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ABSTRACT
We reconstruct in this paper the deceleration and jerk parameters as functions of
the cosmological redshift from data on cosmic chronometers (CCH), baryon acous-
tic oscillations (BAOs), and the Pantheon+MCT compilation of supernovae of Type
Ia (SnIa). The reconstruction is carried out with the Weighted Function Regression
method, previously introduced by Gómez-Valent & Amendola (2018). It improves the
usual cosmographic approach by automatically implementing Occam’s razor criterion.
This makes our procedure to be more free of model and parametrization dependencies
than many other analyses in the literature. The reconstructed functions are fully com-
patible with the predictions for the concordance model. In addition, we also discuss the
confidence level at which we can claim that the Universe (assumed to be flat, homoge-
neous and isotropic) is currently accelerating. According to Jeffreys’ scale and jargon,
we find moderate evidence in favor of such speed-up using the data on SnIa+CCH,
and very strong one when we also use data on BAOs. The measured current value
of the deceleration parameter in the latter case reads q0 ∼ −0.60 ± 0.10, and for the
deceleration-acceleration transition redshift we find zt ∼ 0.8±0.10. The former is ∼ 6σ
away from 0. This is in stark contrast, for instance, with the ∼ 17σ that are found in
the context of the flat ΛCDM even without including the BAOs data. This indicates
that cosmography and Occam’s razor criterion play a crucial role in this discussion,
and that estimating the evidence for positive acceleration only in the framework of a
particular cosmological model or parametrization is clearly insufficient.

Key words: cosmological parameters – dark energy – cosmology:observations.

1 INTRODUCTION

Is the Universe currently undergoing a positive acceleration
phase? Certainly, we can only reply this question within the
margins of accuracy set by the cosmological observations,
i.e. the most that we can do is to answer yes or no with
the confidence level permitted by the data at our disposal.
Thus, it would be better to reformulate the question in an
alternative way: what is the evidence in favor of the current
speed-up of the Universe according to the existing cosmo-
logical data? This work is mainly focused on answering this
pivotal question using low and intermediate-redshift data,
trying to do it from a very skeptical perspective and re-
moving from the analysis as much as possible the model-
dependencies that could eventually bias our final answer.
These model-dependencies are actually plaguing many other
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works in the literature, which address the problem either in
the framework of concrete cosmological models, using par-
ticular parametrizations of the deceleration parameter or the
jerk (cf. formulas (1) and (7), respectively, and Sect. 3.1),
or even truncated cosmographical series describing the lumi-
nosity distance or the Hubble function in which the highest
order of the expansion is fixed to a concrete value (see the
list of references below). None of these analyses are model-
independent in a strict sense, and therefore neither the de-
rived confidence regions for the current value of the deceler-
ation parameter, which describes the acceleration status of
the Universe at present. It turns out that the evidence that
is obtained in favor of a positive-accelerated Universe de-
pends very strongly on the model or parametrization that is
assumed in the analysis (we will show this explicitly in Sect.
3.2), so the evidence for positive acceleration that is obtained
from the data can only carry an absolute and hence pow-
erful statistical meaning when it is inferred in a full-fledged
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2 A. Gómez-Valent

model-independent way. Otherwise, it only tells us what is
the evidence in the concrete model or parametrization em-
ployed in that particular study, and thus we are not in a
position to answer our question in a completely secure man-
ner. This work aims to alleviate this situation and pave the
way to the obtention of a more model-independent determi-
nation of the cosmographical functions, but before entering
the details of our reconstruction method let us review some
of the studies on these issues and corresponding results that
one can find in the literature on the subject, which is quite
vast.

The first important hints of positive acceleration were
reported in the late nineties by the High-Z Supernova Search
Team (Riess et al. 1998) and the Supernova Cosmology
Project (Perlmutter et al. 1999) collaborations, from the
first measurements of the apparent magnitude of supernovae
of Type Ia (SnIa) at high redshifts. The samples contained
individuals up to z = 0.97 and 0.83, respectively, and also in-
cluded low-redshift SnIa of z . 0.15 from the Calán/Tololo
Supernova Survey and, in the first case, from the CfA sam-
ple too. In the context of the non-flat ΛCDM model they
found the probability for the presence of a positive cos-
mological constant (Λ) in Einstein’s field equations to be
P (Λ > 0) = 99%, and restricting the analysis to the purely
flat ΛCDM, i.e. setting the current spatial curvature density
Ω

(0)
k = 0, they found ∼ 3σ evidence in favor of the current

positive acceleration of the Universe. Subsequent studies in-
corporated the data of even higher-redshift SnIa discovered
with the Hubble Space Telescope (HST) (Riess et al. 2001;
Turner & Riess 2002; Knop et al. 2003; Riess et al. 2004),
at z & 1. This allowed to also find compelling evidence for
a deceleration-acceleration transition at zt ∼ 0.5. For in-
stance, in (Riess et al. 2004) the authors made use of a
parametrization for the deceleration parameter of the form
q(z) = q0 + q1z, with q0 = q(0) and q1 = dq

dz
. The decelera-

tion parameter is directly related to the second derivative of
the scale factor with respect to the cosmic time t (Sandage
1970; Weinberg 1972),

q = − ä

aH2
, (1)

with H = ȧ/a being the Hubble function and the dot de-
noting such derivative. Considering a flat Universe they ob-
tained P (q0 < 0) = 99.2% and P (q1 > 0) = 99.8%, and
thus important evidence in favor of the current positive ac-
celeration of the Cosmos and the existence of a deceleration-
acceleration transition point in the past, more concretely at
zt = 0.46± 0.13, with q(zt) = 0.

These pioneering studies made possible the first accu-
rate estimations of the deceleration parameter of the his-
tory. Therein the authors explored two of the routes that
have been later on subsequently revisited by the cosmolog-
ical community once and again to infer the evidence for a
negative q0 and the existence of a transition redshift, using
different data sources. In e.g. (Riess et al. 1998; Perlmutter
et al. 1999; Knop et al. 2003) the authors assumed concrete
cosmological models, mainly the flat and non-flat ΛCDM,
and derived according to the data available at the time and
in that particular cosmological scenarios the confidence in-
tervals for q0. This approach makes direct use of the grav-
itational field equations in a particular theoretical setting,
where all the sources of the energy-momentum tensor and/or

the deviations from standard General Relativity (GR) are
specified beforehand. Conversely, Turner & Riess (2002) and
Riess et al. (2004) directly parametrized the deceleration
parameter without focusing in any concrete cosmological
model and hence tried to orient their analyses in a more
“cosmographical” way, although of course such parametriza-
tions are not free of model-dependencies by definition, as we
will explicitly show in this paper.

Using cosmography (also dubbed cosmokinetics or
Friedmannless Cosmology) one can extract kinematic infor-
mation about the Universe from measurements of cosmolog-
ical distances by only assuming the Cosmological Principle,
which is clearly fulfilled at very large (cosmological) scales.
Cosmic microwave background (CMB) observations and the
inflationary paradigm also allow us to consider a flat Uni-
verse, which helps to break important degeneracies in the
cosmographical framework, e.g. between the jerk and Ω

(0)
k

(Visser 2004, 2005; Dunsby & Luongo 2016). In this geome-
trical approach one does not need to introduce any assump-
tion on the metric theory of gravity or the matter-energy
content of the Universe, which is something very positive.
Cosmography was boosted thanks to the papers by Visser
(2004, 2005), in which he extended the cosmographical for-
malism of previous works (see e.g. those by Sandage (1970)
and Weinberg (1972)) to include also higher order terms
in the expansion of the cosmological distances, as the jerk
and the snap (which we will discuss in detail later on). Al-
though the cosmographical methodology cannot shed much
light on the ultimate cause of the positive acceleration of the
Universe, some parameters as the jerk can be employed as
direct tests of the ΛCDM and the potential time-variation
of the dark energy (DE) density, see e.g. (Sahni et al. 2003;
Blandford et al. 2005). Moreover, it can certainly help us to
answer important questions related to its kinematic prop-
erties without relying on a particular cosmological model,
but this statement should be actually duly qualified. Cos-
mographical expansions of cosmological distances are still
parametrizations. They are truncated Taylor series devel-
oped around e.g. z = 0. Choosing the concrete order at
which the series is cut can be tricky and the derived con-
straints for the various parameters involved in the expansion
can be highly dependent on this choice, as was already noted
by Elgarøy & Multamäki (2006). We can of course proceed
applying some model-selection criteria based on: the com-
putation of exact Bayesian evidence, see e.g. (Amendola &
Tsujikawa 2015; Amendola 2018); the Akaike or Bayesian
criteria (Akaike 1974; Schwarz 1978); or even make use of
the reduced chi-squared statistic. Nevertheless, regardless of
how we select the “right” order of the cosmographical ex-
pansion according to the existing data the following ques-
tions should be still settled down: how should we proceed
if two nested cosmographical expansions behaved very sim-
ilarly in terms of model selection criteria. Should we choose
the one with e.g. closest reduced chi-squared statistic to 1,
and throw the other one away? Would we be legitimated
to do this, independently of how close the two expansions
behaved in practice? Wouldn’t we be loosing precious sta-
tistical information then? We firmly believe that the usual
cosmographical method must be improved in order to deal
with all these subtle points, and try to remove the remain-
ing degree of subjectivity that is inherent to the choice of
the highest order of the cosmographical expansion. We will
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Evidence for the current speed-up of the Universe 3

do this through the so-called Weighted Function Regression
(WFR) method, which was already introduced in (Gómez-
Valent & Amendola 2018)1 to reconstruct the Hubble func-
tion using data on H(zi) at different redshifts extracted from
cosmic chronometers (CCH) with the differential-age tech-
nique, together with the data from the SnIa of the Pan-
theon compilation and the HST CANDELS and CLASH
Multy-Cycle Treasury (MCT) programs. In this paper we
will make use of the same data sources to study the two
next-to-leading order terms in the expansion of the scale
factor, i.e. the deceleration and jerk parameters. We will
also study the impact of some intermediate-redshift data
obtained from the analysis of baryon acoustic oscillations
(BAOs). The WFR method implements in practice the Oc-
cam razor criterion, not by selecting only one cosmograph-
ical expansion among the various (nested) alternatives, but
incorporating all of them consistently in our calculations
using appropriate and rigorous Bayesian tools. This allows
us to reconstruct the aforesaid cosmographical functions in
a fairer and more model and parametrization-independent
way. We hope to improve thereby the methodology applied
and the constraints reported on e.g., q0 or zt, in many
other works in the literature, as those based on concrete
parametrizations of the deceleration or the jerk parameters
(Turner & Riess 2002; Riess et al. 2004; Elgarøy & Mul-
tamäki 2006; Shapiro & Turner 2006; Rapetti et al. 2007;
Gong & Wang 2007; Ishida et al. 2008; Cunha & Lima 2008;
Guimarães 2009; Mörtsell & Clarkson 2009; Xu, Li & Lu
2009; Cunha 2009; Lu, Xu & Liu 2011; Guimarães & Lima
2011; Giostri et al. 2012; Nair, Jhingan & Jain 2012; Zhai
et al. 2013; Akarsu et al. 2014; Mukherjee & Banerjee 2016;
Vargas dos Santos, Reis & Waga 2016; Mamon & Das 2017;
Jesus, Holanda & Pereira 2018; Mamon & Bamba 2018),
truncated cosmographical series (Cattoën & Visser 2007a,b;
Xu, Li & Lu 2009; Vitagliano et al. 2010; Luongo 2011; Xu
& Wang 2011; Rubin & Hayden 2016; Jesus, Holanda &
Pereira 2018; Dutta et al. 2018; Heneka 2018), alternative
expansions of the luminosity distance (Semiz & Çamlibel
2015), or specific cosmological models, including also various
parametrizations of the DE density or the DE equation of
state (EoS) parameter, see e.g. (Riess et al. 1998; Perlmutter
et al. 1999; Riess et al. 2001; Turner & Riess 2002; Knop et
al. 2003; Riess et al. 2004; Rapetti et al. 2007; Nielsen, Guf-
fanti & Sarkar 2016; Rubin & Hayden 2016; Ringermacher
& Mead 2016; Haridasu et al. 2017; Mamon 2018). Other
authors have also applied alternative techniques to recon-
struct the expansion history of the Universe in a model-
independent way and derive constraints on the deceleration
parameter, e.g. using the smoothing method of (Shafieloo et
al. 2006; Shafieloo 2007, 2012), principal component anal-
yses (Shapiro & Turner 2006; Mörtsell & Clarkson 2009),
Gaussian processes (Haridasu et al. 2018), or piecewise nat-
ural cubic splines (Tutusaus, Lamine & Blanchard 2018).
These methods are interesting and useful, but also have
their own drawbacks. We deem that the WFR method rises

1 In (Gómez-Valent & Amendola 2018) we called this method

Weighted Polynomial Regression instead of Weighted Function

Regression, just because in that paper we used polynomials for
the basis functions. In this work, though, we will also use non-

polynomial expressions (see Sect. 3.1), so this change in the name

is needed.

as a good alternative to put objective and fair constraints
to the most relevant kinematic functions, by using low and
intermediate-redshift data.

This paper is organized as follows. In Sect. 2 we describe
in detail the data sets that we employ in the reconstruction
of the deceleration and jerk parameters. In Sect. 3 we mo-
tivate and explain the WFR method after introducing some
basic elements of cosmography that we need in order to ap-
ply this reconstruction technique. In Sect. 4 we present and
discuss our results, including the plots with the main re-
constructed cosmographical functions and some tables. We
finally present our conclusions in Sect. 5.

2 THE DATA SETS

In this section we list the data that we employ in our re-
construction of the various cosmographical functions we are
interested in with the weighted function regression method.
We also provide the corresponding references, discuss the
model dependencies and assumptions behind these data,
and the way they are introduced in our analysis in order
to: (i) mitigate as much as possible the effect of some of
these model-dependencies; (ii) incorporate unaccounted sys-
tematic uncertainties that were not taken into account in
the original references; and (iii) ease the computation of
evidences and the practical implementation of the WFR
method. As mentioned already at the title and abstract lev-
els, we make use of only low and intermediate-redshift data,
i.e. at z . 2.5. The reason is double. On the one hand,
the data on CCH and SnIa are cosmology-independent, and
the data on H(zi) extracted from the radial component of
anisotropic BAOs can be dealt with also in a way such that
the model-dependencies can be strongly suppressed, as we
will explain in Sect. 2.2. On the other hand, the cosmo-
graphic approach works optimally only with data at this
approximate redshift range. It is difficult to include in the
analysis e.g. the CMB data, since the latter would force us
to consider higher order terms in the cosmographical expan-
sions, which would probably reduce the constraining power
on the lowest-order cosmographical parameters, as e.g. q0.
This is easy to understand if we think of cosmography as
what it indeed consists on, i.e. Taylor expansions of the scale
factor and derived quantities around the current time. More-
over, the redshift range of these data points already covers
the fraction of the cosmological history we are mainly inter-
ested in, including the deceleration-acceleration transition
point.

2.1 Data on E(z) from the Pantheon+MCT SnIa
compilation

In this work we use the Hubble rate data points, i.e. E(zi) =
H(zi)/H0 with H0 = H(z = 0), provided in (Riess et al.
2018b) for six different redshifts in the range z ∈ [0.07, 1.5].
They compress very effectively the information about the
1048 SnIa at z < 1.5 that take part of the Pantheon com-
pilation (Scolnic et al. 2018) (which includes the 740 SnIa
of the joint light-curve analysis sample compiled by Betoule
et al. (2014)), and the 15 SnIa at z > 1 of the CANDELS
and CLASH Multy-Cycle Treasury programs obtained by
the HST, 9 of which are at 1.5 < z < 2.3. Riess et al. (2018b)
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4 A. Gómez-Valent

zi E(zi) Correlation matrix

0.07 0.997± 0.023 1.00

0.20 1.111± 0.020 0.39 1.00

0.35 1.128± 0.037 0.53 −0.14 1.00

0.55 1.364± 0.063 0.37 0.37 −0.16 1.00

0.90 1.52± 0.12 0.01 −0.08 0.17 −0.39 1.00

1.50 2.78± 0.59 −0.03 −0.07 −0.07 0.13 −0.16 1.00

Table 1. Data on the Hubble rate E(zi) and corresponding correlation matrix from the Pantheon+MCT SnIa compilation (Scolnic et

al. 2018; Riess et al. 2018b). The correlation matrix is of course symmetric, so we only write the elements of its lower triangle. See the
text for details.

converted the raw SnIa measurements into data on E(z) by
parametrizing E−1(z) at those six redshifts zi. The inte-
gral over E−1 that defines the luminosity distance is then
obtained by interpolating between zi with cubic Hermite
polynomials. Finally, the overall constant H0 is marginal-
ized away along with the absolute supernovae magnitude,
see (Riess et al. 2018b) for further details. The corresponding
values of E−1(zi) are Gaussian in very good approximation
and are shown in Table 6 of (Riess et al. 2018b), together
with the corresponding correlation matrix. We present their
inverse, E(zi), and the correlation matrix in Table 1 for
completeness and because we will use the E(z)-data in the
reconstruction of the Hubble rate. This will allow us to com-
pute the weights of the WFR method exactly in this case.
Notice that the correlation matrix for the E(z)-data is very
similar to the one that contains the correlations between
the E−1(zi)-values. The firsts five points are almost per-
fectly Gaussian too. In contrast, E(z = 1.5) is not normal-
distributed at such good level, see the last plot in Fig. 1.
The best-fit value reads E(1.5) = 2.67+0.83

−0.52. Nevertheless, we
have opted to fit a Gaussian to the exact histogram as a first
approximation, obtaining E(1.5) = 2.78± 0.592. This works
quite well, since as we already showed in (Gómez-Valent &
Amendola 2018), the relative uncertainty of E(z = 1.5) is
considerably larger than the other five data points and hence
its impact on the final shape of the reconstructed functions
is much lower. In addition, it is easier and more practical to
deal with a multivariate Gaussian distribution, rather than
considering the small departures from it, especially when
their impact is so small, as in the case under study. As
we will see in Sect. 3, this is because in this way we can
derive analytically also the constraints on the coefficients
of the reconstructed Hubble rate, which are also Gaussian-
distributed due to the fact that the latter is built linear in
the parameters. This allows us to save valuable computa-
tional time.

It is important to remark that these values on E(zi)
have been obtained by assuming a flat Universe and the Cos-
mological Principle, and thus are model-dependent in this
sense, cf. (Riess et al. 2018b). The homogeneity and isotropy
of the Universe at large scales are features exceedingly sus-
tained by radiation backgrounds as CMB observations, and
counts of sources observed at wavelengths ranging from ra-
dio to gamma rays. We know moreover that the flatness

2 Other authors, as Haridasu et al. (2018) and Pinho, Casas &

Amendola (2018) just symmetrize the upper and lower bounds

of E(1.5) provided in (Riess et al. 2018b), without adapting its
central value. This yields E(1.5) = 2.67 ± 0.68. No important

differences in the final results are obtained when this value is used

instead of ours due to the reasons exposed above in the text.

assumption is quite reasonable if our main aim is to use
these data points to reconstruct E(z) around the current
time. Note e.g. that the TT+lowP+lensing+BAO analysis
carried out by the Planck Collaboration VI (2018) leads to

a value of Ω
(0)
k = 0.0007 ± 0.0019 at 1σ c.l., which is fully

compatible with the flat Universe scenario; or the analysis
by Ooba, Ratra & Sugiyama (2018), which in this case fa-

vors a closed Universe, although the central value for Ω
(0)
k

is still low, around −0.006 when the model is confronted to
the TT,TE,EE+lowP+lensing+BAO data. One can easily
check that the relative change on H(z) caused by these tiny
deviations from flatness is really small, being around 0.3% in
the redshift range 0 ≤ z ≤ 2. This is of course much smaller
than the relative uncertainties of our data points and also
than the one of the reconstructed functions (see e.g. Figs.
2-3). Thus, given the sensitivity of the data we are dealing
with, the assumption of a flat Universe has a derisory im-
pact on our results. Moreover, it also allows us to break the
existing strong degeneracy between the current values of the
jerk and the snap parameters and Ω

(0)
k (Visser 2004, 2005;

Dunsby & Luongo 2016), and this is of course crucial to ob-
tain tighter constraints on these cosmographical quantities.

We also want to mention that the Hubble rate data
of Table 1 have been obtained without considering the po-
tential time evolution of the SnIa intrinsic luminosity, hence
sticking to the standard approach in the literature. Tutusaus
et al. (2017) interestingly showed that when this assumption
is not taken for granted a decelerated low-redshift power law
model of the type a(t) ∼ tn (with n < 1) is able to fit the
low-redshift background data as well as, or even slightly bet-
ter, than the ΛCDM. Riess et al. (2018b) argued, though,
that when SnIa data at z > 1.5 are included in the analysis
the ΛCDM is ∼ 60 times more probable than a marginally
accelerating power-law cosmology with n = 1.04. They con-
clude that there is no motivation for including the potential
redshift-dependence of the intrinsic SnIa luminosity based
on astrophysical or empirical considerations.

2.2 Data on E(z) from cosmic chronometers and
BAOs

Spectroscopic dating techniques of passivelyevolving galax-
ies, i.e. galaxies with old stellar populations and low star
formation rates, have become a good tool to obtain observa-
tional values of the Hubble function at redshifts z . 2 (see
the work by Jimenez & Loeb (2002) and also the references
in Table 2). The measurements of CCH listed in Table 2
have been obtained from galaxies located at different angles
in the sky. Under the coverage of the Cosmological Principle
the dependence of the CCH data on the angle and location of
the measured galaxies is removed, and therefore the H’s be-
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Evidence for the current speed-up of the Universe 5

Figure 1. Histograms for the six values of E(zi) derived from the Pantheon+MCT SnIa compilation. They have been obtained, together
with the corresponding covariance matrix, by inverting the values of E−1(zi) provided in (Riess et al. 2018b) with a Monte Carlo routine

(Metropolis et al. 1953; Hastings 1970), with which we have generated a Markov chain of 5 · 104 points. We also superimpose the fitted
Gaussians (in red) in order to show that the exact distributions are normal in very good approximation for the first five redshifts, and

in lesser extent for the sixth one. See the comments in the main text of Sect. 2.1.

come just functions of the redshift. These measurements are
independent of the Cepheid distance scale and do not rely on
any particular cosmological model, although are subject to
other sources of systematic uncertainties, as to the ones as-
sociated to the modeling of stellar ages, see e.g. (Moresco et
al. 2012; Moresco et al. 2016), which is carried out through
the so-called stellar population synthesis techniques (SPS),
and also to a possible contamination due to the presence of
young stellar components in such quiescent galaxies (López-
Corredoira & Vazdekis 2017; López-Corredoira et al. 2018;
Moresco et al. 2018). Given a pair of ensembles of passively-
evolving galaxies at two different redshifts it is possible to
infer dz/dt from observations under the assumption of a con-
crete SPS model and compute H(z) = −(1 + z)−1dz/dt.
Thus, cosmic chronometers allow us to directly obtain the
value of the Hubble function at different redshifts, contrary
to other probes which do not directly measure H(z), but
integrated quantities as e.g. luminosity distances. In Table
2 we list the CCH data points used in our analyses, includ-
ing their corresponding uncertainties σi. We point out that
we have used a diagonal covariance matrix for these data,
i.e. Cij = σ2

i δij . Moreover, we have not directly used in this
study the original data points provided in the references of
Table 2, Hori(zi)’s, but the corresponding processed values,
Hpro(zi)’s, obtained upon correcting the former in order to
include the systematic effects mentioned before. Namely, for
the data of references (Moresco et al. 2012; Moresco et al.
2016), where the values of Hori(zi) obtained from the two
alternative SPS models of (Bruzual & Charlot 2003) and
(Maraston & Strömbäck 2011) are provided (from now on
we will refer to them as BC03 and MaStro, respectively), we
have opted to compute the corresponding processed value at

each redshift by computing the weighted sum of the two,

Hpro(zi) =

2∑
j=1

Hori
j (zi)

σ2
j (zi)

2∑
j=1

σ−2
j (zi)

. (2)

The σj(zi)’s do not refer to the uncertainties of the second
column of Table 2, but to the corrected ones,

σj(zi) =
√
σ̃2
j (zi) + |Hori

1 (zi)−Hori
2 (zi)|2 + [0.025Hori

j (zi)]2 ,

(3)

where σ̃j(zi) for j = 1, 2 are just the original uncertainties
(which do refer to those of the second column of Table 2),
the second term in the square root is introduced to account
for the systematic error that is due to the choice of the SPS
model, and the last term accounts for the potential contam-
ination of the passively-evolving galaxies for the presence
of a young stellar component. Moresco et al. (2018) reana-
lyzed the data presented in (Moresco et al. 2012; Moresco
et al. 2016) to assess the impact of this effect and showed
that the young population contamination is actually mini-
mal and consistent with zero given the current uncertainties.
They calculated that at most it would bias the determina-
tions on H(zi) by 0.4 − 1% (at 1σ, 0.8 − 2.3% at 2σ), well
below the current errors. We have been conservative, though,
and added a 2.5% systematic uncertainty (at 1σ) not only
to the values reported in (Moresco et al. 2012; Moresco et
al. 2016), but also to those provided in the other references,
see the Table 2. We have assumed, therefore, that the con-
clusions of (Moresco et al. 2018) can also be extended to
the rest of studies from which we have compiled the CCH
data. The results of the processed Hpro(zi)’s, which incor-
porate the corrections of formulas (2) and (3), are listed in
the third column of the same table. The uncertainties of the
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6 A. Gómez-Valent

zi Hori(zi) [km s−1Mpc−1] Hpro(zi) [km s−1Mpc−1] References

0.07 69.0± 19.6 69.0± 19.7 Zhang et al. (2014)

0.09 69.0± 12.0 69.0± 12.1 Jiménez et al. (2003)

0.12 68.6± 26.2 68.6± 26.3 Zhang et al. (2014)

0.17 83.0± 8.0 83.0± 8.3 Simon, Verde & Jiménez (2005)

0.1791 75.0± 4.0 77.8± 8.1 Moresco et al. (2012)

81.0± 5.0

0.1993 75.0± 5.0 77.7± 8.7 Moresco et al. (2012)

81.0± 6.0

0.2 72.9± 29.6 72.9± 29.7 Zhang et al. (2014)

0.27 77.0± 14.0 77.0± 14.1 Simon, Verde & Jiménez (2005)

0.28 88.8± 36.6 88.8± 36.7 Zhang et al. (2014)

0.3519 83.0± 14.0 85.2± 16.9 Moresco et al. (2012)

88.0± 16.0

0.3802 83.0± 13.5 86.0± 15.6 Moresco et al. (2016)

89.3± 14.1

0.4 95.0± 17.0 95.0± 17.2 Simon, Verde & Jiménez (2005)

0.4004 77.0± 10.2 79.8± 12.3 Moresco et al. (2016)

82.8± 10.6

0.4247 87.1± 11.2 90.3± 13.6 Moresco et al. (2016)

93.7± 11.7

0.4497 92.8± 12.9 96.1± 15.3 Moresco et al. (2016)

99.7± 13.4

0.47 89.0± 49.6 89.0± 49.6 Ratsimbazafy et al. (2017)

0.4783 80.9± 9.0 83.8± 10.8 Moresco et al. (2016)

86.6± 8.7

0.48 97.0± 62.0 97.0± 62.0 Stern et al. (2010)

0.5929 104.0± 13.0 106.7± 16.4 Moresco et al. (2012)

110.0± 15.0

0.6797 92.0± 8.0 94.6± 11.9 Moresco et al. (2012)

98.0± 10.0

0.7812 105.0± 12.0 96.3± 21.0 Moresco et al. (2012)

88.0± 11.0

0.8754 125.0± 17.0 124.5± 17.3 Moresco et al. (2012)

124.0± 17.0

0.88 90.0± 40.0 90.0± 40.1 Stern et al. (2010)

0.9 117.0± 23.0 117.0± 23.2 Simon, Verde & Jiménez (2005)

1.037 154.0± 20.0 132.5± 45.8 Moresco et al. (2012)

113.0± 15.0

1.3 168.0± 17.0 168.0± 17.5 Simon, Verde & Jiménez (2005)

1.363 160.0± 33.6 160.0± 33.8 Moresco (2015)

1.43 177.0± 18.0 177.0± 18.5 Simon, Verde & Jiménez (2005)

1.53 140.0± 14.0 140.0± 14.4 Simon, Verde & Jiménez (2005)

1.75 202.0± 40.0 202.0± 40.3 Simon, Verde & Jiménez (2005)

1.965 186.5± 50.4 186.5± 50.6 Moresco (2015)

Table 2. Data on H(zi) obtained from CCH. See the quoted references and the text for details. Notice that we write both, the original
values provided in these references (Hori) and also the processed ones (Hpro), i.e. those that are obtained upon the implementation of

the corrections explained in Sect. 2.2. In the case of references (Moresco et al. 2012; Moresco et al. 2016) the authors provide the values

obtained with the BC03 and MaStro SPS models. We list both here, being those at the top of the corresponding row (second column)
the BC03 ones and those at the bottom the MaStro ones.

Hpro(zi)’s from (Moresco et al. 2012; Moresco et al. 2016)
are taken to be the greatest of the two σj ’s in each case. For
the rest of references they are given by the corresponding
σ(zi)’s.

In this work we also include data on BAOs. More con-
cretely, we consider the radial component of the anisotropic
BAOs obtained from the measurement of: (i) the power spec-
trum and bispectrum from the Baryon Oscillation Spectro-
scopic Survey (BOSS) data release 12 galaxies (Gil-Maŕın
et al. 2017), H(z = 0.32)rs(zd) = (11.55± 0.38) · 103 km s−1

and H(z = 0.57)rs(zd) = (14.02± 0.22) · 103 km s−1; (ii) the
complete Sloan Digital Sky Survey (SDSS) III Lyα-quasar
auto and cross-correlation functions (Mas des Bourboux et
al. 2017), c/[H(z = 2.40)rs(zd)] = 8.94 ± 0.22; and (iii)
the SDSS-IV extended BOSS data release 14 quasar sample
(Gil-Maŕın et al. 2018), H(z = 1.52)rs(zd) = (24.0 ± 1.8) ·
103 km s−1. The theoretical expression of the sound horizon
at the redshift of the radiation drag zd reads,

rs(zd) =

∫ ∞
zd

cs(z)

H(z)
dz , (4)

where cs(z) is the sound speed in the baryon-photon plasma.
rs(zd) obviously depends on the physics at very high red-
shifts, i.e. at z > zd ∼ O(103), and, in particular, on
the Hubble function at those epochs. This complicates in
principle the cosmographic analysis, since the latter is only
consistent and effective when only data at low and inter-
mediate redshifts are included. One way to deal with this
problem is to apply a reasonable (as model-independent as
possible) prior for rs(zd) in order to re-express the BAOs
constraints just in terms of the value of the Hubble func-
tion at the intermediate redshifts explored by the various
surveys. The Planck Collaboration VI (2018) has found
rs(zd) = (147.21±0.48) Mpc fitting the ΛCDM model to the
TT+lowE CMB data, almost exactly the same value that re-
ported two years before in (Planck Collaboration XIII 2016)
using the TT+lowP data set, rs(zd) = (147.33± 0.49) Mpc.
Verde et al. (2017) showed, though, that when non-standard
dark radiation components are allowed to be present in the
pre-recombination epoch a slightly larger value of rs(zd)
is preferred, with substantial larger relative uncertainty,
rs(zd) = (150 ± 5) Mpc. We deem this is a more model-
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Evidence for the current speed-up of the Universe 7

independent estimation of the sound horizon at the drag
epoch, which covers the Planck preferred value and range
at < 1σ. This is the value we are going to use as a prior
in our study to transform the BAOs information into direct
constraints on H(zi). But we are actually not only inter-
ested in doing this, but also in obtaining direct constraints
on the Hubble rate E(zi) from the aforesaid data on BAOs
and also the CCH data points listed in Table 2. It is highly
convenient to work only with data on E(zi) because, as we
will see later on more in detail, the combination of data on
H(zi) and E(zi) would make appear in the description of
H(z) some non-linearities due to the product of H0 with
the parameters of the linear expansion that we will use for
the reconstruction of E(z). These non-linearities would pose
a problem because then the parameters of E(z) would not
be Gaussian-distributed, and the exact computation of the
evidences would have to be carried out numerically, which
would imply a much more expensive budget in terms of com-
putational time. In contrast, if we only use data on E(zi)
we are able to compute the exact evidences and Bayes ratios
(and thus the weights of the WFR method, see Sect. 3.4) in
a pure analytical way, just because the data is Gaussian-
distributed and E(z) will be constructed linear in the pa-
rameters. We will provide the corresponding expressions in
the subsequent section. Hence, according to these explana-
tions it becomes clear that we need to also include a prior on
H0 (again, as model-independent as possible) in our anal-
ysis. The choice of this prior is not a straightforward task.
It is very well-known that there exists a 3.5σ tension bet-
ween the local determination of H0 by Riess et al. (2018a),
H0 = (73.48±1.66) km s−1Mpc−1, and the one found by the
Planck Collaboration VI (2018) assuming the ΛCDM and
using e.g. the TT+lowE CMB data, H0 = (66.88 ± 0.92)
km s−1Mpc−1. If this tension is caused by some kind of
systematic error affecting the data or due to the need of
new physics beyond the standard model is still unknown.
Other works that make use of the cosmic distance ladder
find very similar results to the one reported by Riess et al.
(2018a), see e.g. (Cardona, Kunz & Pettorino 2017; Jang
& Lee 2017; Zhang et al. 2017; Follin & Knox 2018), and
are also consistent with preceding studies, as e.g. (Riess et
al. 2011; Riess et al. 2016). Any important systematic er-
ror has been neither found in Planck’s determination. Ad-
dison et al. (2018) showed that independent analyses from
Planck using alternative high-redshift data also lead to re-
sults in non-negligible tension with the local value of H0.
For instance, using the constraints on the primordial abun-
dance of deuterium and galaxy and Lyα forest BAOs data
they found H0 = (66.98 ± 1.18) km s−1Mpc−1 in the con-
text of the ΛCDM. Assuming the same model, Bonvin et al.
(2017) found H0 = (71.9+2.4

−3.0) km s−1Mpc−1 by analyzing
the gravitational time delay of the light rays coming from
the three multiply imaged quasar system HE 0435 − 1223,
and Birrer et al. (2018) H0 = (68.8+5.4

−5.1) km s−1Mpc−1 from
the doubly imaged quasar SDSS 1206+4332. In these cases
there is no tension with the local determination. Recently,
it has also been possible to measure the Hubble parame-
ter using the gravitational wave signal of the neutron star
merger GW17081716 and its electromagnetic counterpart
(Abbott et al. 2017; Guidorzi et al. 2017), providing high
values of H0, but still with very large uncertainties (70+12

−8

and 75.5+11.6
−9.6 km s−1Mpc−1, respectively). They are com-

pletely independent from the underlying cosmology and the
cosmic distance ladder. The claimed reduction of the de-
generacy between the source distance and the weakly con-
strained viewing angle has allowed to considerably reduce
also the uncertainty of H0, yielding 68.9+4.7

−4.6 km s−1Mpc−1

(Hotokezaka et al. 2018). The central value is now more com-
patible with the local determinations, although some criti-
cisms to this new estimation have been also drawn (Dado
& Dar 2018). It is also worth to mention the cosmology-
independent analyses carried out in (Yu, Ratra & Wang
2018; Gómez-Valent & Amendola 2018; Feeney et al. 2018;
Haridasu et al. 2018; Lemos et al. 2018), where use is made of
different combinations of cosmological low and intermediate-
redshift data involving SnIa, CCH and BAOs. A value of
H0 ∼ 68.5 km s−1Mpc−1 is obtained, see these references
for details. Some other authors, as Marra et al. (2013) and,
more recently, Camarena & Marra (2018), have studied the
impact of the cosmic variance on the local determination of
H0, and conclude that although it can certainly play a role
its effect is unable to explain the whole discrepancy between
the HST and Planck’s values. Romano (2018) explains in his
paper that the use by Riess et al. of the 2M++ density field
map (which covers redshifts z ≤ 0.06) to compute peculiar
velocity flows could be biasing their results, since there is
evidence of the existence of local radial inhomogeneities ex-
tending in different directions up to a redshift of about 0.07
(Keenan, Barger & Cowie 2013), and according to Romano
(2018) the 40% of the Cepheids used by Riess et al. (2018a)
would be affected. In view of the large dispersion of values
of H0 found in the vast literature, we opt to adopt in this
work the following prior in our main analyses: H0 = (70±5)
km s−1Mpc−1, which basically covers the values of interest
without relying exclusively on the low or the high parame-
ter region. We have also studied, though, the impact of the
(less conservative) priors provided in (Riess et al. 2018a)
and (Planck Collaboration VI 2018) and checked that they
lead to fully compatible results for the shape of the cosmo-
graphical functions and, in particular, for the value and the
uncertainty of q0. Finally, we consider a correlation coeffi-
cient ρ = −0.56 between H0 and rs(zd) in the Gaussian prior
of the main analyses, inspired by the ΛCDM Planck’s con-
straints. We have also explored other values around -0.6. The
results are kept consistent too. Using this two-dimensional
prior we can convert the CCH values of H(zi) and the BAOs
data into direct constraints on E(zi), which can later on be
employed together with the SnIa data listed in Table 1 to
perform the cosmographical analysis with the WFR method,
using only data on the Hubble rate at different redshifts. We
have checked that the distribution of the processed CCH and
BAOs data on E(zi) is very well approximated by a multi-
variate Gaussian, which is crucial to compute analytically
the evidence associated to the various cosmographical ex-
pansions of E(z), see Sect. 3.4. As expected, although the
original CCH and BAOs data are uncorrelated, some correla-
tions appear between the corresponding transformed values
of E(zi) due to the use of the prior on H0 and rs(zd). We
have taken all these correlations into account.
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8 A. Gómez-Valent

3 THE WEIGHTED FUNCTION REGRESSION
METHOD

3.1 Cosmography through E(z): deceleration,
jerk, and snap parameters

Assuming (as we do in this paper) that the Universe is flat,
homogeneous and isotropic, the square of the space-time
element interval can be written in the usual Friedmann-
Lemâıtre-Robertson-Walker (FLRW) form,

ds2 = dt2 − a2(t)d~x2 , (5)

with a(t) being the scale factor and xi with i = 1, 2, 3
the comoving space coordinates. The former can be Taylor-
expanded around the current time t0,

a(t) = 1 +

∞∑
n=1

1

n!

dna

dtn

∣∣∣
t=t0

(t− t0)n , (6)

where we have set a(t0) = 1. It can also be written in terms
of the current values of the various cosmographical func-
tions. Up to the fourth order in t, the expansion involves
the Hubble and deceleration parameters (see Eq. (1) and
below), as well as the jerk and the snap, which read respec-
tively (Visser 2004, 2005),

j =
1

aH3

d3a

dt3
, s =

1

aH4

d4a

dt4
. (7)

Upon substitution in (6) one obtains,

a(t) = 1 + H0(t− t0)− 1

2
q0H

2
0 (t− t0)2 (8)

+
1

6
j0H

3
0 (t− t0)3 +

1

24
s0H

4
0 (t− t0)4 + ... ,

3 with the subscript 0 referring to present-day quantities. As
we have shown in Sect. 2, we will deal with data on the Hub-
ble rate in order to extract the cosmographical information.
Thus, it is better to directly express it in the cosmographical
form (instead of working with the expansion of the scale fac-
tor), and as a function of the redshift (instead of the cosmic
time), since the former is the physical variable with which we
make contact with observations. The Taylor series of H(z)
around z = 0 is just given by

H(z) = H0 +

∞∑
n=1

1

n!

dnH

dzn

∣∣∣
z=0

zn . (9)

In order to write this expansion in terms of the cosmo-
graphical parameters we firstly need to express the cos-
mographical functions (1) and (7) in terms of the deriva-
tives of H(z) with respect to the redshift z. Making use of
d/dt = −(1+z)H(z)d/dz and after a little bit of algebra we
obtain the following relations,

q(z) = −1 +
1 + z

H(z)

dH

dz
, (10)

3 The minus sign of the third term on the right-hand side of (8)
is due to the definition of the deceleration parameter (1). The

latter is still defined as in (Sandage 1970), when it was thought

that the Universe was currently decelerating, i.e. ä(t0) < 0, due
to the dominance of the non-relativistic matter. The minus sign

of (1) made q0 to be positive. After the works by Riess et al.
(1998) and Perlmutter et al. (1999) there is probably no raison
d’être for this minus sign, but nevertheless it has been preserved

in the definition, as originally.

j(z) = q2(z) +
(1 + z)2

H(z)

d2H

dz2
, (11)

s(z) = 3[q2(z) + q3(z)− j(z)]− 4q(z)j(z)− (1 + z)3

H(z)

d3H

dz3
.

(12)
We can isolate the derivatives of the Hubble function from
these expressions and use them in (9). Dividing the result by
H0 one finally obtains the expansion of the Hubble rate in
terms of the current values of the cosmographical functions,
as desired,

E(z) = 1 + (1 + q0)z +
1

2
(j0 − q2

0)z2 (13)

+
1

6
(3q3

0 + 3q2
0 − 3j0 − 4q0j0 − s0)z3 + ...

As it was already reported by Cattoën & Visser (2007a,b)
this Taylor series (which is built in z, around z = 0) has
radius of convergence ∆z = 1 and therefore we cannot ex-
pect it to describe the correct physical behavior at redshifts
larger than one. One possible way to solve this problem is to
apply a shift in the pivoting redshift in order to increase the
radius of convergence. Another viable solution consists on
using the variable y = 1− a = z/(1 + z) instead of directly
z, as it is also suggested in (Cattoën & Visser 2007a,b), see
therein for further details. The Taylor series of the Hubble
rate around y = 0 reads as follows,

E(y) = 1 +

∞∑
n=1

1

n!

dnE

dyn

∣∣∣
y=0

yn ,

and can be also written as

E(z) = 1 + (1 + q0)
z

1 + z
(14)

+(j0 − q2
0 + 2 + 2q0)

z2

2(1 + z)2

+(6 + 6q0 − 3q2
0 + 3q3

0 + 3j0 − 4j0q0 − s0)
z3

6(1 + z)3
+ ...

As mentioned before, (14) is a priori more appropriate than
(13) because the former solves the formal convergence prob-
lem discussed above, but we remark that this convergence
problem arises when we deal with the full series (13) and
not when we use truncated expressions derived from it. One
can check that Taylor-expanding (1 + z)−1 = 1 − z + z2 −
z3 + O(z4) in all the terms of the last expression one re-
trieves (13), so both formulas are consistent. Notice that
we can use in principle some truncated forms of (13) and
(14) to extract important kinematic information about the
Cosmos’ expansion without making any assumption about
the matter-energy sources of the gravitational field equations
nor the gravitational theory itself, i.e. without assuming any-
thing about the ultimate cause of the Universe’s dynamics.
We cannot only extract the values of q0, j0 and s0, but
we can also reconstruct q(z), j(z) and s(z) using (10)-(12).
These truncated series are, though, not free from problems,
as we will duly explain in the next subsection. We will miti-
gate these problems in the context of the WFR method (see
Sect. 3.3 for details). In Sect. 4 we will show that the recon-
structed shapes of E(z) obtained using (13) and (14) and the
WFR method are fully consistent. Converseley, the situation
for q(z) is different. Although the central values derived with
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Evidence for the current speed-up of the Universe 9

(13) and (14) are compatible, the corresponding uncertain-
ties change quite a lot depending on the parametrization
employed in the analysis. We will explain why in Sect. 4.

In this work we will also apply the WFR method using
expansions of q(z) instead of expansions of the Hubble rate.
More concretely, we will explore the following two possibili-
ties,

q(z) = q0 + q1z + q2z
2 + ... (15)

and

q(z) = q0 +
q1z

1 + z
+

q2z
2

(1 + z)2
+ ... (16)

to reconstruct the deceleration parameter. We will show that
we find consistent reconstructed shapes for q(z). One can
also rewrite (11) in terms of only q(z),

j(z) = 2q2(z) + q(z) + (1 + z)
dq

dz
. (17)

This formula eases the direct reconstruction of the jerk from
(15) and (16).

In Sect. 4 we provide all the details about the various
reconstructions we have carried out in this work, and provide
the constraints for q0 and j0 derived from them.

3.2 Estimation of q0 in some model and
parametrization-dependent scenarios, and the
need of an improved cosmographical approach

We dedicate this section to motivate the need of improving
those works in the literature that obtain constraints on the
cosmographical functions in the framework of concrete cos-
mological models, using particular parametrizations of the
cosmographical functions, or even truncated cosmograph-
ical series in which the maximum order of the expansion
is chosen in an ad hoc way in more or lesser extent. All
these approaches are perfectly licit, of course, but one can-
not claim to extract model-independent information about
the Universe’s kinematics from them. As an example, we will
explicitly derive the constraints for q0 that are obtained in
some of these scenarios just to show that both, the central
values and, more conspicuously, their corresponding uncer-
tainties, are very sensitive to the particular framework cho-
sen to carry out the analysis. This means that the results
and conclusions derived from these studies can be in some
cases partially or completely biased. Thus, we are forced to
search for an alternative approach that proves capable of
reducing the existing degree of subjectivity. Section 3.3 will
be devoted to the description of one of such methods, the
WFR.

We start now analyzing some cosmological models in
standard GR, considering the Cosmological Principle and a
flat Universe. In this framework it is possible to write the
deceleration parameter in terms of the energy densities and
pressures of the various species that fill the Universe by using
(10) together with the Friedmann and energy conservation
equations,

q(z) = −1 +
3

2

∑
i

[ρi(z) + pi(z)]∑
i

ρi(z)
, (18)

where the subscript i labels all the matter-energy compo-
nents. Let us focus now in the late-time expansion, when

the radiation energy density is negligible versus the non-
relativistic matter one. If the latter and the DE are self-
conserved then

ρm(z) = ρ(0)
m (1 + z)3 ; ρD(z) = ρ

(0)
D e3

∫ z
0

1+w(z̃)
1+z̃

dz̃ . (19)

The evolution of the DE density is thus specified by the
DE EoS parameter w(z) = pD(z)/ρD(z), and vice versa. As
the pressure of the matter component is negligible versus
its energy density, one can write the deceleration parameter
in the case under study only in terms of w(z) by plugging
(19) into (18). There is thus a one-to-one correspondence
between q(z) and the EoS parameter of the self-conserved
DE. We analyze here three models: (i) the ΛCDM, in which
w(z) = −1 and the DE density remains constant through-
out all the cosmic expansion, see e.g. (Amendola & Tsu-
jikawa 2015) and references therein; (ii) the XCDM (also
known as wCDM) parametrization of the DE EoS parameter
(Turner & White 1997), in which w(z) = w0, with w0 being
a constant that can in principle acquire both, quintessence
(w0 > −1) or phantom-like (w0 < −1) values; and (iii)
the CPL parametrization (Chevallier & Polarski 2001; Lin-
der 2003, 2004), the next-to-leading order correction of the
XCDM, in which w(z) = w0 + w1z/(1 + z). The EoS pa-
rameter has in the latter case some evolution and could
(at least, in principle) pass through the phantom divide.
We choose these models basically because of their simplic-
ity and also because they have a different number of free
parameters. The XCDM and CPL have one and two more
parameters than the concordance model, respectively. In the
CPL parametrization the square of the Hubble rate reads,

E2(z) = Ω(0)
m (1 + z)3 + (1−Ω(0)

m )e
− 3w1z

(1+z) (1 + z)3(1+w0+w1) ,
(20)

with Ω
(0)
m = ρ

(0)
m /(ρ

(0)
m + ρ

(0)
D ) being the matter density pa-

rameter. For the ΛCDM and the XCDM the corresponding
expressions are obtained straightforwardly, by just setting in
(20) (w0, w1) = (−1, 0) in the first case, and w1 = 0 in the
second one. Using these formulas we can confront the three
models to the Pantheon+MCT and the CCH data (cf. Ta-
bles 1 and 2, respectively, and the comments in Sect. 2). The
results are listed in Table 3, where we also show the value
of q0 that is obtained for each of the models under study.
For the XCDM and CPL parametrizations the theoretical
expression of the deceleration parameter reads,

q0 = −1 +
3

2

[
1 + w0(1− Ω(0)

m )
]
, (21)

whereas for the ΛCDM we have to set w0 = −1 in this
formula. Notice that the values that are obtained for this
kinematic quantity are compatible in the three models, and
hence fully consistent (cf. the penultimate column of Table
3). Nevertheless, the uncertainties are quite different in mag-
nitude, being in the XCDM (CPL) a factor ∼ 3 (∼ 6) larger
than in the ΛCDM. The reason is obvious, in the XCDM
(CPL) we have one (two) more free parameter(s) than in
the concordance model, so the constraints that are obtained
from the data for the various fitting parameters and derived
quantities are weaker for the former models. But then, which
is the level of evidence at which we can state that q0 < 0,
i.e. in favor of the current positive-accelerated phase of the
Universe? In the ΛCDM the value of q0 is ∼ 17σ away from
q0 = 0, in the XCDM such distance is of roughly 6σ, and
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10 A. Gómez-Valent

Model Ω
(0)
m H0 [km s−1Mpc−1] w0 w1 q0 χ2

min

ΛCDM 0.295± 0.021 70.45± 2.36 −1 0 −0.554± 0.032 15.74

XCDM 0.306± 0.051 70.31± 2.42 −1.03± 0.15 0 −0.578± 0.099 15.74

CPL 0.301± 0.104 70.34± 2.47 −1.04± 0.16 0.10± 1.78 −0.494± 0.195 15.74

Table 3. Fitting results obtained for the ΛCDM model and the XCDM and CPL parametrizations of the DE EoS, by using the

Pantheon+MCT SnIa and the CCH data described in Sect. 2. The derived deceleration parameter q0 and the minimum value of the

χ2-function for each model are also provided.

in the CPL it is “only” of ∼ 2.5σ, so the differences are not
precisely small. The minimum values of the χ2-function ob-
tained in the ΛCDM, XCDM and CPL (cf. again Table 3,
last column), tell us that these models are able to fit equally
well the data, so we have to use some method to penalize the
use of extra parameters and see which is the most favored
scenario. Whatever it is the method employed we will find
e.g. that the ΛCDM is preferred over the XCDM and CPL.
Although the values of χ2

min are the same for the three mo-
dels, there is a penalization for the XCDM and CPL with
respect to the ΛCDM which is caused by the addition of the
free parameters w0 and (w0, w1), respectively. But still, up
to what extent can we rely on the uncertainty of q0 that
is obtained in the framework of the ΛCDM? Are all these
constraints representative of the underlying “true” model
describing the Cosmos? It could well be not the case, since
even if the ΛCDM is more preferred than the XCDM and
CPL, we have made some important assumptions that might
have a non-negligible impact on our results and, more con-
spicuously, on the corresponding uncertainties. Apart from
assuming the isotropy, homogeneity and flatness of the Uni-
verse, we have assumed that the correct theory of gravity is
Einstein’s GR together with the self-conservation of matter
and DE, and the presence of a cosmological constant trig-
gering the cosmic acceleration. Some of these can be con-
sidered very strong assumptions and, certainly, dispensing
with them would lead us to more loose constraints on q0
than those obtained in the context of the ΛCDM. Thus, in
order to extract more objective constraints on q0 we should
definitely abandon the model-dependent approach.

Cosmography can help us to extract model-independent
constraints on the various kinematic quantities when the
data employed are themselves free of model-dependencies,
which unfortunately is not always the case. We have to re-
mark, though, one important point which is usually over-
looked in many works in the literature. Although the cos-
mographical functions (e.g. q(z) or j(z)) can be obtained
in a very model-independent way, they are not model-
independent per se. For instance, by just building and fitting
parametrized expressions of these cosmographical functions
to the data we are not led to fully model-independent re-
sults. Given a parametrized form of q(z) one can integrate
(10) to obtain the associated Hubble function, and use it to
compute the rest of higher order cosmographical functions
as well, as the jerk (11) and the snap (12). It is also possible
to relate the aforementioned parametrization of q(z) with
various models of DE in the standard GR scenario. Once we
have H(z) we can obtain the DE pressure pD(z) using the
equation,

3H2(z)− 2(1 + z)H(z)
dH

dz
= −8πGpD(z) . (22)

Notice that the concrete form of the density ρD(z) is not un-
equivocally determined and will exclusively depend on the

way we split the conservation equation for the DE and mat-
ter,

− (1 + z)
∑
i

dρi
dz

+ 3
∑
i

[ρi(z) + pi(z)] = 0 , (23)

i.e. on the specific form of the source function Q(z) that
describes the transfer of energy from one sector to the other,

−(1 + z)
dρm
dz

+ 3ρm(z) = Q(z) ,

− (1 + z)
dρD
dz

+ 3[ρD(z) + pD(z)] = −Q(z) . (24)

In order to show this in more concrete terms, let us put a
simple example in which we assume that q(z) = q0, with q0
being a constant. Upon integration of (10) we obtain,

H(z) = H0(1 + z)1+q0 , (25)

and using this result in (22) we compute the DE pressure,

pD(z) = −3H2
0

8πG
(1 + z)2(1+q0)

[
1− 2

3
(1 + q0)

]
. (26)

If we assume that matter and DE are self-conserved, i.e. that
Q(z) = 0, we are led to the following expression for the DE
density,

ρD(z) =
3H2

0

8πG
(1 + z)2(1+q0) − ρ(0)

m (1 + z)3 , (27)

and the standard matter dilution law ρm(z) = ρ
(0)
m (1 + z)3.

Different expressions for the energy densities are obtained
when Q(z) 6= 0, and they change with the particular form of
Q(z). The same happens for more elaborated parametriza-
tions of the deceleration parameter, showing in all cases that
we can associate an infinite set of DE models to a given
parametrization of q(z). This seems to point out that the
problem is somehow alleviated with respect to the cases an-
alyzed before in which particular cosmological models were
assumed, since now we can obtain constraints on cosmo-
graphical functions which are not only valid for a concrete
model, but are also extensible to a whole family of them. In
this sense, this approach is more model-independent. Des-
pite this, such constraints are still very reliant on the par-
ticular parametrization chosen, as can be explicitly checked
in Table 4, where we show the fitting results for four al-
ternative parametrizations of q(z). Again, the level of evi-
dence in favor of the current positive acceleration of the Uni-
verse varies a lot depending on the particular choice of q(z).
It ranges from the ∼ 3σ significance of the most complex
model (the one in the fourth row) to the ∼ 8σ found using
e.g. q(z) = q0, and the latter is in strong tension with the
values obtained with the other parametrizations. This situ-
ation was already noticed by Elgarøy & Multamäki (2006),
who applied model selection criteria in order to select the
most favored parametrization of q(z) among those that they
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q(z)-parametrization H0 [km s−1Mpc−1] q0 q1 q2 χ2
min

q0 72.29± 2.37 −0.288± 0.036 − − 32.64

q0 + q1z 70.35± 2.47 −0.503± 0.063 0.66± 0.16 − 16.26

q0 + q1z/(1 + z) 70.55± 2.46 −0.611± 0.084 1.50± 0.36 − 15.74

q0 + q1z/(1 + z) + q2z
2/(1 + z)2 70.49± 2.51 −0.59± 0.20 1.33± 1.89 0.31± 3.24 15.74

Table 4. As in Table 3, but for four alternative parametrizations of q(z).

studied in their paper. This is definitely better than just
choosing one parametrization in a fully blind way, but nev-
ertheless we deem that this does not completely solve the
problem, since there can be several parametrizations lead-
ing to different associated values of e.g. q0 that in terms
of model selection criteria offer a similar efficiency. Picking
just one form of q(z) might therefore lead us still to biased
conclusions and to underestimate the uncertainties of the
measured quantities, even if we use model-selection criteria
to carry out our choice. Thus, depending on the physical
question we are interested to answer we are still forced to
search for an alternative approach which does not depend on
particular parametrizations of q(z) or any other alternative
cosmographical function. In the next section we describe the
WFR method, a generalization of the procedure applied in
(Elgarøy & Multamäki 2006) which is able to mitigate even
more the problem, and to go one step further concerning the
model-independence of these kind of analyses.

3.3 Reconstruction of E(z) with the WFR method

Those works in which the authors choose a particular trun-
cated cosmographical series to carry out the fitting analysis
are also susceptible to the problems that we have exposed
in the preceding subsection. In this case the situation is not
very different from choosing a concrete parametrization of
q(z). To understand why, let us focus on the cosmographical
expansions (13) and (14). If we cut these series at a given
order and apply (10) we can obtain the form of q(z) associ-
ated to the aforesaid truncated series of E(z). The problem
we encounter is therefore completely analogous to the one
described in the last part of Sect. 3.2. Now we will try to
alleviate it in the cosmographical context of (13) and (14).
The mathematical structure of these expansions of the Hub-
ble rate have something in common: they are built linear in
the coefficients ci,

E(z) = 1 +

∞∑
i=1

cigi(z) , (28)

where the ci’s are constants that can be expressed in terms
of the cosmographical parameters, i.e. q0, j0, s0, etc.4, and
the gi(z)’s are functions of the redshift with a very sim-
ple structure, gi(z) = [g1(z)]i, being g1(z) = z in (13) and
g1(z) = z/(1+z) in (14). They are usually referred to as ba-
sis functions. Instead of relying on one particular truncated
series,

EJ(z) = 1 +

J∑
i=1

cigi(z) , (29)

4 For the sake of clarity, we remark that we will refer to the ci’s

as coefficients of the expansion, and to the q0, j0, s0, etc. as the
cosmographical parameters.

and thus set J to a concrete value in our study, we opt to
incorporate the information about all the nested expansions
(obtained by changing J) in order to skip the problem of
choosing just one among them in the fitting analysis. Let us
call M1, M2,..., MN the cosmographical expansions of order
J = 1, 2,..., N , respectively, with N being the number of
data points used in the analysis. That is, let us conceive each
expansion as a different model, and compute the probability
density associated to the fact of having a certain shape for
the Hubble rate as follows,

P [E(z)] = k·[P (E(z)|M1)P (M1)+...+P (E(z)|MN )P (MN )] ,
(30)

where k is just a normalization constant that must be fixed
by imposing ∫

[DE]P [E(z)] = 1 . (31)

Taking into account that∫
[DE]P (E(z)|MJ) = 1 ∀J ∈ [1, N ] (32)

and

N∑
J=1

P (MJ) = 1 , (33)

we find k = 1 and therefore:

P [E(z)] =
N∑
J=1

P (E(z)|MJ)P (MJ) . (34)

We now denote M∗ as the most probable model and rewrite
the last expression as follows,

P [E(z)] = P (M∗)

N∑
J=1

P (E(z)|MJ)
P (MJ)

P (M∗)
, (35)

where P (MJ )
P (M∗)

can be identified with the Bayes ratio BJ∗, i.e.
the ratio of evidences

BJ∗ =
EJ
E∗

=

∫
L(D|~cJ)π(~cJ)d~cJ∫
L(D|~c∗)π(~c∗)d~c∗

, (36)

with L(D|~cJ) being the likelihood function, which is a func-
tion of the coefficients entering the model J , ~cJ , and the
data set D (which of course is common for all the models),
and π(~cJ) being the prior, see e.g. (Amendola & Tsujikawa
2015; Amendola 2018). M∗ is formally defined as the model
with largest evidence in the whole set {MJ}. Using (33) one
finds

P (M∗) =

(
N∑
J=1

BJ∗

)−1

, (37)
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12 A. Gómez-Valent

so (35) can be finally written as

P [E(z)] =

N∑
J=1

P (E(z)|MJ)BJ∗

N∑
J=1

BJ∗

. (38)

This is the central expression of the weighted function re-
gression method, where the weights are directly given by
the Bayes factors. Notice that from (38) we can compute
the (weighted) moments and related quantities too. For in-
stance, the weighted mean and variance read,

Ē(z) =

N∑
J=1

ĒJ(z)BJ∗

N∑
J=1

BJ∗

, (39)

σ2(z) =

N∑
J=1

[σ2
J(z) + (ĒJ(z))2]BJ∗

N∑
J=1

BJ∗

− (Ē(z))2 , (40)

where ĒJ(z) and σJ(z) are the mean and standard deviation
computed in the model J (we will show in Sect. 3.4 how to
calculate them analytically in the case under study). We
remark here that these functions will differ in general from
the best-fit function and its associated 68.3% c.l. bands due
to the possible deviations from Gaussianity encountered in
the final reconstructions. It is also possible to estimate the
effective number of parameters in the final reconstruction,
using

Neff =

N∑
J=1

JBJ∗

N∑
J=1

BJ∗

. (41)

The machinery explained in this subsection was already em-
ployed in (Gómez-Valent& Amendola 2018) to reconstruct
the Hubble function in the light of the CCH and Pan-
theon+MCT SnIa data, using (39) and (40), and evalu-
ating the Bayes ratio approximately with the help of the
Akaike (Akaike 1974) and Bayesian (Schwarz 1978) infor-
mation criteria as explained in Sect. 4.2 of our past paper.
Now we aim to reconstruct E(z), q(z) and j(z) using the
weighted function regression formalism too, but improving
the methodology in two important aspects with respect to
(Gómez-Valent& Amendola 2018), namely: (i) here we will
compute not the mean and variance of these functions, but
the best-fit and corresponding exact 1σ confidence regions;
and (ii) we will calculate the exact Bayes ratios with the
formula (36), instead of using approximations of it. In the
case under study it is possible to compute the exact ex-
pressions for the evidences analytically because the fitting
functions (29) are in all cases, i.e. ∀J , linear in the parame-
ters ci and, in addition, the data on E(z) described in Sect.
2 are Gaussian-distributed in very good approximation. In
the next subsection we explicitly derive the formula for the
evidence, which plays a very important role in the WFR
method, since it is in charge of controlling the weight of the
various models in the final distribution (38).

3.4 Computation of evidences and other
quantities of interest

We begin this subsection reviewing the main expressions
needed for fitting Gaussian-distributed data with functions
that are linear in the coefficients, as in the case that concerns
us. If we have a collection D = {(zµ, yµ), µ = 1, ..., N, N ≥
J} of Gaussian-distributed data points with covariance ma-
trix C, and we want to fit (29) to them we have to maximize
the likelihood

L(D|~c) =
1

(2π)N/2
√
|C|

e
− 1

2
[yµ−E(zµ;~a)]C−1

µβ
[yβ−E(zβ ;~a)]

(42)
with respect to the elements of the vector of coefficients ~c.
We have omitted here the subscripts J for simplicity, but it
is important to keep in mind we are referring to a particu-
lar model MJ , so the theoretical expression for the Hubble
rate is characteristic of this concrete model, and so are the
covariance matrices and mean values of the coefficients that
will appear in the subsequent formulas for both, the like-
lihood and the prior distributions. Notice also that in the
last formula we are using the Einstein summation conven-
tion, as we will do in all the forthcoming expressions unless
stated otherwise. We use Greek letters for indexes labeling
data points, and Latin ones for those labeling the terms of
E(z), as in (29). Due to the linearity of the latter in the
coefficients it is possible to rewrite the likelihood (42) as a
multivariate Gaussian distribution for the coefficients too,
i.e.

L(D|~c) =
e−χ

2
min/2

(2π)N/2
√
|C|

e−
1
2

(ci−l̄i)Fij(cj−l̄j) , (43)

where χ2
min = χ2(~̄c),

Fij = GiµC
−1
µβG

j
β (44)

is the inverse covariance matrix of the coefficients, also
known as Fisher matrix, Giµ ≡ gi(zµ), and

l̄i = yµC
−1
µβG

j
βF
−1
ij (45)

is the mean value derived from the likelihood for the coeffi-
cient ci. It is straightforward to compute the mean function
ĒJ(z) and covariance matrix cov[EJ(z), EJ(z′)] associated
to the model MJ . It can be done as follows (here we write
again the sum symbols explicitly),

ĒJ(z) = 1 +

J∑
i=1

l̄igi(z) , (46)

cov[EJ(z), EJ(z′)] =

J∑
i,j=1

F−1
ij gi(z)gj(z

′) . (47)

The variance of the reconstructed function is just σ2
J(z) =

cov[EJ(z), EJ(z)]. These expressions are involved in the
computation of (39) and (40). Now, we have all the ingre-
dients to derive the compact formula for the posterior dis-
tribution in one particular model MJ . It can also be found
in many other references, as in (Nesseris & Garćıa-Bellido
2013; Amendola & Tsujikawa 2015; Amendola 2018), but we
add this information here too for completeness. The product
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Figure 2. In black, best-fit values and 1σ uncertainties of the reconstructed functions E(z) (top row) and the derived q(z) (bottom row)

that are obtained using the WFR method as described in Sects. 3.3 and 3.4, based on the expansions (13) (plots in the left column) and

(14) (in the right one), and making use of the Pantheon+MCT (prior) and CCH (likelihood) data. These data points are incorporated
to the upper plots with red and blue error bars, respectively. The blue-dashed curves in the lower plots refer to the mean of q(z). We

also show (in green) the central curves and 1σ-bands for the ΛCDM model, obtained using the best-fit values of Table 3. See the related
comments in the main text.

of the Gaussian prior,

π(~c) =
1

(2π)J/2
√
|P |

e−
1
2

(ci−p̄i)P
−1
ij (cj−p̄j) , (48)

with the likelihood (43) can be written as follows,

L(D|~c)π(~c) = (49)

e−
1
2

(χ2
min+l̄i l̄jFij+p̄ip̄jP

−1
ij −d̄id̄jD

−1
ij )

(2π)(J+N)/2
√
|P ||C|

e−
1
2

(ci−d̄i)D
−1
ij (cj−d̄j) ,

with

D−1
ij = Fij + P−1

ij (50)

being the inverse of the posterior covariance matrix, and

d̄k = Dki(Fij l̄j + P−1
ij p̄j) (51)

the posterior mean of the coefficient ck. The latter coincides
with the best-fit value, since the posterior distribution is
also a multivariate Gaussian. The integration of (49) with
respect to the coefficients of the model, ~c, is straightforward
and leads us to the final expression for the evidence that
enters the formula of the Bayes ratio (36),

E =
1

(2π)N/2
√
|C|

√
|D|
|P | e

− 1
2

(χ2
min+l̄i l̄jFij+p̄ip̄jP

−1
ij −d̄id̄jD

−1
ij ) .

(52)
As it is explained in e.g. (Amendola & Tsujikawa 2015;
Amendola 2018), the evidence depends on three factors: (i)
the ability of the model to fit the data of the likelihood (42).

This fixes the value of χ2
min; (ii) the relative difference bet-

ween the constraints set by the likelihood and the prior. This
fixes the ratio |D|/|P |; and (iii) the distance in parameter
space between the best-fit values preferred by the likelihood
and those that are preferred by the prior, which affects the
computation of l̄i l̄jFij + p̄ip̄jP

−1
ij − d̄id̄jD

−1
ij . The evidence

automatically integrates Occam’s razor criterion in its defi-
nition, since the addition of extra parameters (when we take
a model with J ′ > J) reduces the value of E when they are
constrained by the likelihood in a comparable way (or bet-
ter) than by the prior. This means that the weights in our
WFR method are built through (36) according to this cri-
terion as well. On the one hand, adding more parameters
reduces the value of χ2

min (if these parameters are effective
enough, of course) and this increases the value of E ; on the
other, there is the corresponding penalization, as mentioned
before, so there exists a competition between these two op-
posite effects.

Formulas (50) and (51) are fully symmetric under the
interchange of the prior and likelihood covariance matrices
and best-fit values. Therefore, once we divide the data into
two parts, the posterior best-fit values and associated un-
certainties for a given model do not depend at all on which
of these parts is used to build the prior and which is used to
construct the likelihood. There is a kind of freedom at this
point. It is important to remark, though, that the prior dis-
tribution cannot be built with data that already take part of
the likelihood, since this would produce an unwanted dou-
ble counting which would make the analysis inconsistent.
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14 A. Gómez-Valent

Figure 3. As in Fig. 2, but incorporating the BAOs data to the likelihood. They are depicted in green in the upper plots.

For example, we are not allowed to use the data from the
JLA SnIa compilation as a prior and the Pantheon ones for
the likelihood, just because the latter contains the former
(cf. Sect. 2.1), and we would obtain biased constraints on
the parameters of the model under study. Conversely, the
evidence (52) is not symmetric under the aforementioned
interchange, so the weights used in the WFR method are
sensitive to it. We will analyze its impact in Sect. 4.

We can use (50) and (51) together with a multivariate
Gaussian random number generator using e.g. Mathematica,
in order to produce a list of vectors ~c following the posterior
distribution (49). For each of these vectors we can compute
the functions of interest, EJ(z), qJ(z), and jJ(z). Notice
that we do not need to carry out any Monte Carlo algo-
rithm to do that. Thanks to the fact of having the analyti-
cal expressions (50) and (51) we can generate histograms of
the aforementioned functions at the wanted redshifts with-
out loosing the computational time that we would have to
expend with a Monte Carlo exploration of the parameter
space. In this way we can obtain the same level of statis-
tics roughly three times faster, because we do not have to
throw away the ∼ 60%− 70% of the points, as it is done in
a typical Markov chain Monte Carlo run. We remark that
the analytical obtention of (50) and (51) has been possible
because the data is Gaussian-distributed (cf. Sect. 2) and
also because the fitting functions (29) are linear in the coef-
ficients ci. The analytical computation of the evidence with
formula (52) also allows us to save valuable computational
time, since we can avoid the calculation of the corresponding
integral in the J-dimensional parameter space, cf. the for-
mula (36). Once we obtain the histograms with the values of
the various functions evaluated at several redshifts for all the
models, we can construct the corresponding join distribution

(as a histogram, of course) for each function and redshift ac-
cording to (38), and finally derive their WFR-reconstructed
shape. We present our results in the next section.

4 RESULTS AND DISCUSSION

We start analyzing and discussing the results that we obtain
applying the methodology explained in the previous section
to the direct reconstruction of the Hubble rate and the de-
rived deceleration parameter. In Fig. 2 we show the results
for the case in which we use the Pantheon+MCT and CCH
data, being the former employed to build the prior, and the
latter to construct the likelihood (later on we will analyze
the impact of this choice in detail). In the left column of
this figure we present the results obtained with the WFR
method when use is made of the expansion in the redshift
(13), whereas those of the right column are obtained using
(14), which is built in the y-variable. It is obvious that the re-
constructed Hubble rates are in both cases very similar, not
only concerning the central values, but also the 1σ-bands.
In contrast, although the reconstructed shapes for q(z) are
completely compatible, one can appreciate important differ-
ences concerning the size of the error bands in some regions
of the covered redshift range. This is palpable around z = 0.
Using (13) we obtain q0 = −0.55+0.09

−0.11, whereas using (14)
q0 = −0.54+0.47

−0.83 (both at 1σ c.l.), so the latter is compatible
with 0 at only ∼ 1σ. This is clearly pointing out some kind
of defect affecting (at least) one of the two expansions. We
are using the WFR method precisely to remove the model
and parametrization-dependence that is inherent to many
other analyses in the literature, but concerning the shape of
q(z) we see that this parametrization-dependence still per-
sists, we have not been able to get rid of it. Notice more-
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J q0,J zt,J j0,J EJ wi ≡
EJ∑
i Ei

2 −0.50+0.05
−0.04 0.91+0.09

−0.06 0.59+0.13
−0.12 318.57 0.52

3 −0.64+0.09
−0.07 0.58+0.17

−0.07 1.48+0.25
−0.51 274.48 0.45

4 −0.62+0.12
−0.17 0.60+0.15

−0.13 1.5+1.3
−1.0 19.74 0.03

Table 5. Current values of the deceleration and jerk parameters,

transition redshift, evidence and corresponding weight for each
model involved in the same WFR-reconstructions of the left col-

umn in Fig. 3, those that make use of (13). The model containing

only the linear term in z, i.e. with J = 1, and all the models with
J > 4 do not contribute significantly to the final reconstruction

because they have a negligible weight in the global distribution

(38). We have not included their information in this table. The
effective number of degrees of freedom is Neff = 2.52, and the

final reconstruction leads to: q0 = −0.51+0.08
−0.10, zt = 0.90+0.12

−0.25,

and j0 = 0.59+0.64
−0.12.

over that the ΛCDM curves (which are drawn in green in
all the plots of Fig. 2) are in all cases fully compatible at
< 1σ with the reconstructed functions. They are actually
contained inside the reconstructed bands. The only excep-
tion is at a small region at z > 1.2 of the lower right plot,
which is compatible not at one, but at two sigmas. The 1σ-
bands, though, are much smaller in the ΛCDM than in the
WFR-reconstructions. This is the price we have to pay for
the model-independence of our analysis (which, as already
said, seems not to be yet parametrizarion-independent, see
the subsequent comments below).

In Fig. 3 we show the results that we obtain by also
considering the BAOs information. The problem mentioned
above does not disappear neither in this case. The recon-
structed functions E(z) are now even more resonant than
before, and the error bands decrease for the Hubble rate
and q(z), as expected, but the reconstructed deceleration
parameter still suffers from the same problems mentioned
before. Now, q0 = −0.51+0.08

−0.10 with (13), and with (14) it is
still compatible with 0 at 1σ. The reason of such discrepancy
is not difficult to understand from a mathematical point of
view. In order to ease the explanation we restrict ourselves
to the case in which we truncate the series (13) and (14) at
second order, yielding

Ez(z)−1 = az+bz2 ; Ey(z)−1 = ã
z

1 + z
+ b̃

(
z

1 + z

)2

,

(53)
respectively. The point is the following. The data at z > 1
have a greater impact on the coefficient ã rather than on
a, just because the relative weight of the squared term in
Ey(z) (the one containing b̃) is much lower than the one in
Ez(z) and, therefore, the influence of those data points at
higher redshifts on the first terms of the right-hand side of
the expansions (53) is much bigger in Ey(z) than in Ez(z).
For instance, at z = 2 we have Ez(2) − 1 = 2(a + 2b) and
Ey(2) = 2(3ã + 2b̃)/9, so the relative weight of ã is three
times larger than the one of a at this redshift. By compar-
ing (13) and (14) with (53) one can see that the relation
between q0 and the a’s are exactly the same, i.e. q0 = a− 1
and q0 = ã−1, respectively, so q0 will depend more strongly
on the data points at high redshifts in the parametrization
(14) than in (13). In fact, notice that if we had data points
at very high redshifts, let us say at z → ∞, then these
data would not influence a at all, whereas ã would have the
same weight as b̃. This situation is clearly anomalous and

Figure 4. Individual distributions for q0 for the various models

that contribute non-negligibly to the final WFR-reconstructions

of Fig. 3 (left column), cf. also Table 5. We also plot the weighted
distribution, which is built from the individual ones analogously

to (38).

is probably telling us that the parametrization (14) is quite
unpractical and unable to grasp properly the correct physi-
cal behavior of the underlying function, i.e. the function we
aim to reconstruct, just because q0 is too sensitive to the
data at very high redshifts. We must be more confident on
the constraints for q0 obtained through (13) than the ones
obtained through (14). Actually, it is quite abnormal not to
find any evidence for the current accelerated phase of the
Universe with (14). Conversely, with the parametrization
(13) we find very strong evidence applying a full Bayesian
approach. We can repeat the same procedure used to recon-
struct E(z), but fixing q0 = 0. We compute then the sums
of the evidences derived from all the models EJ(z) when
q0 = 0, i.e. EJ(q0 = 0), and when q0 6= 0 and left free in
the fitting analyses, i.e. EJ(q0 6= 0). Then we calculate the
Bayes ratio using these sums, as follows,

B =

∑
J

EJ(q0 6= 0)∑
J

EJ(q0 = 0)
= 1137→ lnB = 7.04 . (54)

According to Jeffreys’ scale (see e.g. the references by Amen-
dola & Tsujikawa (2015) and Amendola (2018); and also
the one by Jeffreys (1961)), this is pointing towards a very
strong evidence in favor of an accelerated Universe, since
lnB > 55. Here the BAOs data play a crucial role to en-
hance the confidence level of our result. We have checked
that if we remove them from our data set lnB = 2.83 and,
hence, the evidence decreases up to a moderate level, just
because in this case 1 < lnB < 3. This in stark contrast

5 Using the value of H0 provided by Riess et al. (2018a) –instead
of H0 = (70±5) km s−1Mpc−1– in the prior employed to convert

the original CCH+BAOs data into data on the Hubble rate (see
Sect. 2.2), we find q0 = −0.52+0.05

−0.09 and lnB = 7.96. Using the

one derived from the fitting analysis of the ΛCDM carried out

by the Planck Collaboration VI (2018) with the TT+lowE CMB
data we obtain q0 = −0.46+0.06

−0.15 and lnB = 6.07. In both cases

the strong level of evidence is maintained, so our conclusion does

not depend on this.
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16 A. Gómez-Valent

Figure 5. Left plot: Reconstructed Hubble rates and 1σ-bands obtained with the WFR method, using the CCH+BAO (prior) and
Pantheon+MCT (likelihood) data, and the parametrizations (15, in orange) and (16, in black). The data points are depicted with the

same colors of Fig. 3; Right plot: The corresponding reconstructed deceleration parameters.

Prior Likelihood q0 zt

SnIa CCH −0.62+0.13
−0.11 0.71+0.24

−0.14

SnIa CCH+BAOs −0.60± 0.10 0.80+0.09
−0.12

CCH SnIa −0.62+0.11
−0.10 0.74+0.21

−0.17

CCH+BAOs SnIa −0.60+0.08
−0.06 0.81+0.08

−0.09

Table 6. Values of q0 and zt obtained from the reconstruction

of q(z) using the WFR and the expansion (16). We provide the
results for four alternative combinations of the prior and the like-

lihood distributions, see related comments in the main text.

with the results found e.g. in the context of the ΛCDM (cf.
Table 3), in which one founds q0 = −0.554 ± 0.032 using
only the SnIa and the CCH data. These 17σ of evidence are
very far away from the more conservative one that we have
inferred from our model-independent approach, which has
an uncertainty roughly three times bigger.

In Table 5 we provide some relevant information
about the individual models (13) employed in the WFR-
reconstructions of E(z) and q(z) that we have plotted in the
left column of Fig. 3. Actually, only three of these models
play an important role in these reconstructions: the third,
fourth and fifth-order polynomials of E(z). The other ones
are strongly suppressed either because they are completely
unable to fit correctly the data, as the linear expansion of
E(z), with J = 1, or because they receive a very impor-
tant penalization for using too many parameters. It is the
case of those models with J > 4. Remarkably, the central
values of the parameters q0, j0, and also zt, obtained with
the global WFR-distribution (38) are very close to those ob-
tained in the model with highest evidence, i.e. the one with
J = 2. Although the addition of the other models (basi-
cally those with J = 3, 4) in the weighted sum only shifts
very slightly the central values of the parameters, they in-
crease the total uncertainty (compare the values in Table 5
with those provided in its caption). In order to better visu-
alize the interplay of the various models in the generation
of the final output we have also included Fig. 4. There we
show the Gaussian shape of the individual distributions for
q0 obtained in the models with J = 2, 3, 4, together with the
weighted distribution built analogously to (38). The latter
departs considerably from Gaussianity.

Alternatively, we have also explored what happens if we
use the expansions (15) and (16) of q(z) instead of the ex-
pansions of E(z) analyzed up to now. First of all we want to

remark that if we use these expansions of q(z) the theoreti-
cal expressions of the corresponding Hubble rates that enter
the fitting analysis loose their linearity in the coefficients.
Thus, we cannot obtain the exact analytical expressions for
the posterior best-fit values and covariance matrix of the
parameters that are used to build q(z). Nevertheless, we
can work with the Fisher approximations of the likelihood
and posterior distributions (see e.g. Amendola & Tsujikawa
(2015) and Amendola (2018)) and apply the methodology
developed in the last section in order to carry out the re-
constructions. In Fig. 5 we plot the reconstructed Hubble
rates and deceleration parameters obtained with the WFR
method and the expansions (15) and (16). The theoretical
expressions for the Hubble rate are easy to compute using
(10). For example, introducing (16) in (10) and integrating
the resulting equation we obtain

EJ(z) = (1 + z)
1+

J∑
i=0

qi
e
−

J∑
k=1

1
k ( z

1+z )k
J∑
i=k

qi
(55)

for J > 0, and E(z) = (1 + z)1+q0 for J = 0. Analogous ex-
pressions can be derived when we use the expansion (15). To
obtain Fig. 5 we have employed the data on CCH+BAOs to
build the prior and the Pantheon+MCT data for the like-
lihood. The left plot shows, again, that the reconstructed
Hubble rates obtained from the two expansions under study,
(15) and (16), are fully consistent. Moreover, the recon-
structed q(z)’s are compatible at the ∼ 1 − 2σ c.l. in all
the redshift range and the error bands also have a similar
size. In this case the current values of the deceleration pa-
rameter read q0 = −0.43+0.04

−0.07 and q0 = −0.60+0.08
−0.06 for the

parametrization (15) and (16), respectively.
We have also studied the differences that are found in

the reconstruction of q(z) in the context of the parametriza-
tion (16) when one uses the SnIa data in the prior and the
CCH/CCH+BAOs in the likelihood instead of using the lat-
ter in the prior and the former in the likelihood. The results
are shown in Fig. 6. It is evident that this particular choice
only has a very minimal impact on our results, the differ-
ences are almost imperceptible at naked eye. This can be
also checked in Table 6, where we list the values of q0 and
the deceleration-acceleration transition redshift zt that are
obtained for the four situations explored in Fig. 6. The lat-
ter has been proposed in the literature as a potential pri-
mary cosmological parameter, see e.g. (Lima et al. 2012).
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Figure 6. Left plot: Reconstructed deceleration parameters and 1σ-bands obtained with the WFR method and the parametrization
(16). The black curves are obtained using the SnIa data in the prior and the CCH in the likelihood. The blue curves by also adding the

BAOs data in the likelihood; Right plot: The same as in the left plot, but using the CCH and CCH+BAOs data in the prior (in black
and blue, respectively), and in both cases the SnIa data in the likelihood.

The constraints are very similar as those obtained with the
parametrization (13), and also as those reported in the inter-
esting work (Haridasu et al. 2018). These authors obtained
q0 = −0.52 ± 0.06 and zt = 0.64+0.12

−0.09 using the so-called
Multi-Task Gaussian Processes technique and a very similar
data set as the one employed by us in our analyses, con-
sidering the SnIa data of the Pantheon+MCT compilation,
CCH and BAOs, as we do. The only differences are the fol-
lowing: they used the BAOs data from (Alam et al. 2017;
Zhao et al. 2018) instead of the data provided in (Gil-Maŕın
et al. 2017; Gil-Maŕın et al. 2018); and the CCH data that
we have listed in the second column of our Table 2, instead
of those listed in the third column of the same table, which
also incorporate the systematic errors due to the choice of
SPS model and those introduced by the potential presence
of a young stellar component in the quiescent galaxies. The
reconstructed shape of the deceleration parameter provided
in their Fig. 5 is also very similar to those that we have
obtained using (13) and (16) in the context of the WFR
method, cf. Figs. 3 and 6, and the aforementioned figure in
(Haridasu et al. 2018). Thus, there is a very good resonance
between the two reconstruction techniques when a reason-
able basis for the truncated series is employed in the WFR
method.

We have also reconstructed the jerk parameter j(z)
using the expansions (13) and (15). The results are presented
in Fig. 7. They are fully compatible, but unfortunately the
errors are still quite large. Nevertheless we can see that the
string of data on SnIa+CCH+BAOs employed in this work
does not prefer any important deviation from j(z) = 1, i.e.
the predicted value in the ΛCDM, so there is no need of in-
troducing new physics in order to explain these observations
at low and intermediate redshifts. Some authors that have
found important evidence in favor of the dynamical nature
of the dark energy in the context of various running vacuum
and DE models and parametrizations (Solà, Gómez-Valent
& de Cruz Pérez 2017; Solà, de Cruz Pérez & Gómez-Valent
2018) have also stated that in order to grasp this dynamical
feature one has to use the triad of data on CMB, BAOs, and
large-scale structure (especially, those data on redshift space
distortions), and that the current data on SnIa and CCH do
not require (when used alone) the need of new physics in
the form of dynamical DE. This in perfect consonance with

the results extracted from the reconstructions carried out in
this work.

Finally, it is also interesting to compare our model-
independent results, e.g. those compiled in Table 6, with
those predicted in the ΛCDM, using the best-fit parameter
of Ω

(0)
m obtained from the TT,TE,EE+lowE+lensing+BAO

fitting analysis reported by the Planck Collaboration VI
(2018), Ω

(0)
m = 0.3111 ± 0.0056. Using formula (21) (and

setting w0 = −1) one obtains q0 = −0.534 ± 0.008, and
using the ΛCDM formula for the deceleration-acceleration
transition redshift,

zt =

(
2(1− Ω

(0)
m )

Ω
(0)
m

)1/3

− 1 , (56)

one gets zt = 0.64 ± 0.01. These values are compatible at
1− 2σ c.l. with those presented in Table 6.

5 CONCLUSIONS

We have reconstructed in this paper the deceleration and
jerk parameters from a very updated data set on SnIa, CCH
and BAOs, using the weighted function regression method,
and by only assuming the Cosmological Principle and the
flatness of the Universe. We have not taken more assump-
tions for granted, so our analysis can be considered quite
model-independent. We have corrected the CCH data in
order to incorporate the effect of some systematic uncer-
tainties that are usually disregarded in many other analyses
in the literature. We have shown with concrete examples
in Sect. 3.2 that if we want to infer objective constraints
on the cosmographical functions we are forced not to base
our fitting analyses on concrete cosmological models, specific
parametrizations of the cosmographical quantities or indi-
vidual truncated cosmographical expansions. We have stud-
ied the correspondance between the latter two scenarios and
particular dark energy models in standard GR. The results
that we have obtained from our reconstructions are con-
sistent with the standard cosmological model, but the sta-
tistical uncertainties associated to the reconstructed func-
tions are much larger (a factor ∼ 3) than those that are
obtained in the context of the ΛCDM and other particu-
lar frameworks. This is actually something expected, and is
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Figure 7. Left plot: Reconstruction of the jerk obtained in the same framework of Fig. 3, using the parametrization for E(z) (14). The
error bands cover the 2σ-range. We also plot the ΛCDM prediction, i.e. j(z) = 1, in green, and the mean of the reconstructed jerk in

blue; Right plot: The same, but using the parametrization for q(z) (16).

the price one has to pay for the model-independence. We
have computed the level of evidence in favor of the cur-
rent speed-up of the Universe following a full (and exact)
Bayesian approach, using the tools provided in Sect. 3. We
have obtained values of q0 which lie 5 − 6σ away from 0
when only the SnIa of the Pantheon+MCT compilation and
the CCH are considered. This is in strong contrast with the
17σ found in the concordance model using the same data.
Computing the exact Bayesian evidences and using Jeffreys’
scale, we have checked that this corresponds to a moderate
level of evidence, whereas it is promoted to a very strong
one if also the data on BAOs are taken into account. Thus,
these results support the general accepted idea that the Uni-
verse is currently undergoing a positive accelerated expan-
sion. This seems to be now something beyond doubt in the
light of only low and intermediate-redshift data. Neverthe-
les, we want to highlight here the importance of carrying
out model-independent analyses (when possible) as the one
we have reported in this paper to infer unbiased informa-
tion about the Cosmos, specially when substantial evidence
is obtained in the context of concrete cosmological models.
We could ask ourselves, for instance, what was the real evi-
dence found by Riess et al. (1998) and Perlmutter et al.
(1999) in favor of an accelerated Universe in the time these
seminal papers appeared. Most probably, the 3σ c.l. evi-
dence reported in these works would have been considerably
degraded if a more model-independent method would have
been applied to extract the value of q0. This certainly is a
more conservative way to proceed. Interestingly, we have also
seen that our model-independent results are fully compat-
ible with those reported by Haridasu et al. (2018), which
were obtained using a generalization of the usual Gaus-
sian Processes technique that allowed them to deal with
the SnIa+CCH+BAOs data sets in the same analysis si-
multaneously. In addition, we have provided a new model-
independent determination of the deceleration-acceleration
transition redshift, zt ∼ 0.8 ± 0.1, and have checked that
with the low and intermediate data sets under considera-
tion the jerk parameter does not require any deviation from
the ΛCDM in order to be explained, although of course, de-
partures from the latter (as e.g. those coming from some
sort of dynamical dark energy) are still allowed given the
current size of the uncertainties found for this parameter.

Nowadays, in the era of precision cosmology we are liv-
ing, we know that not all the observational cosmology is
the search for two numbers, H0 and q0, although these pa-
rameters certainly are the ones that can be measured in a
model-independent way with better accuracy, as we have
shown in this work. Here we have focused our attention on
the second. The measured current value of the deceleration
parameter clearly tells us that the Universe is speeding up.
The causes of this positive acceleration are still unknown.
We think that, in the future, cosmographical analyses as the
one carried out in this paper might play an important role to
decipher the mystery of the physics behind the current accel-
erated phase. Despite the jerk parameter is still quite uncon-
strained by the low and intermediate-redshift data analyzed
here, we certainly hope to be capable of putting stringer
limits on its value in the coming years, when we have access
to more and better data thanks to e.g. the Euclid satellite
or the Dark Energy Spectroscopic Instrument (DESI). This
research line could provide us of new hints about the mecha-
nism that is triggering the current speed-up of the Universe,
allowing also the jerk parameter to be a good discriminator
of cosmological models, and helping in this way to move to-
wards the solution of one of the most profound enigmas in
Physics.
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