
Good predictive power

Expectation Maximization Gives number of clusters in the data Can be biased toward Gaussians
Fast convergence Local minima
Copes with missing data
Can give class labels for semi-supervised learning
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2.5. Improving Results

Many of the algorithms previously described involve ‘greedy’ optimization. In these

cases, the cost function, which is the measure of how well the algorithm is performing

in its classification or prediction task, is minimized in a way that does not allow

the value of the function to increase much if at all. As a result, it is possible for the

optimization to become trapped in a local minimum, whereby nearby configurations

are worse, but better configurations exist in a different region of parameter space.

Various approaches exist to overcome local minima. One approach is to simply

run the algorithm several times from different starting points. Another approach is

simulated annealing95,96,97,98, where, in following the metallurgical metaphor, the

point in parameter space ‘heats up’, thus perturbing it and allowing it to escape

from the local minimum. The point is allowed to ‘cool’, thus having the ability to

find a solution closer to the global minimum.

Models produced by data mining algorithms are subject to a fundamental lim-

itation common to many systems in which a predictive model is constructed, the

bias-variance tradeoff. The bias is the accuracy of the model in describing the data,

for example, a linear model might have a higher bias than a higher order polyno-

mial. The variance is the accuracy of this model in describing new data. The higher

order polynomial might have a lower bias than a linear model, but it might be

more strongly affected by variations in the data and thus have a higher variance.

The polynomial has overfit the data. There is usually an optimal point between

minimizing bias and minimizing variance. A typical way to minimize overfitting

is to measure the performance of the algorithm on a test set, which is not part

of the training set, and adjusting the stopping criterion for training to stop at an

appropriate location.

To help prevent overfitting, training can also be regularized, in which an extra

term is introduced into the cost function to penalize configurations that add com-

plexity, such as large weights in an ANN. This complexity can cause a function to

be less smooth, which increases the likelihood of overfitting. As is the case with

supervised learning, unsupervised algorithms can also overfit the data, for example,

if some kind of smoothing is employed but its scalelength is too small. In this case,

the algorithm will ‘fit the noise’ and not the true underlying distribution.

Another common approach to control overfitting and improve confidence in the

accuracy of the results is cross-validation, where subsets of the data are left out of

the training and used for testing. The simplest form is the holdout method, where

a single subset of the training data is kept out of the training, and the algorithm

error is evaluated by running on this subset. However, this can have a high bias

(see bias-variance tradeoff, above) if the training set is small, due to a significant

portion of the training information being left out. K-fold cross-validation improves

on this by subdividing the data into K samples and training on K − 1 samples,

or alternatively using K random subsets. Typically, K = 5 or K = 10, as small K

could still have high bias, as in the holdout method, but large K, while being less
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biased, can have high variance due to the testing set being small. If K is increased

to the size of the dataset, so that each subsample is a single point, the method

becomes leave-one-out cross-validation. In all instances, the estimated error is the

mean error from those produced by each run in the cross-validation.

Another important refinement to running one algorithm is the ability to use

a committee of instances of the algorithm, each with different parameters. One

can allow these different instantiations to vote on the final prediction, so that the

majority or averaged result becomes the final answer. Such an arrangement can

often provide a substantial improvement, because it is more likely that the majority

will be closer to the correct answer, and that the answer will be less affected by

outliers. One such committee arrangement is bootstrap aggregating, or bagging99,5,

where random subsamples with replacement (bootstrap samples) are taken, and the

algorithm trained on each. The created algorithms vote on the testing set. Bagging

is often applied to decision trees with considerable success, but it can be applied to

other algorithms. The combination of bagging and the random selection of a small

subset of features for splitting at each node is known as a Random ForestTM100.

Boosting7 uses the fact that several ‘weak’ instances of an algorithm can be

combined to produce a stronger instance. The weak learners are iteratively added

and misclassified objects in the data gain higher weight. Thus boosting is not the

same as bagging because the data themselves are weighted. Boosted decision trees

are a popular approach, and many different boosting algorithms are available.

As well as committees of the same algorithm, it is also possible to combine the

results of more than one different algorithm on the same dataset. Such a mixture of

experts approach often provides an optimal result on real data. The outcome may

be decided by voting, or the output of one algorithm can form the input to another,

in a chaining approach.

For many astronomical applications, the results are, or would be, significantly

improved by utilizing the full probability density function (PDF) for a predicted

property, rather than simply its single scalar value. This is because much more

information is retained when using the PDF. Potential uses of PDFs are described

further in §4.1.

2.6. Application of Algorithms and Some Limitations

The purpose of this review is not to uncritically champion certain data mining

algorithms, but to instead encourage scientific progress by exploiting the full poten-

tial of these algorithms in a considered scientific approach. We therefore end this

section by outlining some of the limitations of and issues raised by KDD and the

data mining approach to current and future astronomical datasets. Several of these

problems might be ameliorated by increased collaboration between astronomers and

data mining experts.

• Extrapolation: In many astronomical applications, it is common for data with less

information content to be available for a greater number of objects over a larger
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parameter space. The classic example is in surveys where photometric objects are

typically observed several magnitudes fainter than spectroscopic objects. For a

supervised learning algorithm, it is usually inappropriate to extrapolate beyond

the parameter space for which the training set (e.g., the spectroscopic objects) is

representative.

• Non-intuitive results: It is very easy to run an implementation of a well-known

algorithm and output a result that appears reasonable, but is in fact either statis-

tically invalid or completely wrong. For example, randomly subsampled training

and testing sets from a dataset will overlap and produce a model that overfits the

data.

• Measurement error: Most astronomical data measurements have an associated

error, but most data mining algorithms do not take this explicitly into account.

For many algorithms, the intrinsic spread in the data corresponding to the target

property is the measurement of the error.

• Adjustable parameters: Several algorithms have a significant number of adjustable

parameters, and the optimal configuration of these parameters is not obvious.

This can result in large parameter sweeps that further increase the computational

requirement.

• Scalability: Many data mining algorithms scale, for n objects, as n2, or even worse,

making their simple application to large datasets on normal computing hardware

intractable. One can often speed up a näıve implementation of an algorithm that

must access large numbers of data points and their attributes by storing the data

in a hierarchical manner so that not all the data need to be searched. A popular

hierarchical structure for accomplishing this task is the kd-tree101. However, the

implementation of such trees for large datasets and on parallel machines remains

a difficult problem102.

• Learning Curve: Data mining is an entire field of study in its own right, with

strong connections to statistics and computing. The avoidance of some of the

issues we present, such as the selection of appropriate algorithms, collaboration

where needed, and the full exploitation of their potential for science return, require

overcoming a substantial learning curve.

• Large datasets: Many astronomical datasets are larger than can be held in ma-

chine memory. The exploitation of these datasets thus requires more sophisticated

database technology than is currently employed by most astronomical projects.

• “It’s not science”: The success of an astronomical project is judged by the science

results produced. The time invested by an astronomer in becoming an expert in

data mining techniques must be balanced against the expected science gain. It is

difficult to justify and obtain funding based purely on a methodological approach

such as data mining, even if such an approach will demonstrably improve the

expected science return.

• It does not do the science for you: The algorithms will output patterns, but will

not necessarily establish which patterns or relationships are important scientifi-

cally, or even which are causal. The truism ‘correlation is not causation’ is apt
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here. The successful interpretation of data mining results is up to the scientist.

• The result can only be as good as the data: Related to this, the single largest factor

in the success of any data mining algorithm is the quality of the input data. If the

data are not sufficient for the task, or are poorly collected or incorrectly treated,

the result will not be useful.

3. Uses in Astronomy

We now turn to the use of data mining algorithms in astronomical applications,

and their track record in addressing some common problems. Whereas in §2, we

introduced terms for the astronomer unfamiliar with data mining, here for the non-

expert in astronomy we briefly put in context the astronomical problems. However,

a full description is beyond the scope of this review. Whereas §2 was subdivided ac-

cording to data mining algorithms and issues, here the subdivision is in terms of the

astrophysics. Throughout this section, we abbreviate data mining algorithms that

are either frequently mentioned or have longer names according to the abbreviations

introduced in §2: PCA, ANN, DT, SVM, kNN, KDE, EM, SOM, and ICA.

Given that there is no exact definition of what constitutes a data mining tool,

it would not be possible to provide a complete overview of their application. This

section therefore illustrates the wide variety of actual uses to date, with actual

or implied further possibilities. Uses which exist now but will likely gain greater

significance in the future, such as the time domain, are largely deferred to §4. Several

other overviews of applications of machine learning algorithms in astronomy exist,

and contain further examples, including ones for ANN103,104,105,106,107, DT108,

genetic algorithms109, and stellar classification110.

Most of the applications in this section are made by astronomers utilizing data

mining algorithms. However, several projects and studies have also been made by

data mining experts utilizing astronomical data, because, along with other fields

such as high energy physics and medicine, astronomy has produced many large

datasets that are amenable to the approach. Examples of such projects include the

Sky Image Cataloging and Analysis System (SKICAT)111 for catalog production

and analysis of catalogs from digitized sky surveys, in particular the scans of the

second Palomar Observatory Sky Survey; the Jet Propulsion Laboratory Adaptive

Recognition Tool (JARTool)112, used for recognition of volcanoes in the over 30,000

images of Venus returned by the Magellan mission; the subsequent and more gen-

eral Diamond Eye113; and the Lawrence Livermore National Laboratory Sapphire

project114. A recent review of data mining from this perspective is given by Kamath

in the book Scientific Data Mining115. In general, the data miner is likely to employ

more appropriate, modern, and sophisticated algorithms than the domain scientist,

but will require collaboration with the domain scientist to acquire knowledge as to

which aspects of the problem are the most important.
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3.1. Object classification

Classification is often an important initial step in the scientific process, as it provides

a method for organizing information in a way that can be used to make hypotheses

and to compare with models. Two useful concepts in object classification are the

completeness and the efficiency, also known as recall and precision. They are defined

in terms of true and false positives (TP and FP) and true and false negatives (TN

and FN). The completeness is the fraction of objects that are truly of a given type

that are classified as that type:

completeness =
TP

TP + FN
,

and the efficiency is the fraction of objects classified as a given type that are truly

of that type

efficiency =
TP

TP + FP
.

These two quantities are astrophysically interesting because, while one obviously

wants both higher completeness and efficiency, there is generally a tradeoff involved.

The importance of each often depends on the application, for example, an inves-

tigation of rare objects generally requires high completeness while allowing some

contamination (lower efficiency), but statistical clustering of cosmological objects

requires high efficiency, even at the expense of completeness.

3.1.1. Star-Galaxy Separation

Due to their small physical size compared to their distance from us, almost all stars

are unresolved in photometric datasets, and thus appear as point sources. Galaxies,

however, despite being further away, generally subtend a larger angle, and thus

appear as extended sources. However, other astrophysical objects such as quasars

and supernovae, also appear as point sources. Thus, the separation of photometric

catalogs into stars and galaxies, or more generally, stars, galaxies, and other objects,

is an important problem. The sheer number of galaxies and stars in typical surveys

(of order 108 or above) requires that such separation be automated.

This problem is a well studied one and automated approaches were employed

even before current data mining algorithms became popular, for example, during

digitization by the scanning of photographic plates by machines such as the APM116

and DPOSS117. Several data mining algorithms have been employed, including

ANN118,119,120,121,122,123,124, DT125,126, mixture modeling127, and SOM128,

with most algorithms achieving over 95% efficiency. Typically, this is done using a

set of measured morphological parameters that are derived from the survey pho-

tometry, with perhaps colors or other information, such as the seeing, as a prior.

The advantage of this data mining approach is that all such information about each

object is easily incorporated. As well as the simple outputs ‘star’ or ‘galaxy’, many
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of the refinements described in §2 have improved results, including probabilistic

outputs and bagging126.

3.1.2. Galaxy Morphology

As shown in Fig. 5, galaxies come in a range of different sizes and shapes, or

more collectively, morphology. The most well-known system for the morphological

classification of galaxies is the Hubble Sequence of elliptical, spiral, barred spiral,

and irregular, along with various subclasses129,130,131,132,133,134. This system

correlates to many physical properties known to be important in the formation

and evolution of galaxies135,136. Other well-known classification systems are the

Yerkes system based on concentration index137,138,139, the de Vaucouleurs140,

exponential141,142, and Sérsic index143,144 measures of the galaxy light profile,

the David Dunlap Observatory (DDO) system145,146,147, and the concentration-

asymmetry-clumpiness (CAS) system148.

Because galaxy morphology is a complex phenomenon that correlates to the

underlying physics, but is not unique to any one given process, the Hubble sequence

has endured, despite it being rather subjective and based on visible-light morphology

originally derived from blue-biased photographic plates. The Hubble sequence has

been extended in various ways, and for data mining purposes the T system149,150

has been extensively used. This system maps the categorical Hubble types E, S0,

Sa, Sb, Sc, Sd, and Irr onto the numerical values -5 to 10.

One can, therefore, train a supervised algorithm to assign T types to images for

which measured parameters are available. Such parameters can be purely morpho-

logical, or include other information such as color. A series of papers by Lahav and

collaborators152,153,154,155,104,156 do exactly this, by applying ANNs to predict

the T type of galaxies at low redshift, and finding equal accuracy to human ex-

perts. ANNs have also been applied to higher redshift data to distinguish between

normal and peculiar galaxies157, and the fundamentally topological and unsuper-

vised SOM ANN has been used to classify galaxies from Hubble Space Telescope

images74, where the initial distribution of classes is not known. Likewise, ANNs

have been used to obtain morphological types from galaxy spectra.158

Several authors study galaxy morphology at higher redshift by using the Hub-

ble Deep Fields, where the galaxies are generally much more distant, fainter, less

evolved, and morphologically peculiar. Three studies159,160,161 use ANNs trained

on surface brightness and light profiles to classify galaxies as E/S0, Sabc and Sd/Irr.

Another application162 uses Fourier decomposition on galaxy images followed by

ANNs to detect bars and assign T types.

Bazell & Aha163 uses ensembles of classifiers, including ANN and DT, to reduce

the classification error, and Bazell164 studies the importance of various measured

input attributes, finding that no single measured parameter fully reproduces the

classifications. Ball et al.165 obtain similar results to Naim et al.155, but updated for

the SDSS. Ball et al.166 and Ball, Loveday & Brunner167 utilize these classifications
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Fig. 5. Examples of galaxy morphology showing many aspects of the information available to, and
issues to be aware of for, a data mining process. These include galaxy shape, structure, texture,
inclination, arm pitch, color, resolution, exposure, and, from left to right, redshift, in this case
artificially constructed. From Barden, Jahnke & Häußler151.

in studies of the bivariate luminosity function and the morphology-density relation

in the SDSS, the first such studies to utilize both a digital sky survey of this size

and detailed Hubble types.
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Because of the complex nature of galaxy morphology and the plethora of avail-

able approaches, a large number of further studies exist: Kelly & McKay168 (Fig.

6) demonstrate improvement over a simple split in u − r using mixture models,

within a schema that incorporates morphology. Serra-Ricart et al.169 use an en-

coder ANN to reduce the dimensionality of various datasets and perform several

applications, including morphology. Adams & Woolley170 use a committee of ANNs

in a ‘waterfall’ arrangement, in which the output from one ANN formed the input

to another which produces more detailed classes, improving their results. Molinari

& Smareglia171 use an SOM to identify E/S0 galaxies in clusters and measure their

luminosity function. de Theije & Katgert172 split E/S0 and spiral galaxies using

spectral principal components and study their kinematics in clusters. Genetic al-

gorithms have been employed173,174 for attribute selection and to evolve ANNs

to classify ‘bent-double’ galaxies in the FIRST175 radio survey data. Radio mor-

phology combines the compact nucleus of the radio galaxy and extremely long jets.

Thus, the bent-double morphology indicates the presence of a galaxy cluster. de la

Calleja & Fuentes176 combine ensembles of ANN and locally weighted regression.

Beyond ANN, Spiekermann177 uses fuzzy algebra and heuristic methods, antici-

pating the importance of probabilistic studies (§4.1) that are just now beginning

to emerge. Owens, Griffiths & Ratnatunga178 use oblique DTs, obtaining similar

results to ANN. Zhang, Li & Zhao179 distinguish early and late types using k-

means clustering. SVMs have recently been employed on the COSMOS survey by

Huertas-Company et al.50,180, enabling early-late separation to KAB = 22 mag

twice as good as the CAS system. SVMs will also be used on data from the Gaia

satellite181.

Recently, the popular Galaxy Zoo project182 has taken an alternative approach

to morphological classification, employing crowdsourcing: an application was made

available online in which members of the general public were able to view images

from the SDSS and assign classifications according to an outlined scheme. The

project was very successful, and in a period of six months over 100,000 people

provided over 40 million classifications for a sample of 893,212 galaxies, mostly

to a limiting depth of r = 17.77 mag. The classifications included categories not

previously assigned in astronomical data mining studies, such as edge-on or the

handedness of spiral arms, and the project has produced multiple scientific results.

The approach represents a complementary one to automated algorithms, because,

although humans can see things an algorithm will miss and will be subject to dif-

ferent systematic errors, the runtime is hugely longer: a trained ANN will produce

the same 40 million classifications in a few minutes, rather than six months.

3.1.3. Other Galaxy Classifications

Many of the physical properties, and thus classification, of a galaxy are determined

by its stellar population. The spectrum of a galaxy is therefore another method for

classification183,184, and can sometimes produce a clearer link to the underlying



August 11, 2010 0:44 WSPC/INSTRUCTION FILE ijmpd

Data Mining in Astronomy 25

Mixture Model Classification

0 10 20 30
PC 1 x 10−5

−6

−4

−2

0

2

4

6

P
C

 2
 x

 1
.0−

5

2

3

1

u − r Classification

0 10 20 30
PC 1 x 10−5

−6

−4

−2

0

2

4

6

P
C

 2
 x

 1
.0−

5

Blue

Red

Fig. 6. Improvement in classification using a mixture model over that derived from the u and r
passbands (u− r color). In this case, the mixture model clearly delineates the third class, which is
not seen using u− r. The axes are the first two principle components of the spectro-morphological
parameter set (shapelet coefficients in five passbands) describing the galaxies. The light contours
are the square root of the probability density from the mixture model fit, and the dark contours
are the 95% threshold for each class, in the right-hand panel fitted to the two classes by quadratic
discriminant analysis. From Kelly & McKay168.

physics than the morphology. Spectral classification is important because it is pos-

sible for a range of morphological types to have the same spectral type, and vice

versa, because spectral types are driven by different underlying physical processes.

Numerous studies185,186,187,188 have used PCA directly for spectral classifi-

cation. PCA is also often used as a preprocessing step before the classification of

spectral types using an ANN189. Folkes, Lahav & Maddox190 predict morpholog-

ical types for the 2dF Galaxy Redshift Survey (2dFGRS)191 using spectra, and

Ball et al.165 directly predict spectral types in the SDSS using an ANN. Slonim

et al.192 use the information bottleneck approach on the 2dFGRS spectra, which

maximally preserves the spectral information for the desired number of classes. Lu

et al.193 use ensemble learning for ICA on components of galaxy spectra. Abdalla

et al.194 use ANN and locally weighted regression to directly predict emission line

properties from photometry.

Bazell & Miller82 applied a semi-supervised method suitable for class discovery

using ANNs to the ESO-LV195 and SDSS Early Data Release (EDR) catalogs. They

found that a reduction of up to 57% in classification error was possible compared to

purely supervised ANNs. The larger of the two catalogs, the SDSS EDR, represents a

preliminary dataset about 6% of the final data release of the SDSS, clearly indicating

the as-yet untapped potential of this approach. The semi-supervised approach also

resembles the hybrid empirical-template approach to photometric redshifts (§3.2),

as both seek to utilize an existing training set where available even if it does not
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span the whole parameter space. However, the approach used by Bazell & Miller

is more general, because it allows new classes of objects to be added, whereas the

hybrid approach can only iterate existing templates.

3.1.4. Quasars/AGN

Most of the emitted electromagnetic radiation in the universe is either from stars,

or the accretion disks surrounding supermassive black holes in active galactic nu-

clei (AGN). The latter phenomenon is particularly dramatic in the case of quasars,

where the light from the central region can outshine the rest of the galaxy. Be-

cause supermassive black holes are thought to be fairly ubiquitous in large galaxies,

and their fueling, and thus their intrinsic brightness, can be influenced by the en-

vironment surrounding the host galaxy, quasars and other AGN are important for

understanding the formation and evolution of structure in the universe.

The selection of quasars and other AGN from an astronomical survey is a well-

known and important problem, and one well suited to a data mining approach. It

is well-known that different wavebands (X-ray, optical, radio) will select different

AGN, and that no one waveband can select them all. Traditionally, AGN are classi-

fied on the Baldwin-Phillips-Terlevich diagram196, in which sources are plotted on

the two-dimensional space of the emission line ratios [OIII] λ 5007 / Hβ and [NII]

/ Hα, that is separated by a single curved line into star-forming and AGN regions.

Data mining not only improves on this by allowing a more refined or higher dimen-

sional separation, but also by including passive objects in the same framework (Fig.

7). This allows for the probability that an object contains an AGN to be calculated,

and does not require all (or any) of the emission lines to be detected.

Several groups have used ANNs197,198,199 or DTs200,201,126,202,203,204,205

to select quasar candidates from surveys. White et al.200 show that the DT method

improves the reliability of the selection to 85% compared to only 60% for simpler

criteria. Other algorithms employed include PCA206, SVM and learning vector

quantization207, kd-tree208, clustering in the form of principal surfaces and nega-

tive entropy clustering209, and kernel density estimation210. Many of these papers

combine multiwavelength data, particularly X-ray, optical, and radio.

Similarly, one can select and classify candidates of all types of AGN211. If mul-

tiwavelength data are available, the characteristic data mining algorithm ability

to form a model of the required complexity to extract the information could en-

able it to use the full information to extract more complete AGN samples. More

generally, one can classify both normal and active galaxies in one system, differen-

tiating between star formation and AGN. As one example, DTs have been used126

to select quasar candidates in the SDSS, providing the probabilities P(star, galaxy,

quasar). P(star formation, AGN) could be supplied in a similar framework. Bam-

ford et al.212 combine mixture modeling and regression to perform non-parametric

mixture regression, and is the first study to obtain such components and then study

them versus environment. The components are passive, star-forming, and two types
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of AGN.

3.1.5. Other Classifications

Often, the first component of classification is the actual process of object detec-

tion, which often is done at some signal-to-noise threshold. Several statistical data

mining algorithms have been employed, and software packages written, for this pur-

pose, including the Faint Object Classification and Analysis System (FOCAS)213,

DAOPHOT214, Source Extractor (SExtractor)215, maximum likelihood, wavelets,

ICA216, mixture models217, and ANNs121. Serra-Ricart et al.218 show that ANNs

are able to classify faint objects as well as a Bayesian classifier but with considerable

computational speedup.

Several studies are more general than star-galaxy separation or galaxy classifi-

cation, and assign classifications of varying detail to a broad range of astrophysical

objects. Goebel et al.219 apply the AutoClass Bayesian classifier to the IRAS LRS

atlas, finding new and scientifically interesting object classes. McGlynn et al.220 use

oblique DTs in a system called ClassX to classify X-ray objects into stars, white

dwarfs, X-ray binaries, galaxies, AGN, and clusters of galaxies, concluding that the

system has the potential to significantly increase the known populations of some

rare object types. Suchkov, Hanisch & Margon201 use the same system to classify

objects in the SDSS. Bazell, Miller & Subbarao221 apply semi-supervised learn-

ing to SDSS spectra, including those classified as ‘unknown’, finding two classes of

objects consisting of over 50% unknown.

Stellar classifications are necessarily either spectral or based on color, due to

the pointlike nature of the source. This field has a long history and well established

results such as the HR diagram and the OBAFGKM spectral sequence. The latter

is extended to a two-dimensional system of spectral type and luminosity classes

I–V to form the two-dimensional MK classification system of Morgan, Keenan &

Kellman222. Class I are supergiants, through to class V, dwarfs, or main-sequence

stars. The spectral types correspond to the hottest and most massive stars, O,

through to the coolest and least massive, M, and each class is subdivided into ten

subclasses 0–9. Thus, the MK classification of the sun is G2V.

The use of automated algorithms to assign MK classes is analogous to that for

assigning Hubble types to galaxies in several ways: before automated algorithms,

stellar spectra were compared by eye to standard examples; the MK system is

closely correlated to the underlying physics, but is ultimately based on observable

quantities; the system works quite well but has been extended in numerous ways

to incorporate objects that do not fit the main classes (e.g., L and T dwarfs, Wolf-

Rayet stars, carbon stars, white dwarfs, and so on). Two differences from galaxy

classification are the number of input parameters, in this case spectral indices, and

the number of classes. In MK classification the numbers are generally higher, of

order 50 or more input parameters, compared to of order 10 for galaxies.

Given a large body of work for galaxies that has involved the use of artificial neu-
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Fig. 7. Upper panel: Baldwin-Philips-Terlevich diagram, which classifies active galactic nuclei
(AGN) and star-forming galaxies but requires all four emission lines to be present in the spectrum.

From Bamford et al.212 (although it should be noted that the use of this diagram is not the basis
of their study). The axes are the diagnostic emission line ratios from the spectra. Lower panel:
AGN/star-forming/passive classification using an ANN, which has no such requirement. The axes
are the two outputs from the ANN, e1 and e2 mapped onto (e1, e2) = (e1 + e2/2)i + e2j, where
passive, AGN, star-forming, and hybrid are (0,0), (1,0), (0,1), and (0.5,0.5), respectively. From
Abdalla et al.194.
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ral networks, and the similarities just outlined, it is not surprising that similar ap-

proaches have been employed for stellar classification223,224,225,226,227,228, with

a typical accuracy of one spectral type and half a luminosity type. The relatively

large number of object attributes and output classes compared to the number of

objects in each class does not invalidate the approach, because the efforts described

generally find that the number of principal components represented by the inputs

is typically much lower. A well-known property of neural networks is that they are

robust to a large number of redundant attributes (§2.4.5).

Neural networks have been used for other stellar classifications schemes, e.g.

Gupta et al.229 define 17 classes for IRAS sources, including planetary nebulae

and HII regions. Other methods have been employed; a recent example is Manteiga

et al.230, who use a fuzzy logic knowledge-based system with a hierarchical tree

of decision rules. Beyond the MK and other static classifications, variable stars

have been extensively studied for many years, e.g., Wozniak et al.231 use SVM to

distinguish Mira variables.

The detection and characterization of supernovae is important for both under-

standing the astrophysics of these events, and their use as standard candles in

constraining aspects of cosmology such as the dark energy equation of state. Bailey

et al.232 use boosted DTs, random forests, and SVMs to classify supernovae in

difference images, finding a ten times reduction in the false-positive rate compared

to standard techniques involving parameter thresholds (Fig. 8).

Given the general nature of the data mining approach, there are many fur-

ther classification examples, including cosmic ray hits39,233, planetary nebulae234,

asteroids235, and gamma ray sources236,237.

3.2. Photometric redshifts

An area of astrophysics that has greatly increased in popularity in the last few years

is the estimation of redshifts from photometric data (photo-zs). This is because, al-

though the distances are less accurate than those obtained with spectra, the sheer

number of objects with photometric measurements can often make up for the re-

duction in individual accuracy by suppressing the statistical noise of an ensemble

calculation.

Photo-zs were first demonstrated in the mid 20th century238,239, and later in

the 1980s240,241. In the 1990s, the advent of the Hubble Space Telescope Deep fields

resulted in numerous approaches242,243,244,245,246,247,248, reviewed by Koo249.

In the past decade, the advent of wide-field CCD surveys and multifiber spec-

troscopy have revolutionized the study of photo-zs to the point where they are

indispensable for the upcoming next generation surveys, and a large number of

studies have been made.

The two common approaches to photo-zs are the template method and the

empirical training set method. The template approach has many complicating

issues250, including calibration, zero-points, priors, multiwavelength performance
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Fig. 8. Improvement in the classification of supernovae using support vector machine and decision
tree, compared to previously used threshold cuts. From Bailey et al.232.

(e.g., poor in the mid-infrared), and difficulty handling missing or incomplete train-

ing data. We focus in this review on the empirical approach, as it is an imple-

mentation of supervised learning. In the future, it is likely that a hybrid method

incorporating both templates and the empirical approach will be used, and that

the use of full probability density functions will become increasingly important.

For many applications, knowing the error distribution in the redshifts is at least

as important as the accuracy of the redshifts themselves, further motivating the

calculation of PDFs.

3.2.1. Galaxies

At low redshifts, the calculation of photometric redshifts for normal galaxies is

quite straightforward due to the break in the typical galaxy spectrum at 4000Å.

Thus, as a galaxy is redshifted with increasing distance, the color (measured

as a difference in magnitudes) changes relatively smoothly. As a result, both

template and empirical photo-z approaches obtain similar results, a root-mean-

square deviation of ∼ 0.02 in redshift, which is close to the best possible re-
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sult given the intrinsic spread in the properties251. This has been shown with

ANNs33,165,156,252,253,254,124,255,256,257,179, SVM258,259, DT260, kNN261,

empirical polynomial relations262,251,247,263,264,265, numerous template-based

studies, and several other methods. At higher redshifts, obtaining accurate results

becomes more difficult because the 4000Å break is shifted redward of the optical,

galaxies are fainter and thus spectral data are sparser, and galaxies intrinsically

evolve over time. The first explorations at higher redshift were the Hubble Deep

Fields in the 1990s, described above (§3.2), and, more recently, new infrared data

have become available, which allow the 4000Å break to be seen to higher redshift,

which improves the results. Template-based algorithms work well, provided suit-

able templates into the infrared are available, and supervised algorithms simply

incorporate the new data and work in the same manner as previously described.

While supervised learning has been successfully used, beyond the spectral regime

the obvious limitation arises that in order to reach the limiting magnitude of the

photometric portions of surveys, extrapolation would be required. In this regime,

or where only small training sets are available, template-based results can be used,

but without spectral information, the templates themselves are being extrapolated.

However, the extrapolation of the templates is being done in a more physically

motivated manner. It is likely that the more general hybrid approach of using

empirical data to iteratively improve the templates,266,267,268,269,270,271 or the

semi-supervised method described in §2.4.3 will ultimately provide a more elegant

solution. Another issue at higher redshift is that the available numbers of objects

can become quite small (in the hundreds or fewer), thus reintroducing the curse of

dimensionality by a simple lack of objects compared to measured wavebands. The

methods of dimension reduction (§2.3) can help to mitigate this effect.

3.2.2. Quasars/AGN

Historically, the calculation of photometric redshifts for quasars and other AGN

has been even more difficult than for galaxies, because the spectra are dominated

by bright but narrow emission lines, which in broad photometric passbands can

dominate the color. The color-redshift relation of quasars is thus subject to several

effects, including degeneracy, one emission line appearing like another at a different

redshift, an emission line disappearing between survey filters, and reddening. In

addition, the filter sets of surveys are generally designed for normal galaxies and

not quasars. The assignment of these quasar photo-zs is thus a complex problem

that is amenable to data mining in a similar manner to the classification of AGN

described in §3.1.4.

The calculation of quasar photo-zs has had some success using SDSS

data272,273,274,275,276,277, but they suffer from catastrophic failures, in which, as

shown in Fig. 9, the photometric redshift for a subset of the objects is completely

incorrect. However, data mining approaches have resulted in improvements to this

situation. Ball et al.278 find that a single-neighbor kNN gives a similar result to the



August 11, 2010 0:44 WSPC/INSTRUCTION FILE ijmpd

32 N. M. Ball & R. J. Brunner

templates, but multiple neighbors, or other supervised algorithms such as DT or

ANN, pull in the regions of catastrophic failure and significantly decrease the spread

in the results. Kumar279 also shows this effect. Ball et al.261 go further and are

able to largely eliminate the catastrophics by selecting the subset of quasars with

one peak in their redshift probability density function (§4.1), a result confirmed by

Wolf280. Wolf et al.281 also show significant improvement using the COMBO-17

survey, which has 17 filters compared to the five of the SDSS, but unfortunately the

photometric sample is much smaller.

Beyond the spectral regime, template-based results are sufficient282, but again

suffer from catastrophics. Given our physical understanding of the nature of quasars,

it is in fact reasonable to extrapolate in magnitude when using colors as a training

set, because while one is going to fainter magnitudes, one is not extrapolating in

color. One could therefore quite reasonably assign empirical photo-zs for a full

photometric sample of quasars.

3.3. Other Astrophysical Applications

Typically in data mining, information gathered from spectra has formed the train-

ing set to apply a predictive technique to objects with photometry. However, it is

clear from this process that the spectrum itself contains a large amount of infor-

mation, and data mining techniques may be used directly on the spectra to extract

information that might otherwise remain hidden. Applications to galaxy spectral

classification were described in §3.1.3. In stellar work, besides the classification of

stars into the MK system based on observable parameters, several studies have di-

rectly predicted physical parameters of stellar atmospheres using spectral indices.

One example is Ramirez, Fuentes & Gulati283, who utilize a genetic algorithm to

select the appropriate input attributes, and predict the parameters using kNN. The

attribute selection reduces run time and improves predictive accuracy. Solorio et

al.284 use kNN to study stellar populations and improve the results by using active

learning to populate sparse regions of parameter space, an alternative to dimension

reduction.

Although it has much potential for the future (§4.2), the time domain is a field

in which a lot of work has already been done. Examples include the classification

of variable stars described in §3.1.5, and, in order of distance, the interaction of the

solar wind and the Earth’s atmosphere, transient lunar phenomena, detection and

classification of asteroids and other solar system objects by composition and or-

bit, solar system planetary atmospheres, stellar proper motions, extrasolar planets,

novae, stellar orbits around the supermassive black hole at the Galactic center, mi-

crolensing from massive compact halo objects, supernovae, gamma ray bursts, and

quasar variability. A good overview is provided by Becker285. The large potential

of the time domain for novel discovery lies within the as yet unexplored parameter

space defined by depth, sky coverage, and temporal resolution286. One constraining

characteristic of the most variable sources beyond the solar system is that they are
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Fig. 9. Photometric redshift, zp, vs. spectroscopic redshift, zs, for quasars in the Sloan Digital
Sky Survey, showing, in the upper panel, catastrophic failures in which zp is very different from
zs. Each individual point represents one quasar, and the contours indicate areas of high areal
point density. σ is the root-mean-square dispersion between zp and zs. The use of data mining
techniques, including assigning full probability density functions in photometric redshift, enables
the reduction or elimination of these catastrophics, as shown in the lower panel. Data based on
that from Ball et al.261.
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generally point sources. As a result, the timescales of interest are constrained by

the light crossing time for the source.

The analysis of the cosmic microwave background (CMB) is amenable to several

techniques, including Bayesian modeling, wavelets, and ICA. The latter, in particu-

lar via the FastICA algorithm216, has been used in removal of CMB foregrounds287,

and cluster detection via the Sunyaev-Zeldovich effect288. Phillips & Kogut289 use

a committee of ANNs for cosmological parameter estimation in CMB datasets, by

training them to identify parameter values in Monte Carlo simulations. This gives

unbiased parameter estimation in considerably less processing time than maximum

likelihood, but with comparable accuracy.

One can use the fact that objects cross-matched between surveys will likely have

correlated distributions in their measured attributes, for example, similar position

on the sky, to improve cross-matching results using pattern classifiers. Rohde et

al.290 combine distribution estimates and probabilistic classifiers to produce such

an improvement, and supply probabilistic outputs.

Taylor & Diaz291 obtain empirical fits for Galactic metallicity using ANNs,

whose architectures are evolved using genetic algorithms. This method is able to

provide equations for metallicity from line ratios, mitigating the ‘black box’ element

common to ANNs, and, in addition, is potentially able to identify new metallicity

diagnostics.

Bogdanos & Nesseris292 analyze Type Ia supernovae using genetic algorithms

to extract constraints on the dark energy equation of state. This method is non-

parametric, which minimizes bias from the necessarily a priori assumptions of para-

metric models.

Lunar and planetary science, space science, and solar physics also provide many

examples of data mining uses. One example is Li et al.293, who demonstrate im-

provements in solar flare forecasting resulting from the use of a mixture of experts,

in this case SVM and kNN. The analysis of the abundance of minerals or con-

stituents in soil samples294 using mixture models is another example of direct data

mining of spectra.

Finally, data mining can be performed on astronomical simulations, as well as

real datasets. Modern simulations can rival or even exceed real datasets in size and

complexity, and as such the data mining approach can be appropriate. An exam-

ple is the incorporation of theory295 into the Virtual Observatory (§4.5). Mining

simulation data will present extra challenges compared to observations because in

general there are fewer constraints on the type of data presented, e.g., observations

are of the same universe, but simulations are not, simulations can probe many as-

trophysical processes that are not directly observable, such as stellar interiors, and

they provide direct physical quantities as well as observational ones. Most of the

largest simulations are cosmological, but they span many areas of astrophysics. A

prominent cosmological simulation is the Millennium Run296, and over 200 papers
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have utilized its datac.

4. The Future

We now turn to the future of data mining in astronomy. Several trends are apparent

that indicate likely fruitful directions in the next few years. These trends can be

used to make informed decisions about upcoming, very large surveys. This section

assumes that the reader is somewhat familiar with the concepts in both §§2 and 3,

namely, with both data mining and astronomy. We once again arrange the topics

by data mining algorithm rather than by astronomical application, but we now

interweave the algorithms with examples.

As in the past, it is likely that cross-fertilization with other fields will continue to

be beneficial to astronomy, and of particular relevance here, the data mining efforts

made by these fields. Examples include high energy physics, whose most obvious

spinoff is the World Wide Web from CERN, but the subject has an extensive history

of extremely large datasets from experiments such as particle colliders, and has

provided well-known and commonly used data analysis software such as ROOT
297, designed to cope with these data sizes and first developed in 1994. In the fields

of biology and the geosciences, the concepts of informatics, the study of computer-

based information systems, have been extensively utilized, creating the subfields

of bio- and geoinformatics. The official recognition of an analogous subfield within

astronomy, astroinformatics, has recently been recommended8.

4.1. Probability Density Functions

A probability density function (PDF, Fig. 10) is a function such that the probability

that the value, x, is in the interval a < x < b, is the definite integral over the range:

P (a < x < b) =

∫ b

a

f(x)dx.

Thus the total area under the function is one. PDFs are of great significance for data

mining in astronomy because they retain information that is otherwise lost, and be-

cause they enable results with improved signal-to-noise from a given dataset. One

can think of a PDF as a histogram in the limit of small bins but many objects. Ap-

proaches such as supervised learning are in general taking as input the information

on objects and providing as output a prediction of properties. The most general way

to do this is to work with the full PDFs at each stage. The formalism has recently

been demonstrated in an astronomical context by Budavári271, and it is applica-

ble to the prediction of any astronomical property. For inputs a, b, c,..., the output

probabilities of a set of properties, P (x, y, z, ...) can be predicted. Fully probabilistic

cross-matching of surveys has also been implemented by the same author298.

chttp://www.mpa-garching.mpg.de/millennium

http://www.mpa-garching.mpg.de/millennium
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Fig. 10. Example photometric redshift probability density functions (PDFs) for galaxies, showing
the rich content of extra information compared to a single value, or value plus Gaussian error. The
horizontal axes, z, are the photometric redshifts, and the vertical are the probability densities.
The solid red and dotted blue lines are the PDF with and without the photometric uncertainties,
respectively, and the vertical dashed green lines are, in these cases, the true distances. From
Budavári271.

Results with PDFs in photo-zs are starting to appear, either with single values

and a spread, or the full PDF. Cunha et al.299 show that full PDFs help reduce

bias. Margoniner & Wittman300 show that they enable subsamples with improved

signal-to-noise, and Wittman301 also demonstrates reduction in error. Ball et al.261

show that generating full photo-z PDFs for quasars allows subsection of a sample

virtually free of catastrophic failures, the first time this has been demonstrated,

and an important result for their use as tracers of the large scale structure in the

universe. Wolf280 confirms a similar result. Myers, White & Ball302 show that using

the full PDF for clustering measurements will improve the signal-to-noise by four

to five times for a given dataset without any alteration of the data (Fig. 11). This

method is applicable to the clustering of any astronomical object. Full PDFs have

also been shown to improve performance in the photometric detection of galaxy

clusters303, again due to the increased signal-to-noise ratio. Several further efforts

use a single photo-z and a spread, but not the full PDF. However, the method of

Myers, White & Ball shows that it is the full PDF that will give the most benefit.

PDFs will also be important for weak lensing300.
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As well as photo-zs, predicting properties naturally incorporates probabilistic

classification. Progress has been made, e.g., the SDSS has been classified accord-

ing to P(galaxy, star, neither)126. Similar classifications that could be made are

P(star formation, AGN) and P(quasar, not quasar). Bailer-Jones et al.304 imple-

ment probabilistic classification that emphasizes finding very rare objects, in this

case quasars among the stars that will be seen by Gaia.

Ball et al.261 generate a PDF by perturbing inputs for a single-neighbor kNN.

The idea of perturbing data has been studied in the field of Privacy Preserving Data

Mining305,306, but here the aim is to generate a PDF using the errors on the input

attributes in a way that is computationally scalable to upcoming datasets. The

approach appears to work well despite the fact that at present, survey photometric

errors are generally poorly characterized307. Proper characterization of errors will

be of great importance to future surveys as the probabilistic approach becomes more

important. Scalability may be best implemented either by using kd-tree like data

structures, or by direct implementation on novel supercomputing hardware such as

FPGA, GPU, or Cell processors (§4.7), which can provide enormous performance

benefits for applications that require a large number of distance calculations.
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Fig. 11. Improvement in the signal-to-noise ratio of the clustering signal of quasars enabled by
PDFs. The improvements to the projected correlation function (vertical axis) enabled by utilizing
PDFs are shown by the green crosses and red triangles, compared to the old method, based on
single-valued photometric redshifts, shown by blue diamonds. The horizontal axis is the projected
radial distance between objects. The diagonal lines are power-law fits, with scale length r0, to the
correlation function. The points are offset for clarity. From Myers, White & Ball302.



August 11, 2010 0:44 WSPC/INSTRUCTION FILE ijmpd

38 N. M. Ball & R. J. Brunner

4.2. Real-Time Processing and the Time Domain

The time domain is already a significant area of study and will become increasingly

important over the next decade with the advent of large scale synoptic surveys such

as the Large Synoptic Survey Telescope (LSST)308. A large number of temporal

resolved observations over large areas of the sky remains an unexplored area, and

the historical precedent suggests that many interesting phenomena remain to be

discovered286.

However, as one might expect, this field presents a number of challenges not

encountered in the data mining of static objects. These include (i) how to handle

multiple observations of objects that can vary in irregular and unpredictable ways,

both intrinsic and due to the observational equipment, (ii) objects in difference im-

ages (the static background is subtracted, leaving the variation), (iii) the necessarily

extremely rapid response to certain events such as gamma ray bursts where physical

information can be lost mere seconds after an event becomes detectable, (iv) robust

classification of large streams of data in real time, (v) lack of previous information

on several phenomena, and (vi) the volume and storage of time domain information

in databases. Other challenges are seen in static data, but will assume increased im-

portance as real-time accuracy is needed. For example, the removal of artifacts309

that might otherwise be flagged as unusual objects and incur expensive follow-up

telescope time. Variability will be both photometric, a change in brightness, and

astrometric, because objects can move. While some astronomical phenomena, such

as certain types of variable stars, vary in a regular way, others vary in a nonlin-

ear, irregular, stochastic, or chaotic manner, and the variability itself can change

with time (heteroskedasticity)310. Time series analysis is a well developed area of

statistics, and many of these techniques will be useful.

The combination of available information, but incomplete coverage of the pos-

sible phenomena suggests that a probabilistic (§4.1) approach311, either involving

priors, or semi-supervised (§2.4.3) will in general be the most appropriate. This is

because the algorithms can use the existing information, but objectively interpret

new phenomena. Supervised learning will perform better for problems where more

information and larger datasets are available, and unsupervised or Bayesian priors

will perform better when there are fewer observations. Many events will still require

followup observations, but since there will be far more events than can ever be fol-

lowed up in detail, data mining algorithms will help ensure that the observations

made are optimal in terms of the targeted scientific results.

As a confederation of data archives and interoperable standards of many of the

world’s existing telescopes, the Virtual Observatory (VO, §4.5) will be crucial in

meeting the challenge of the time domain, and significant infrastructure for the

VO already exists. The VOEventNet312 is a system for the rapid handling of real

time events, and provides an online federated data stream of events from several

telescopes. It can be followed by both human observers and robotic telescopes.

Numerous next-generation wide-field surveys in the planning or construction
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stages will be synoptic. The largest such survey in the optical is the LSST, which

will observe the entire sky, visible from its location, every three nights. These ob-

servations will provide a data stream exceeding one petabyte per year, and, as a

result, they anticipate many of the challenges described here313. Like LSST314,

the Gaia satellite315 has working groups dedicated to data mining. The Classifica-

tion Working Group has employed several data mining techniques, and developed

new approaches316,304 to be used when the survey comes online. Other ongoing

or upcoming synoptic surveys include Palomar-Quest317, the Catalina Real-Time

Transient Survey318, Pan-STARRS319, and those at other wavelengths such as

instruments leading up to and including the Square Kilometer Array320.

The time domain will not only provide challenges to existing methods of data

mining, but will open up new avenues for the extraction of information, such as using

the variability of objects for classification321 or photometric redshift322. Because

they are due to a relatively compact source in the center of galaxies, active galactic

nuclei vary on much shorter timescales than normal galaxies. This variability has

been proposed as a mechanism to select quasar and other AGN candidates. Other

events are suspected theoretically but have not been observed323. But given the

dataset sizes, automated detection of such events at some level is clearly required.

The computational demands of real time processing of the enormous data streams

from these surveys is significant, and will likely be met by the use of newly emerging

specialized computing hardware (§4.7).

4.3. Petascale Computing

The current state of the art in supercomputing consists of terabyte-sized files and

teraflop computing speeds, which is conveniently encapsulated in the term teras-

cale computing. Following Moore’s law324, in which computer performance has in-

creased exponentially for the last several decades, the coming decade will feature

the similarly-derived petascale computing325. Much of the performance increase in

the past decade has been driven by increases in processor (CPU) clock frequency,

but this rate has now slowed due to physical limitations on the sizes of components,

and more importantly power consumption and energy (heat) dissipation. It has

therefore become more economical to manufacture chips with multiple processor

cores.

The typical supercomputer today is a cluster, which consists of a large number

of conventional CPUs connected by a specialized interconnect system, a distributed

or shared memory, a shared filesystem, and hosting the Linux operating system.

Many systems are heterogeneous because this is scalable and cost-effective, but

coordinating and making effective such a system can be challenging. In particular,

it will be vital that the system is properly balanced between processing power and

disk input/output (I/O) to supply the data. Combined with the increasing number

of processor cores, this means that parallel and distributed computing is rapidly

increasing in importance.
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A useful set of ‘rules of thumb’ for parallel and other aspects of computing

were formulated by Amdahl in the 1960s326, and they remain true today. One

of these is that roughly 50,000 CPU cycles are required per byte of data. Most

scientific datasets require far fewer cycles than this, and it is thus likely that future

performance will be I/O limited, unless sufficient disks are provided in parallel.

Bell, Gray & Szalay1 estimate that a petascale system will require 100,000 one

TB disks. The exact details of how to distribute the data for best performance are

likely to be system-dependent68. The available CPU speed should scale to the data

size, although it will not scale to most näıvely implemented data mining algorithms

(§4.4).

An example of an upcoming petascale system whose uses will include astronom-

ical data mining is the Blue Watersd system at the National Center for Supercom-

puting Applications (NCSA), which is due to come online in 2011. Specifications

include 200,000 compute cores with 4 GHz 8 core processors, 1 PB of main memory,

10 PB of user disk storage, 500 PB of archival storage, and 400 GB s−1 bandwidth

connectivity to provide sustained petascale compute power. It will implement the

IBM PERCS (Productive, Easy-to-use, Reliable Computer System)327, which will

integrate their CPU, operating system, parallel programming, and file systems. This

provides a method of addressing the issues of running real-world applications at the

petascale by balancing the CPU, I/O, networking, and so on. Similarly, a consider-

able investment of effort is being carried out in the years leading up to deployment

in 2011 on the development of applications for the system, in consultation with the

scientists who will run them. Several astronomical applications are included, mostly

simulations, but also data mining in the form of the analysis of LSST datasets.

Not all petascale computing will be done on systems as large as Blue Waters.

In the US, the National Science Foundation Office of Cyberinfrastructure has been

advised1 to implement a power-law type system, with a small number of very large

systems, of order ten times more regional centers, and ten times more local facilities

(Tiers 1–3). Such local facilities, for example Beowulf clusters, are already common

in university departments, and consist of typically a few dozen commodity machines.

A recent trend matching the increasing requirements for data-intensive as opposed

to CPU-intensive computing is the GrayWulf cluster328, which implements the idea

of data ‘storage bricks’: cheap, modular, and portable versions of a balanced system

which when added together provide petascale computation.

4.4. Parallel and Distributed Data Mining

As indicated in §4.3 above, because of the slowing increase in raw speed of individual

CPUs, processors are becoming increasingly parallelized, both in terms of the num-

ber of processor cores on a single chip, and increasing amounts of these chips being

deployed in parallel on supercomputing clusters. Providing appropriately scaled sys-

dhttp://www.ncsa.uiuc.edu/BlueWaters

http://www.ncsa.uiuc.edu/BlueWaters
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tems (CPU, I/O, etc.) is one challenge, but most data mining algorithms not only

will be required to run on petascale data, but their näıve implementations scale

as N2, or worse. It has been suggested329 that any algorithm that scales beyond

N logN will rapidly be rendered infeasible.

McConnell and Skillicorn330 have promoted parallel and distributed data

mining331,332,333,334, which is well-known in the data mining field, but virtually

unused in astronomy. In this approach, the algorithms explicitly take advantage of

available parallelism. The simplest example is task-farming, or the embarrassingly

parallel approach, in which a task is divided into many mutually-independent sub-

tasks, each of which is allocated to a single processor. This can be done on an array

of ordinary desktop machines as well as a supercomputer. A more complex challenge

is when many parts of the data must be accessed, or when an algorithm relies on the

outputs from calculations distributed across multiple compute nodes. For a large

dataset the hardware required likely includes shared memory (§4.3), thus shared

memory parallelization335 can be important. Many algorithms exist for the imple-

mentation of data mining on parallel computer systems beyond simple task farming,

but these are not widely used within science, as compared to the commercial sector.

The application programming interfaces MPI and OpenMP have been widely used

on distributed and shared memory systems, respectively, for simulation and some

data analysis, but they do not offer the semantic capabilities336 needed for data

mining, i.e., the metadata describing the meaning of the data being processed and

the results produced are not easily incorporated.

Parallel data mining is challenging, as not only must the algorithm be imple-

mented on the hardware, but many algorithms simply cannot be ported as-is to

such a system. Instead, parallelization requires that the algorithm itself, as encap-

sulated in the code, must often be fundamentally altered at the pseudocode level.

This can be a time-consuming and counterintuitive process, especially to scientists

who are generally not trained or experienced in parallel programming. Progress is

slowly being made in astronomy, including a parallel implementation of kd-trees102,

cosmological simulations requiring datasets larger than the node memory size337,

and parallelization of algorithms338.

An alternative approach is grid computing, in which the exact resource used is

unimportant to the user, although not all data mining algorithms lend themselves to

this paradigm. A variant of grid computing is crowdsourcing, in which members of

the public volunteer their spare CPU cycles to process data for a project. The most

well-known project of this type is SETI@Home, and more recently, the Galaxy Zoo

project, which employed large numbers of people to successfully classify galaxies in

SDSS images. Such crowdsourcing is likely to become even more important in the

future, particularly in combination with greatly improved outreach via astronomical

applications on social networking sites such as Facebook339.

Scalability is also helped on conventional CPUs by the employment of tree

structures, such as the kd-tree, which partition the data. This enables a search



August 11, 2010 0:44 WSPC/INSTRUCTION FILE ijmpd

42 N. M. Ball & R. J. Brunner

to access any data value without searching the whole dataset. Kd-trees have been

used for many astronomical applications, including speeding up N-point correlation

functions340; cross-matching, classification, and photometric redshifts341. They can

be extended to more sophisticated structures, for example, the multi-tree342. How-

ever, implementation of such tree structures on parallel hardware or computational

accelerators (§4.7) remains difficult102.

4.5. The Virtual Observatory

The Virtual Observatory (VO) is an analogous concept to a physical observatory,

but instead of telescopes, various centers house data archives. The VO consists of

numerous national-level organizations, and the International Virtual Observatory

Alliance. Within the national organizations there are various data centers that house

large datasets, computing facilities to process and analyze them, and people with

considerable expertise in the datasets stored at that particular center.

Common data standards and web services are necessary for the VO to work.

Such standards have emerged, including web services using XML and SOAP, a data

format, VOTable10, a query language based on SQL, the Astronomical Data Query

Language343, image access protocols for images (SIAP343), and spectra (SSAP)e,

VOEventNet312 for the time domain, plus various standards of interoperability

and ways of describing resources such as the Unified Content Descriptor344. Large

numbers of high level tools for working with data are also availablef .

An example of the emerging data standards for archiving is the Common

Archive Observation Model345 (CAOM) of the Canadian Astronomical Data Cen-

ter (CADC). Given that it is likely that the future VO will continue to consist of a

number of data centers like the CADC, this model represents a useful and realistic

way in which data can be made meaningfully accessible, but not so rigidly presented

as to prevent the desired analysis of future researchers with as yet unforeseen science

goals. This model consists of the components Artifact, Plane, SimpleObservation,

and CompositeObservation, which describe logical parts of the data from individ-

ual files to logical sets of observations such as spectra, and forms the basis of all

archiving activity at the CADC.

The increasing immobility of large datasets as described in §4.3 will render it

uneconomical in terms of time and money to download large datasets to local ma-

chines. Rather than bringing the data to the analysis, it will become more sensible

to take the analysis to the data346. To be able to perform complicated data min-

ing analyses, it is necessary that the data be organized well enough to make this

tractable, and that the center archiving the data must have sufficient computing

power and web services to perform the analyses. The organizational requirement

means that the data must be stored as a database with the sophistication found in

ehttp://www.ivoa.net/Documents
fhttp://www.us-vo.org

http://www.ivoa.net/Documents
http://www.us-vo.org
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the commercial sector, where mining of terascale databases is routine. Commercial

software and computer science expertise will help, but the task is non-trivial because

astronomical data analysis can require particular data types and structures not usu-

ally found in commercial software, such as time series observations. An example of

such a database already in place is the SDSS, and its underlying schema347 has

been used and copied by other surveys such as GALEX.

Nevertheless, it is likely that considerable analyses will continue to be carried out

on smaller subsets of the data, and this data may well continue to be downloaded

and analyzed locally, as it has been to date. If one anticipates working exclusively

with one survey, it may still be more efficient to implement a GrayWulf-like cluster

locally and download the complete dataset.

Another difficult problem faced by the VO is that a significant future scientific

benefit from large datasets will be in the cross-matching of multiple datasets, in

particular, multiwavelength data. But if such data are distributed among different

data centers and are difficult to move, such work may be intractable. What can

be done, however, is to make available as part of the VO web services, tools for

cross-matching datasets at a given center. A common data format and description,

combined with the fact that much of the science is done from small subsets of large

datasets, means that this is certainly tractable. As a result, it is not surprising that

there is significant demand for such tools348.

An important consideration for the VO is that many astronomers, indeed many

scientists in general, will want to run their own software on the data, and not simply

a higher level tool that involves trusting someone else’s code. This will be true even

if the source code is available. Or, a scientist might wish to complete an analysis

that is not available in a higher level tool. It is thus important that the data are

available at a low level of processing so that one can set one’s own requirements as

needed. NASA has a categorization of data where 0 is raw, 1 is calibrated, and 2 is a

derived product, such as a catalog. An ideal data archive would have available well

documented and accessible level 2 catalogs, similarly documented and accessible

level 1 data, and perhaps not online but stored level 0 data, to enable, for example,

a re-reduction.

Data have been released using the VO publishing interfaces349, data mining

algorithms such as ANNs have been implemented350, and applications for analyses

with web interfaces are online351. Multiwavelength analyses are becoming more

feasible and useful348, and it is therefore now possible, but still time-consuming, to

perform scientific analyses using VO tools352. We expect this will be an area where

considerable work will still need to be done, however, in order to fully enable the

full exploitation of the archives of astronomy data in the future.

4.6. Visualization

Visualization of data is an important part of the scientific process, and the combi-

nation of terascale computing and data mining poses obvious challenges. Common
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plotting codes presently in use in astronomy include SuperMongog, PGPloth, Gnu-

ploti, and IDLj 353, but these are stand-alone codes that do not easily cope with

data that cannot be completely loaded into the available memory space. Newer tools,

such as TOPCAT354, VisIVO355, and VOMegaPlot356 support the Virtual Obser-

vatory standards such as VOTable and PLASTIC357 for interoperability between

programs. The full library on which the TOPCAT program is based, STILTS358,

is able to plot arbitrarily-sized datasets.

As with hardware, software, and data analysis, collaboration with computer

scientists and other disciplines has resulted in progress in various areas of scientific

visualization. At Harvard, the AstroMed project at the Initiative for Innovative

Computing (IIC) has collaborated with medical imaging teams359. The rendering

of complex multi-dimensional volumetric and surficial data is a common desire of

both fields, and the medical imaging software was considerably more advanced than

was typical in astronomy in terms of graphical capability. As with the creation

and curation of databases for large datasets, collaboration with the IT sector has

enabled significant progress and the use of tools beyond the scope of those that

could be created by astronomers alone, such as Google Sky360. It is likely that such

collaboration will continue to increase in importance.

The program S2Plot361, developed at Swinburne, is motivated by the idea

of making three-dimensional plots as easy to transfer from one medium to an-

other (interchange) as two-dimensional plots. The existing familiar interface of a

plotting code, in this case PGPlot, has been extended362 to enable rendering of

multi-dimensional data on several media, including desktop machines, PDF files,

Powerpoint-style slides, or web pages. Systems in which the user is able to interact

directly with the data are also likely to play a significant role. Partiview363, devel-

oped at NCSA, enables the visualization of particulate data and some isosurfaces

either on a desktop or in an immersive CAVE system, and several astronomical

datasets have been visualized. Szalay, Springel & Lemson364 describe using graphi-

cal processing units (§4.7) to aid visualization, in which the data are preprocessed to

hierarchical levels of detail, and only rendered to the resolution required to appear

to the eye as if the whole dataset is being rendered. Paraviewk is a program designed

for parallel processing on large datasets using distributed memory systems, or on

smaller data on a desktop.

Finally, in recent years, numerous online virtual worlds have become popular,

the most well-known of which is Second Life. Hut365 and Djorgovskil describe

their interaction within these worlds, both with other astronomers in the form of

avatars in meetings, and with datasets. While it may initially seem to be just a

ghttp://www.astro.princeton.edu/~rhl/sm
hhttp://www.astro.caltech.edu/~tjp/pgplot
ihttp://www.gnuplot.info
jhttp://idlastro.gsfc.nasa.gov
khttp://www.paraview.org
lhttp://blogs.discovermagazine.com/cosmicvariance/2008/11/03/guest-post-george-djorgovski-a-new-world-overture

http://www.astro.princeton.edu/~rhl/sm
http://www.astro.caltech.edu/~tjp/pgplot
http://www.gnuplot.info
http://idlastro.gsfc.nasa.gov
http://www.paraview.org
http://blogs.discovermagazine.com/cosmicvariance/2008/11/03/guest-post-george-djorgovski-a-new-world-overture
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gimmicky way to have a meeting, the interaction with other avatars is described as

‘fundamentally visceral’, much more so than one would expect. This suggests that,

along with social networks for outreach, such interaction among astronomers may

become more common, as one will be able to attend a meeting without having to

travel physically.

4.7. Novel Supercomputing Hardware

For the final part of §4, we turn to novel supercomputing hardware. This is a rapidly

developing area, but it has enormous potential to speed up existing analyses, and

render previously impossible questions tractable. Specialized hardware has been

used in astronomy for many years, but until recently only in limited contexts and

applications, such as the GRAPE366 systems designed specifically for n-body cal-

culations, or direct processing of data in instrument-specific hardware. Here, we

describe three hardware formats that have emerged in recent years as viable solu-

tions to a more general range of astronomical problems: graphical processing units

(GPUs), field-programmable gate arrays (FPGAs), and the Cell processor.

As described in §4.3, the increasing speed of CPU clock cycles has now been

largely replaced by increasing parallelism as the main method for continuing im-

provements in computing power. The methods described there implement coarse-

grained parallelism, which is at the level of separate pieces of hardware or applica-

tion processes. The hardware described here implements fine-grained parallelism, in

which, at the instruction level, a calculation that would require multiple operations

on a CPU is implemented in one operation. The hardware forms an intermediary

between the previously-used application-specific integrated circuits (ASIC), and the

general purpose CPU.

Future petascale machines (§4.3) are likely to include some or all of these three,

either as highly integrated components in a cluster-type system, or as part of the

heterogeneous hardware making up a distributed grid-like system that has overall

petascale performance.

Spurred by the computer gaming industry, the GPUs on graphics cards within

desktop-scale computers have increased in performance much more rapidly than con-

ventional processors (CPUs). They are specially designed to be very fast at carrying

out huge numbers of operations that are used in the rendering of graphics, by using

vector datatypes and streaming the data. Vector processors have been used before

in supercomputing, but GPUs have become of great interest to the scientific com-

munity due to their commodity-level pricing, which results from their widespread

commercial use, and the increasing ease of use for more general operations than

certain graphical processes.

At first, GPUs dealt only with fixed-point numbers, but now single-precision

floating point and even double-precision are becoming more common. Thus the

chips are no longer simply specialized graphics engines, but are becoming much

more general-purpose (GPGPUs). Double-precision is required or highly desir-
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able for many scientific applications. The ease of use of GPUs has been increased

thanks to NVidia’s Compute Unified Device Architecture development environment

(CUDA)m for its cards, and will be further aided by the Open Computing Language

(OpenCL)n for heterogeneous environments. These enable the GPU functions to be

called in a similar way to a C library, and are becoming a de facto standard. CUDA

has also been ported to other higher level languages, including PyCUDA in Python.

GPUs are beginning to be used in astronomy, and several applications have

appeared. GPUs can reproduce the functionality of the GRAPE hardware for n-

body simulations367, and CUDA implementations have been shown to outperform

GRAPE in some circumstances368. GPUs are beginning to be used for real-time

processing of data from next generation instruments369 as part of the Data Intensive

Science Consortium at the Harvard IIC. Significant speedup has been demonstrated

of a k nearest neighbor search on a GPU compared to a kd-tree implemented in C

on a CPU370.

FPGAs371,372 are another form of hardware that has become viable for some-

what general-purpose scientific computing. While FPGAs have been widely used

as specialized hardware for many years, including in telescopes for data processing

or adaptive optics, it is only in the past few years that their speed, cost, capacity,

and ease of use have made them viable for more general use by non-specialists. As

with GPUs, the ability to work with full double precision floating point numbers

is also increasing, and their use is via libraries and development environments that

enable the FPGA portion of the code to appear as just another function call in C

or a C-like language. These tools implement the hardware description language to

program the FPGA, which need not be known by the user.

An FPGA consists of a grid of logic gates which must be programmed via soft-

ware to implement a specific set of functions before running code (hence field-

programmable). If the calculation to be performed can be fully represented in this

way on the available gates, this enables a throughput speed of one whole calculation

of a function per clock cycle, which given a modern FPGA’s clock speed of 100 MHz

or more, is 100 million per second. In practice, however, the actual speed is often

limited by the I/O.

One recent example is the direct mapping of an ANN onto an FPGA373, which

can then in principle classify one object per clock cycle, or 100 million objects per

second at 100 MHz. FPGAs will continue to be widely used as specialized compo-

nents for astronomical systems, for example in providing real-time processing of the

next generation synoptic surveys. Brunner, Kindratenko & Myers338 demonstrated

a significant speedup of the N-point correlation function using FPGAs. Freeman,

Weeks & Austin374 directly implement distance calculations, such as required by

the kNN data mining algorithm, on an FPGA.

Finally, the IBM Cell processor375 is a chip containing a conventional CPU and

mhttp://www.nvidia.com/cuda
nhttp://www.khronos.org/opencl

http://www.nvidia.com/cuda
http://www.khronos.org/opencl
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and array of eight more powerful coprocessors for hardware acceleration in a similar

manner to the GPU and FPGA. Like the NVidia GPU, it has been widely used in

mass-production machines such as the Playstation 3, and is or will be incorporated

into several ‘hybrid’ petascale machines, including IBM’s Roadrunner, and possibly

Blue Waters. Unfortunately, also like the GPU, it is not yet as easy to use as desired

for large scale scientific use, but progress in the area is continuing.

Further novel supercomputing hardware such as ClearSpeed may become viable

for science and widely used. It is an area of exciting developments and considerable

potential. As with many new developments, however, one must be somewhat care-

ful, in this case because the continued development of the hardware is driven by

large commercial companies (NVidia, IBM, etc.), and not the scientific community.

Nevertheless, the potential scientific gains are so large that it is certainly worth

keeping an eye on.

5. Conclusions

In this review, we have introduced data mining in astronomy, given an overview of

its implementation in the form of knowledge discovery in databases, reviewed its

application to various science problems, and discussed its future. Throughout, we

have tried to emphasize data mining as a tool to enable improved science, not as

an end in itself, and to highlight areas where improvements have been made over

previous analyses, where they might yet be made, and limitations of this approach.

An astronomer is not a cutting-edge expert in data mining algorithms any more

than they are in statistics, databases, hardware, software, etc., but they will need

to know enough to usefully apply such approaches to the science problem they wish

to address. It is likely that such progress will be made via collaboration with people

who are experts in these areas, particularly within large projects, that will employ

specialists and have working groups dedicated to data mining. Fully implemented,

commercial-level databases will be required since the data will be too big to organize,

download, or analyze in any other way.

The available infrastructure should, therefore, be designed so that this data

mining approach to research is maximally enabled. The raw or minimally-processed

data should be made available in a manner so one can apply user-specific codes either

locally or using computational resources local to the data if data size necessitates it.

It is unlikely that most researchers will either require or trust the exact resources

made available by higher level tools. Instead, they will be useful for exploratory

work, but ultimately one must be able to run personal or trusted code on the data,

from the level of re-reduction upwards.

A problem arises when one wishes to utilize multiple or distributed datasets, for

example in cross-matching data for multi-wavelength studies. Therefore, datasets

that can be easily made interoperable via a standard storage schema should be

made available. In this manner, a user can bring computing power and algorithms

to tackle their particular science question. This problem is particularly acute when
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large datasets are held at widely separated sites, because transfer of such data across

the network is currently impractical. A great deal of science is done on small subsets

of the full data, so data will still be frequently downloaded and analyzed locally,

but the paradigm of downloading entire datasets is not sustainable.
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